首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The simultaneous determination of the cell cycle phase of individual adherent mesenchymal stem cells (MSCs) using a fluorescence microscope after staining with 4′,6-diamidine-2′-phenylindole dihydrochloride and bromodeoxyuridine and the laser phase shift by phase-shifting laser microscopy (PLM) revealed that the laser phase shift of cells in the G2/M phase was markedly higher than that of cells in the G0/G1 phase. Even in the synchronous cultures to G0/G1 and G2/M cell cycle phases, the laser phase shift of the cells in the G2/M phase was markedly higher than that of the cells in the G0/G1 phase. The analysis of the cultures of MSCs from different donors with the addition of FGF2 at different concentrations revealed that there was a marked negative correlation between the average phase shift and mean generation time. In conclusion, it is possible to estimate noninvasively the proliferation activity of MSCs population by measuring the phase shift using PLM.  相似文献   

3.
Cell cycle, cell size and rhodamine 123 fluorescence in cell populations of two batch cultures were analysed and quantified with a fluorescence-activated cell sorter (FACS). Two cultures derived from either exponential or stationary phase innocula were investigated in order to demonstrate the dependency of the subsequent cell growth on innoculum condition. The results demonstrated that the level of activity of cells in the innoculum culture could have a significant effect on cellular activity during the initial phase of the inoculated culture, as it advances through its growth cycle. Positive correlation was found between the cell size and mitochondrial activity (as measured by rhodamine 123 uptake) with S and G2 fractions as the cell progressed through the cell cycle. The enumeration of the fractions of cell cycle phases has helped in prediction of the changes in cell numbers following perturbation of the culture condition.  相似文献   

4.
We have examined the growth behavior of small numbers of interstitial stem cells transplanted into tissue of genetically unrelated strains of Hydra magnipapillata. We show that such stem cells, which are at low density following transplantation, proliferate more rapidly than the stem cells of the host, which are at normal density. The rapid proliferation is similar to the proliferation rate of stem cells transplanted into interstitial cell free tissue. The results suggest that stem cells transplanted into heterotypic tissue are unable to "sense" the presence of host stem cells and to adopt their growth rate to that of the surrounding cells. Thus, the feedback signal which negatively regulates stem cell growth as a function of stem cell density must be strain specific.  相似文献   

5.
Cell size, cell cycle and transition probability in mouse fibroblasts   总被引:10,自引:0,他引:10  
This paper describes the relationship between cell size and cell division in two situations. In the first, quiescent cells were sorted on the basis of cell size using a fluorescence-activated cell sorter and returned to culture. The results of this type of experiment are compatible with the idea that once cells have completed a size-dependent lag, the rate of entry of cells into S phase is controlled by a rate-limiting random event (or transition).The second kind of experiment follows the kinetics of complete cell cycles in rapidly proliferating cells whose mothers had been sorted on the basis of cell size. The cells born of small mother cells have longer cycle times than cells derived from large mothers. The difference in the cycle time of these two classes was due to differences in the B phase of the cell cycle [containing S, G2, M and part of G1 (G1B)], transition probability being the same in both size classes. Our results show that S, G2 and M are unaffected by size, thus confining the effect of size to G1B. It seems probable that the variability of B phase in cloned cell populations is partly due to variations of cell size at division, and correlations between the cycle times of sister cells result because sibling cells are more similar in size than unrelated cells. The major factor controlling cell division in mouse fibroblasts is shown, however, to be the transition probability; size has a more minor role.  相似文献   

6.
Hematopoietic stem cells (HSCs) give rise to all lineages of blood cells. Because HSCs must persist for a lifetime, the balance between their proliferation and quiescence is carefully regulated to ensure blood homeostasis while limiting cellular damage. Cell cycle regulation therefore plays a critical role in controlling HSC function during both fetal life and in the adult. The cell cycle activity of HSCs is carefully modulated by a complex interplay between cell-intrinsic mechanisms and cell-extrinsic factors produced by the microenvironment. This fine-tuned regulatory network may become altered with age, leading to aberrant HSC cell cycle regulation, degraded HSC function, and hematological malignancy.  相似文献   

7.
Plant nuclear genome size (GS) varies over three orders of magnitude and is correlated with cell size and growth rate. We explore whether these relationships can be owing to geometrical scaling constraints. These would produce an isometric GS-cell volume relationship, with the GS-cell diameter relationship with the exponent of 1/3. In the GS-cell division relationship, duration of processes limited by membrane transport would scale at the 1/3 exponent, whereas those limited by metabolism would show no relationship. We tested these predictions by estimating scaling exponents from 11 published datasets on differentiated and meristematic cells in diploid herbaceous plants. We found scaling of GS-cell size to almost perfectly match the prediction. The scaling exponent of the relationship between GS and cell cycle duration did not match the prediction. However, this relationship consists of two components: (i) S phase duration, which depends on GS, and has the predicted 1/3 exponent, and (ii) a GS-independent threshold reflecting the duration of the G1 and G2 phases. The matches we found for the relationships between GS and both cell size and S phase duration are signatures of geometrical scaling. We propose that a similar approach can be used to examine GS effects at tissue and whole plant levels.  相似文献   

8.
9.
Signalling,cell cycle and pluripotency in embryonic stem cells   总被引:31,自引:0,他引:31  
  相似文献   

10.
The objective of this study is to investigate the activity of methylthioadenosine phosphorylase (MTA-Pase) in mammalian cells stimulated by serum to proliferate and during their cell cycle. A direct correlation between growth rate and MTA-Pase activity in chinese hamster ovary (CHO) cells was observed. High MTA-Pase activity was observed during the exponential growth phase followed by a low enzyme activity during plateau phase of growth. To understand whether the fluctuations in the enzyme activity was cell cycle dependent, initially the activity of MTA-Pase was studied in plateau phase (G0) CHO cells as they synchronously go into S phase upon plating in fresh medium. The MTA-Pase activity in G0 cells before initiation of growth was 10.3 n.mol/mg protein/30'. A peak activity of 16.0 n.mol/mg/30 min was found at 12 hr after stimulation of proliferation by serum. These results indicate a peak MTA-Pase activity between 10-12 hr after stimulation of proliferation coinciding with the initiation of DNA synthesis. The activity of the enzyme slowly decreased as the cells completed their DNA synthesis. To understand whether these fluctuations are cell cycle specific, HeLa cells were synchronized in different phases and MTA-Pase activity was studied. The specific activities of the enzyme were 2.76, 2.99, 3.97, 3.28 and 3.65 n.moles/mg/30 min. in mitosis, early G1, late G1, S and G2 phases of the cell cycle respectively. These results indicate that MTA-Pase activity peaks in late G1 phase before the initiation of DNA synthesis, similar to the polyamine biosynthetic enzymes and might play a role in the initiation of DNA synthesis by salvage of adenine into nucleotide pools.  相似文献   

11.
Cdc20 (cell division cycle 20 homologue) has been reported to exhibit an oncogenic role in human tumorigenesis. However, the function of Cdc20 in osteosarcoma (OS) has not been investigated. In the current study, we aim to explore the role of Cdc20 in human OS cells. Multiple approaches were used to measure cell growth, apoptosis, cell cycle, migration and invasion in OS cells after depletion of Cdc20 or overexpression of Cdc20. We found that down-regulation of Cdc20 inhibited cell growth, induced apoptosis and triggered cell cycle arrest in OS cells. Moreover, Cdc20 down-regulation let to inhibition of cell migration and invasion in OS cells. Consistently, overexpression of Cdc20 in OS cells promoted cell growth, inhibited apoptosis, enhanced cell migration and invasion. Mechanistically, our Western blotting results showed that overexpression of Cdc20 reduced the expression of Bim and p21, whereas depletion of Cdc20 upregulated Bim and p21 levels in OS cells. Altogether, our findings demonstrated that Cdc20 exerts its oncogenic role partly due to regulation of Bim and p21 in OS cells, suggesting that targeting Cdc20 could be useful for the treatment of OS.  相似文献   

12.
目的探讨不同浓度二甲双胍(METF)对人脐带间充质干细胞(hUC-MSC)形态、增殖、表面标志及细胞周期的影响。 方法取健康足月新生儿脐带在体外分离出hUC-MSC进行传代培养,至第3代(流式细胞仪分析)对细胞进行鉴定,取第6代处于对数生长期的hUC-MSC (相对老化),将对照组与不同浓度METF (0.1,1,5,10,20?mmol/L)干预的细胞进行比较,观察不同浓度METF干预对细胞的形态、增殖率(MTT法分别于24、48、72?h检测)、及细胞表面标志和细胞周期的影响,采用One-Way ANOVA,及LSD-t检验进行统计学分析。 结果(1)METF为0.1?mmol/L、1?mmol/L,细胞形态无显著改变,当药物浓度为5?~?20?mmol/?L时,随着药物浓度增加、培养时间延长,细胞形态改变越显著。(2)METF为0.1?mmol/L(24?h:101.28±0.98,24?h:104.06±1.76,24?h:101.51±0.67)促进hUC-MSC增殖,药物浓度为1?~ 10?mmol/L在培养初期可增加间充质干细胞的增殖率,随着培养时间的延长,细胞的增殖逐渐被抑制。METF为20?mmol/L(24?h:86.64±0.66,48?h:58.38±2.52,72?h:17.75±1.35)抑制细胞增殖,抑制作用随着时间延长而增强(P?< 0.05)。(3)当METF浓度为5,10,20?mmol/L时,随着药物浓度的增加,CD105的表达逐渐减弱(F?= 17.539,P?< 0.05)。METF未对CD44、CD90产生影响。(4)METF为0.1?mmol/L时降低G0/G1期的比例(64.16±1.20,P?< 0.05),促进间充质干细胞的增殖,随着药物浓度的增加,细胞增殖逐渐被抑制。 结论METF浓度在0.1mmol/?L促进hUC-MSC增殖,而在浓度5 ~ 20?mmol/L时抑制人脐带间充质干细胞的增殖及表面标志CD105的表达,不同浓度的METF均未对CD44、CD90的表达产生影响。  相似文献   

13.
14.
15.
Three species of the fresh water carnivore hydra, H. littoralis, H. pseudoligactis, and C. viridissima present a graduation in size with the first species the largest and albino Chlorohydra the smallest. When presented with a daily overabundance of food (artemia), considerable variation in food intake and gross efficiency of growth (proportion of food energy consumed that is turned into new protoplasm or buds) existed among the species. The degree of association between size of species and food intake was highly significant. However, budding efficiency among the species was found to be independent of food intake (when the effects of species size were eliminated) and of species size (when the effects of food intake were removed). However, species with high (low) efficiencies have significantly higher (lower) reproductive rates. A lowering of the temperature from 25° to 15° C. increased the size of the species, increased food intake, but decreased reproductive rate. In all species except H. pseudoligactis a corresponding increase in the production of bud energy with no change in efficiency also occurred. On the other hand, lowering of the temperature for H. pseudoligactis significantly lowered reproductive efficiency but had no effect on the total calorific output of buds. This species, in constrast to the others, appears to have a compensatory ability to adjust its efficiency to maintain a high calorific output when temperature increases. It was also found that albino Chlorohydra have budding efficiencies of around 35 percent which are not influenced by changes in food intake or light. Normal green hydras, however, have efficiencies which range from 40 to 62 percent above their albino counterparts when fed once a day and once every two days in light respectively. It it concluded first, that the symbiotic algae in the gastrodermals cells of green hydra contribute quantitatively in the order of the above amounts to the growth process in this species, and second, that green hydras have the ablity to increase their growth efficiency when food intake is reduced thus reducing the drop in calorific but output that normally occurs in the albino (control) form.  相似文献   

16.
17.
The interstitial cells of hydra contain a stem cell population which produces several classes of differentiated cell types. A model has been proposed which governs the growth rate of the interstitial cell population. This model, based on the density of interstitial cells in the tissue, makes specific predictions about the relationships among this density, the proportion of stem cells in the interstitial cell population, the growth rate of the interstitial cell population, and the amount of nematocyte differentiation. Hydroxyurea treatments were used to experimentally reduce interstitial cell numbers, and the validity of these expected correlations was tested. The results demonstrate that the predictions of the interstitial cell density model were not upheld. Furthermore, the findings suggest that the interstitial cells are a heterogeneous population, containing some cells which are no longer stem cells but which do retain a limited capacity for proliferation. In the following paper (S. Heimfeld and H.R. Bode, 1986, Dev. Biol. 115, 59-68) we have proposed an alternative mechanism to explain the observed correlations, which incorporates this heterogeneity into amplification divisions of interstitial cells already committed to differentiation.  相似文献   

18.
Telomere shortening occurs concomitant with organismal aging, and it is accelerated in the context of human diseases associated with mutations in telomerase, such as some cases of dyskeratosis congenita, idiopathic pulmonary fibrosis and aplastic anemia. People with these diseases, as well as Terc-deficient mice, show decreased lifespan coincidental with a premature loss of tissue renewal, which suggests that telomerase is rate-limiting for tissue homeostasis and organismal survival. These findings have gained special relevance as they suggest that telomerase activity and telomere length can directly affect the ability of stem cells to regenerate tissues. If this is true, stem cell dysfunction provoked by telomere shortening may be one of the mechanisms responsible for organismal aging in both humans and mice. Here, we will review the current evidence linking telomere shortening to aging and stem cell dysfunction.  相似文献   

19.
Exposure of animal cells to intense hydrodynamic forces exerted in turbulent capillary flow, and by controiled agitation and aeration, resulted in preferential destruction of S and G(2) cells and the extent of destruction of these cells was dependent upon the intensity of the action. The loss of these cells was possibly due to their larger size. However, the appearance of large numbers of membrane-bound vesicular structures similar to apoptotic bodies as well as cells with low DNA stainability (in a sub-G(1) peak) suggested that the action of adverse hydrodynamic forces on these large cells may at least in part be to induce an apoptotic response. (c) 1995 John Wiley & Sons, Inc.  相似文献   

20.
A procedure has been developed for cloning interstitial stem cells from hydra. Clones are prepared by introducing small numbers of viable cells into aggregates of nitrogen mustard-inactivated host tissue. Clones derived from added stem cells are identified after 1–2 weeks of growth by staining with toluidine blue. The incidence of clones increases with increasing input of viable cells according to one-hit Poisson statistics, indicating that clones arise from single cells. After correction for cell losses in the procedure, about 1.2% of the input cells are found to form clones. This compares with estimates from in vivo experiments of about 4% stem cells in whole hydra [David, C. N., and Gierer, A. (1974). Cell cycle kinetics and development of Hydra attenuata. III. Nerve and nematocyte differentiation. J. Cell Sci.16, 359–375.]Differentiation of nematocytes and nerve cells in clones was analyzed by labeling precursors with [3H]thymidine and scoring labeled nerves and nematocytes 2 days later. Nine clones examined in this way contained both differentiated nerve cells and nematocytes, demonstrating that the interstitial stem cell is multipotent. This result suggests that the observed localization of nerve and nematocyte differentiation in whole hydra probably occurs at the level of stemcell determination. The observation that differentiated cells occur very early in clone development suggests that a stem cell's decision to proliferate or differentiate is regulated by shortrange feedback signals which are already saturated in young clones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号