首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A highly sensitive and specific diagnostic test for Brucella based on polymerase chain reaction is under development in our laboratory. A commercially available PCR kit was used to create primers that allowed the amplification of a 635 bp fragment of a 43 kDa outer membrane protein gene from Brucella abortus strain 19. We successfully amplified the cloned gene present in the pMS64 plasmid and genomic Brucella S19 DNA. The amplified DNA was easily detected by agarose gel electrophoresis. Using both the pMS64 plasmid and Br. abortus S19 purified DNA as template each component of the PCR reaction was adjusted for the optimum amplification of the DNA sequence. Optimum specific amplification resulted when the primer annealing temperature was 60C. The gene fragment was amplifiable in 25 different Brucella species and strains. To test the specificity of the reaction, DNA extracted from 17 micro-organisms possibly associated with cattle were tested. No amplification was observed. The sensitivity of the reaction was determined with different concentrations of genomic Brucella strain 19 DNA. As little as 0.1 pg DNA (less than 100 brucella cells) could be detected. The specificity and sensitivity of PCR combined with its simplicity and speed suggests the potential of this technique for routine diagnosis of brucellosis.  相似文献   

2.
A highly sensitive and specific diagnostic test for Brucella based on polymerase chain reaction is under development in our laboratory. A commercially available PCR kit was used to create primers that allowed the amplification of a 635 bp fragment of a 43 kDa outer membrane protein gene from Brucella abortus strain 19. We successfully amplified the cloned gene present in the pMS64 plasmid and genomic Brucella S19 DNA. The amplified DNA was easily detected by agarose gel electrophoresis. Using both the pMS64 plasmid and Br. abortus S19 purified DNA as template each component of the PCR reaction was adjusted for the optimum amplification of the DNA sequence. Optimum specific amplification resulted when the primer annealing temperature was 60 degrees C. The gene fragment was amplifiable in 25 different Brucella species and strains. To test the specificity of the reaction, DNA extracted from 17 micro-organisms possibly associated with cattle were tested. No amplification was observed. The sensitivity of the reaction was determined with different concentrations of genomic Brucella strain 19 DNA. As little as 0.1 pg DNA (less than 100 brucella cells) could be detected. The specificity and sensitivity of PCR combined with its simplicity and speed suggests the potential of this technique for routine diagnosis of brucellosis.  相似文献   

3.
Reactive oxygen species (ROS) have been implicated as the cause of cumulative damage to DNA, proteins and lipids that can ultimately result in cell death. A common problem when measuring oxidative DNA damage has been the introduction of modifications in the native state of the molecule by many DNA isolation methods. We circumvented this problem by employing direct PCR (DPCR) of whole cell lysates. DPCR of mouse lung fibroblasts performed better than PCRs containing template acquired by phenol/chloroform extraction or a commercially available genomic DNA isolation kit. We investigated the direct use of whole cell preparations in the polymerase chain reaction (PCR) to detect hydrogen peroxide (H2O2)-mediated DNA damage. We observed a concentration-dependent decrease in amplification efficiency of a 4.3 kb mitochondrial (mt)DNA target in H2O2-treated mouse lung fibroblasts (MLFs). At low doses the efficiency of amplification returns to control levels over 24 h. We detected no change in amplification efficiency of a plasmid control containing our mtDNA target under any of the culture conditions employed in these studies. Treatment of MLFs with the catalytic antioxidant manganese(III) meso-tetrakis(4-benzoic acid)porphyrin (MnTBAP) attenuates the effects of H2O2 exposure. When quantitated with an external standard the use of DPCR in tandem with a PCR amplification efficiency assay provides a powerful approach to assess oxidative mtDNA damage.  相似文献   

4.
Gelatin-coated magnetic particles were implemented for bacterial genomic DNA isolation in this study. Based on structural differences in the cell wall, the standard strains Staphylococcus aureus and Escherichia coli were selected. The quantity, quality, and timing process for DNA extraction using gelatin-coated magnetite were compared to reference phenol-chloroform extraction and a commercially available kit. Approximately twice as much DNA was recovered with the use of coated magnetite, providing greater yields than other DNA extraction methods. In addition, the DNA quality was determined using 16S ribosomal DNA (rDNA) gene amplification by polymerase chain reaction (PCR). The described technique is rapid, simple, and a well-suited method to use with PCR for diagnosis of bacterial infections.  相似文献   

5.
A simple and reliable procedure for the amplification of single-stranded DNA suitable for sequencing is described. This procedure employs the polymerase chain reaction and implements modifications pertaining to the purification of the double-stranded DNA product prior to single-stranded DNA amplification. The most consistent sequencing reactions are obtained when the double-stranded DNA product is purified by centrifugation with a microconcentrator prior to single-stranded DNA amplification and the overall amount of specific primers and number of cycles used, in both single-stranded and double-stranded DNA polymerase chain reactions, are reduced.  相似文献   

6.
We have developed a novel, isothermal DNA amplification strategy that employs phi29 DNA polymerase and rolling circle amplification to generate high-quality templates for DNA sequencing reactions. The TempliPhi DNA amplification kits take advantage of the fact that cloned DNA is typically obtained in circular vectors, which are readily replicated in vitro using phi29 DNA polymerase by a rolling circle mechanism. This single subunit, proofreading DNA polymerase has excellent processivity and strand displacement properties for generation of multiple, tandem double-stranded copies of the circular DNA, generating as much as 10(7)-fold amplification. Large amounts of product (1-3 microg) can be obtained in as little as 4 hours. Input DNA can be as little as 0.01 ng of purified plasmid DNA, a single bacterial colony, or a 1 microL of a saturated overnight culture. Additionally, the presence of an associated proof reading function within the phi29 DNA polymerase ensures high-fidelity amplification. Once completed, the product DNA can be used directly in sequencing reactions. Additionally, the properties of phi29 DNA polymerase and its use in applications such as amplification ofhuman genomic DNA for genotyping studies is discussed.  相似文献   

7.
Rapid isolation of DNA from goat blood using different brands of detergents available in Indian market, is reported. The integrity and efficiency of these DNA preparations were compared with genomic DNA isolated by a standard kit (Flexi gene DNA kit), using amplification of exon 2 of CYP19 (aromatase) gene. The similar and significant amplification of this gene was obtained using genomic DNA isolated by kit and various detergents. However, among the detergents used, the Rin and Ezee were found to be the best to get DNA of high purity comparable to that obtained by kit.  相似文献   

8.
The methods employed for DNA extraction from many plants is difficult because of the metabolites that interfere with DNA isolation procedures. We have developed a reliable and efficient method for isolating genomic DNA free from polysaccharide, polyphenols and protein contaminants from Dioscorea spp. The method involves inactivation of contaminant proteins by using CTAB/Proteinase K and precipitation of polysaccharides in the presence of high concentration of salt. The purity of genomic DNA was confirmed by A260/280 and A260/230 ratios calculated from the spectrophotometric readings and further by restriction analysis of the isolated DNA using restriction enzymes Eco RI. The total genomic DNA extracted by the new protocol was used for polymerase chain reaction amplification, RAPD analysis, restriction digestion and pathogen screening. The new protocol can be successfully used for both small- and large-scale preparation of genomic DNA from different tissues of Dioscorea spp. The quarantine of seed tubers and use of pathogen-free tubers for planting is a prerequisite for integrated disease management strategy. The protocol can be used for the isolation of genomic DNA from other crop plants too.  相似文献   

9.
Amplification of source DNA is a nearly universal requirement for molecular biology applications. The primary methods currently available to researchers are limited to in vivo amplification in Escherichia coli hosts and the polymerase chain reaction. Rolling-circle DNA replication is a well-known method for synthesis of phage genomes and recently has been applied as rolling circle amplification (RCA) of specific target sequences as well as circular vectors used in cloning. Here, we demonstrate that RCA using random hexamer primers with 29 DNA polymerase can be used for strand-displacement amplification of different vector constructs containing a variety of insert sizes to produce consistently uniform template for end-sequencing reactions. We show this procedure to be especially effective in a high-throughput plasmid production sequencing process. In addition, we demonstrate that whole bacterial genomes can be effectively amplified from cells or small amounts of purified genomic DNA without apparent bias for use in downstream applications, including whole genome shotgun sequencing.  相似文献   

10.
The whole genome amplification (WGA) protocol evaluated during this study, GenomiPhi DNA amplification kit, is a novel method that is not based on polymerase chain reaction but rather relies on the highly processive and high fidelity Phi29 DNA polymerase to replicate linear genomic DNA by multiple strand displacement amplification. As little as 1 ng of genomic DNA template is sufficient to produce microgram quantities of high molecular weight DNA. The question explored during this study is whether such a WGA method is appropriate to reliably replenish and even recover depleted DNA samples that can be used for downstream genetic analysis. A series of human DNA samples was tested in our laboratory and validated using such analytical methods as gene-specific polymerase chain reaction, direct sequencing, microsatellite marker analysis, and single nucleotide polymorphism allelic discrimination using TaqMan and Pyrosequencing chemistries. Although degraded genomic DNA is not a good template for Phi29 WGA, this method is a powerful tool to replenish depleted DNA stocks and to increase the amount of sample for which biological tissue availability is scarce. The testing performed during the validation phase of the study indicates no discernable difference between WGA samples and the original DNA templates. Thus, GenomiPhi WGA can be used to increase precious or depleted DNA stocks, thereby extending the life of a family-based linkage analysis project and increasing statistical power.  相似文献   

11.
This study describes a rapid procedure for the isolation of genomic DNA from various Gram-positive bacteria. Species tested included Lactobacillus delbrueckii subsp. lactis ATCC 4797, Lact. acidophilus N2, Staphylococcus aureus, Staph. epidermidis, Propionibacterium jensenii P126, Bacillus pumilus and Enterococcus faecalis. Our technique for chromosomal DNA isolation circumvents the need for phenol-chloroform extractions and caesium chloride gradients. Isolated DNA is consistently greater than 25 kb in size and can be used directly for subcloning, polymerase chain reaction amplification, restriction digestions and library construction.  相似文献   

12.
A rapid and sensitive method for the detection of genetically engineered microorganisms in soil and sediments has been devised by in vitro amplification of the target DNAs by a polymerase chain reaction. A cloned catechol 2,3-dioxygenase gene located on the recombinant plasmid pOH101 was transferred to Pseudomonas putida MMB2442 by triparental crossing and used as a target organism. For the polymerase chain reaction from soil and sediment samples, the template DNA was released from a 100-mg soil sample. Bacterial seeded soil samples were washed with Tris-EDTA buffer (pH 8.0) and treated with a detergent lysis solution at 100°C. After addition of 1% polyvinylpolypyrrolidine solution, the samples were boiled for 5 min. Supernatant containing nucleic acid was purified with a PCR purification kit. The purified DNA was subjected to polymerase chain reaction, using two specific primers designed for the amplification of catechol 2,3-dioxygenase gene sequences. The detection limit was 102 cells per gram of soil. This method is rapid and obviates the need for lengthy DNA purification from soil samples. Received 28 February 1997/ Accepted in revised form 23 November 1997  相似文献   

13.
Bidirectional solid-phase sequencing of in vitro-amplified plasmid DNA   总被引:31,自引:0,他引:31  
A solid-phase approach is described for manual and automated sequencing of plasmid DNA obtained directly from bacterial colonies through the polymerase chain reaction. The DNA fragment is selectively immobilized to magnetic beads and after strand-specific elution, the eluted strand, as well as the remaining immobilized strand, is used for bidirectional dideoxy sequencing. The solid-phase approach ensures that the amplification and the sequencing reactions can be performed under optimal conditions. The approach is exemplified by fluorescent sequencing of a cloned Streptomyces curacoi gene having a G + C content of more than 70%.  相似文献   

14.
Muqing Cao  Yu Fu  Yan Guo  Junmin Pan 《Protoplasma》2009,235(1-4):107-110
The ease and effectiveness of colony polymerase chain reaction (PCR) has allowed rapid amplification of DNA fragments and screening of large number of colonies of interest including transformants and mutants with genetic manipulations. Here, we evaluated colony PCR in Chlamydomonas. Individual colonies were treated with 10 mM ethylenediaminetetraacetic acid (EDTA) or Chelex-100 and the resulting clear cell lysate was used for PCR reaction. Either genomic DNA or plasmid DNA incorporated into the genome was equally amplified. We found that the Chelex method is superior to EDTA method in certain cases. This colony PCR technique will bypass the tedious process of isolating genomic DNA for PCR reaction and will make it possible for rapid amplification of genomic DNA fragments as well as rapid large-scale screening of transformants.  相似文献   

15.
We describe a simple PCR-based method for the isolation of genomic DNA that lies adjacent to a known DNA sequence. The method is based on the directional cloning of digested genomic DNA into the multiple cloning site of a pUC-based plasmid to generate a limited genomic library. The library is plated onto a number of selective LA plates which are incubated overnight, and recombinant plasmid DNA is then isolated from resistant colonies pooled from each plate. PCR amplification is performed on the pooled recombinant plasmid DNAs using primers specific for the pUC vector and the known genomic sequence. The combination of efficient directional cloning and bacterial transformation gives relative enrichment for the genomic sequence of interest and generates a simple DNA template, enabling easy amplification by PCR.  相似文献   

16.
A method is described for quickly and reproducibly isolating genomic DNA contiguous with known DNA sequence by means of the polymerase chain reaction (PCR). Flanking genomic DNA is isolated using a biotinylated sequence-specific primer in combination with a generic hybrid primer that binds to a deoxyoligonucleotide sequence artificially added to the ends of the genomic DNA. Amplified sequences that include the biotinylated primer are purified from nonbiotinylated amplification products by binding to a solid-phase streptavidin matrix. The biotinylated amplification product(s) are subjected to a further round of amplification, after which they can be subcloned and analyzed. This technique was applied to the isolation of three intron-exon junctions. Verification of the identify of these junction sequences was accomplished by designing primers based on the intron sequences isolated by Biotin-RAGE, amplifying across the exon using these intron primers, and sequencing the PCR-generated product.  相似文献   

17.
A simplified method of DNA sequencing by dideoxy chain termination is developed that approaches a single-step protocol. Utilizing the sequencing advantages contributed by a thermophilic polymerase and a guanine analog, stable sequencing reaction concentrates have been obtained that readily perform the entire sequencing reaction simply by adding prepared DNA to each of the four reaction concentrates required by this method. The mechanics and dynamics of these reactions have been investigated and the capacity of these reactions to withstand normal user variation is demonstrated. This study focuses on one form of this simplified method embodied in the FASTaq DNA sequencing kit.  相似文献   

18.
19.
A simple isothermal nucleic-acid amplification reaction, primer generation–rolling circle amplification (PG–RCA), was developed to detect specific nucleic-acid sequences of sample DNA. This amplification method is achievable at a constant temperature (e.g. 60°C) simply by mixing circular single-stranded DNA probe, DNA polymerase and nicking enzyme. Unlike conventional nucleic-acid amplification reactions such as polymerase chain reaction (PCR), this reaction does not require exogenous primers, which often cause primer dimerization or non-specific amplification. Instead, ‘primers’ are generated and accumulated during the reaction. The circular probe carries only two sequences: (i) a hybridization sequence to the sample DNA and (ii) a recognition sequence of the nicking enzyme. In PG–RCA, the circular probe first hybridizes with the sample DNA, and then a cascade reaction of linear rolling circle amplification and nicking reactions takes place. In contrast with conventional linear rolling circle amplification, the signal amplification is in an exponential mode since many copies of ‘primers’ are successively produced by multiple nicking reactions. Under the optimized condition, we obtained a remarkable sensitivity of 84.5 ymol (50.7 molecules) of synthetic sample DNA and 0.163 pg (~60 molecules) of genomic DNA from Listeria monocytogenes, indicating strong applicability of PG–RCA to various molecular diagnostic assays.  相似文献   

20.
A method for obtaining DNA from compost   总被引:1,自引:0,他引:1  
An effective cell lysis method for extraction of bacterial genomic DNA from compost was developed in this study. Enzymatic disruption method, physical–chemical combination method, and commercial kit method were used to extract DNA from compost samples and were compared by analyzing DNA yield and efficient cell lysis. The results showed that all the three methods can be used to extract high-quality DNA from compost, but the enzymatic method had better cell lysis efficiency and DNA yields than others without the use of special equipment and expensive spending. Comparison of different methods for lysing gram-positive bacteria Bacillus subtilis indicated that the enzymatic cell lysis is superior for destroying the gram-positive cell wall. Spin-bind DNA column was used for DNA purification, and the purity of the purified sample was checked by polymerase chain reaction to amplify a region of the 16S rRNA. Results indicated that the part of 16S rRNA were amplified from all the purified DNA samples, and all the amplification products could be digested by the restriction enzyme HhaI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号