首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tight junctions in epithelial cells have been postulated to act as barriers inhibiting lateral diffusion of lipids and proteins between the apical and basolateral plasma membrane domains. To study the fence function of the tight junction in more detail, we have fused liposomes containing the fluorescent phospholipid N-Rh-PE into the apical plasma membrane of MDCK cells. Liposome fusion was induced by low pH and mediated by the influenza virus hemagglutinin, which was expressed on the apical cell surface after viral infection. Redistribution of N-Rh-PE to the basolateral surface, monitored at 0 degree C by fluorescence microscopy, appeared to be dependent on the transbilayer orientation of the fluorescent lipids in the plasma membrane. Asymmetric liposomes containing over 85% of the N-Rh-PE in the external bilayer leaflet, as shown by a phospholipase A2 assay, were generated by octyl beta-D-glucoside dialysis. When these asymmetric liposomes were fused with the apical plasma membrane, fluorescent lipid did not move to the basolateral side. Symmetric liposomes which contained the marker in both leaflets were obtained by freeze-thawing asymmetric liposomes or by reverse-phase evaporation. Upon fusion of these with the apical membrane, redistribution to the basolateral membrane occurred immediately. Redistribution could be observed with asymmetric liposomes only when the tight junctions were opened by incubation in a Ca2+-free medium. During the normal experimental manipulations the tight junctions remained intact since a high trans-epithelial electrical resistance was maintained over the cell monolayer. We conclude that the tight junction acts as a diffusion barrier for the fluorescent phospholipid N-Rh-PE in the exoplasmic leaflet of the plasma membrane but not in the cytoplasmic leaflet.  相似文献   

2.
Lipid polarity and sorting in epithelial cells   总被引:17,自引:0,他引:17  
Apical and basolateral membrane domains of epithelial cell plasma membranes possess unique lipid compositions. The tight junction, the structure separating the two domains, forms a diffusion barrier for membrane components and thereby prevents intermixing of the two sets of lipids. The barrier apparently resides in the outer, exoplasmic leaflet of the plasma membrane bilayer. First data are now available on the generation of these differences in Madin-Darby canine kidney (MDCK) cells, grown on filter supports. Experiments in which fluorescent precursors of apical lipids were introduced into the cell have demonstrated that upon biosynthesis apical lipids are sorted from basolateral lipids in an intracellular compartment. In this paper we present a model for the sorting process, the central point of which is that the two sets of lipids laterally segregate into microdomains that bud to form vesicles delivering the lipids to the apical and the basolateral plasma membrane domains, respectively.  相似文献   

3.
Wild-type Rhodobacter sphaeroides chromatophores were fused at acidic pH, or by freezing and thawing, with liposomes of soybean phospholipids, phosphatidylserine, phosphatidylglycerol or diphosphatidylglycerol. Equilibrium centrifugation after fusion yielded several fractions. Freeze-fracture electron microscopy showed that fusion resulted in the formation of unilamellar vesicles of diameters larger than that of chromatophores. The lateral density of the intramembrane particles decreased; the asymmetry between the two fracture faces was lost after fusion with soybean phospholipids or phosphatidylserine or phosphatidylglycerol, but gradually disappeared in parallel with diphosphatidylglycerol enrichment. After fusion with phosphatidylserine, when the fractions were frozen from below the lipid transition temperature intramembrane particles aggregated into patches surrounded by smooth lipid zones. A massive incorporation of the fusogen phospholipid was observed in the fractions together with a strong decrease of phosphatidylglycerol and a lower decrease of phosphatidylcholine and aminolipid. The 800 nm absorption band of the B800–850 antenna complex was reduced or suppressed depending on the nature of the lipids while the spectroscopic alteration of B875 chromophore was weaker. The light-induced bandshifts of carotenoid and antenna bacteriochlorophyll were also much weaker or absent; this could result from a desorganization of the B800–850 antenna, or from an impaired capacity to sustain a photoinduced membrane potential. The reaction center was not affected by the fusion, and the polypeptide composition of the various fractions did not show qualitative differences from the chromatophore pattern. Spheroplasts did not show the same capacity of fusion as chromatophores.  相似文献   

4.
The dependence of the state of the hydrophobic zone of rabbit sarcoplasmic reticulum (SR) membranes on temperature of the membrane fragment suspension before rapid freezing was studied by the freeze fracturing technique. It was shown that within the temperature range of--15-- +37 degrees C the amount of intramembrane particles and their distribution in the membrane plane and between their convex and concave surfaces do not practically depend on the temperature of the SR membrane suspension. This is indicative of the lack of correlation between the physical state of the phospholipid matrix (gel -- liquid crystal) before freezing and the nature of the profile of the membrane hydrophobic zone revealed after fracturing. The disturbances in the protein -- lipid interactions in the membrane under the effects of mersalyl or aqueous solutions of diethyl ester followed by complete inactivation of Ca2+-dependent ATPase lead to a decrease in the amount of intramembrane particles, which is especially well-pronounced at 37 degrees and -15 degrees C.  相似文献   

5.
We have used thin section and freeze-fracture electron microscopy to study membrane changes occurring during exocytosis in rat peritoneal mast cells. By labeling degranulating mast cells with ferritin-conjugated lectins and anti-immunoglobulin antibodies, we demonstrate that these ligands do not bind to areas of plasma membrane or granule membrane which have fused with, or are interacting with, granule membrane. Moreover, intramembrane particles are also largely absent from both protoplasmic and external fracture faces of plasma and granule membranes in regions where these membranes appear to be interacting. Both the externally applied ligands and intramembrane particles are sometimes concentrated at the edges of fusion sites. The results indicate that membrane proteins are displaced laterally into adjacent membrane regions before the fusion process and that fusion occurs between protein-depleted lipid bilayers. The finding of protein-depleted blebs in regions of plasma and granule membrane interaction raises the interesting possibility that blebbing may be a process for exposing the granule contents to the extracellular space and for the elimination of excess lipid while conserving membrane proteins.  相似文献   

6.
Monoclonal antibodies as probes of epithelial membrane polarization   总被引:2,自引:0,他引:2       下载免费PDF全文
《The Journal of cell biology》1985,101(6):2173-2180
Monoclonal antibodies directed against antigens in the apical plasma membrane of the toad kidney epithelial cell line A6 were produced to probe the phenomena that underlie the genesis and maintenance of epithelial polarity. Two of these antibodies, 17D7 and 18C3, were selected for detailed study here. 17D7 is directed against a 23-kD peptide found on both the apical and basolateral surfaces of the A6 epithelium whereas 18C3 recognizes a lipid localized to the apical membrane only. This novel observation of an apically localized epithelial lipid species indicates the existence of a specific sorting and insertion process for this, and perhaps other, epithelial plasma membrane lipids. The antibody-antigen complexes formed by both these monoclonal antibodies are rapidly internalized by the A6 cells, but only the 18C3-antigen complex is recycled to the plasma membrane. In contrast to the apical localization of the free antigen, however, the 18C3-antigen complex is recycled to both the apical and basolateral surface of the epithelium, which indicates that monoclonal antibody binding interferes in some way with the normal sorting process for this apical lipid antigen.  相似文献   

7.
The polarity of epithelial cells is dependent on their ability to target proteins and lipids in a directional fashion. The trans-Golgi network, the endosomal compartment, and the plasma membrane act as sorting stations for proteins and lipids. The site of intracellular sorting and pathways used for the apical delivery of glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) are largely unclear. Using biochemical assays and confocal and video microscopy in living cells, we show that newly synthesized GPI-APs are directly delivered to the apical surface of fully polarized Madin-Darby canine kidney cells. Impairment of basolateral membrane fusion by treatment with tannic acid does not affect the direct apical delivery of GPI-APs, but it does affect the organization of tight junctions and the integrity of the monolayer. Our data clearly demonstrate that GPI-APs are directly sorted to the apical surface without passing through the basolateral membrane. They also reinforce the hypothesis that apical sorting of GPI-APs occurs intracellularly before arrival at the plasma membrane.  相似文献   

8.
Tight junctions form selective paracellular diffusion barriers that regulate the diffusion of solutes across epithelia and constitute intramembrane diffusion barriers that prevent the intermixing of apical and basolateral lipids in the extracytoplasmic leaflet of the plasma membrane. In MDCK cells, previous expression experiments demonstrated that occludin, a tight junction protein with four transmembrane domains, is critically involved in both of these tight junction functions and that its COOH-terminal cytoplasmic domain is of functional importance. By expressing mutant and chimeric occludin that exert a dominant negative effect on selective paracellular diffusion, we now demonstrate that the extracytoplasmic domains and at least one of the transmembrane domains are also critically involved in selective paracellular permeability. Multiple domains of occludin are thus important for the regulation of paracellular permeability. Expression of chimeras containing at least one transmembrane domain of occludin also resulted in an enhanced intracellular accumulation of claudin-4, another transmembrane protein of tight junctions, suggesting that the two proteins may cooperate in the regulation of paracellular permeability.  相似文献   

9.
Ono TA  Murata N 《Plant physiology》1982,69(1):125-129
The lipid phase of cytoplasmic membrane was studied by freeze-fracture electron microscopy in the chilling-susceptible blue-green alga, Anacystis nidulans. At growth temperatures, intramembrane particles were distributed at random in the fracture faces of cytoplasmic membrane, whereas, at chilling temperatures, the fracture faces were composed of particle-free and particle-containing regions. These findings indicate that lipids of the cytoplasmic membrane were in the liquid-crystalline state at the growth temperatures and in the phase-separation state at the chilling temperatures. Temperatures for the onset of phase separation were 5 and 16°C in cells grown at 28 and 38°C, respectively.  相似文献   

10.
The ultrastructural peculiarities of mitochondria-rich cells of the frog urinary bladder are analysed using three electron microscopic methods: ultrathin sections, scanning electron microscopy, freeze fracture. The mitochondria and tubular and vesicular structures are most abundant in the apical region of cytoplasm. The P-face (PF) of the apical plasma membrane is characterized by the presence of rod-shaped intramembrane particles (IMP), whereas the E-face (EF) possesses complementary pits. Depending on the distribution density of the rod-shaped IMP, three types of cells are described. The apical plasma membrane has an invert distribution of the globular IMP: a great quantity of IMP on the EF and a few particles on the PF. This structure of the apical plasma membrane is supposed to correlate with its very low water permeability. Using filipin as a marker of cholesterol localization, it has been shown that the mitochondria-rich cell apical membrane contains more cholesterol than that of the granular cells. The nature of the rod-shaped IMP and their role in the transmembrane ion transport have been discussed.  相似文献   

11.
The purified major intrinsic protein of the lens fiber plasma membrane (MP26) reconstituted into liposomes favored membrane-to-membrane close contacts as visualized by freeze fracture and immunoelectron microscopy. Reconstituted apposed unilamellar vesicles formed pentalaminar profiles, and multilamellar liposomes showed regions of stacked bilayers. Immunogold labeling, using antibody directed against MP26, demonstrated that this polypeptide is present in regions of membrane-to-membrane close interaction. Fracture faces displayed both randomly distributed clusters of 8-nm polygonal intramembrane particles and membrane domains where a bidimensional lattice of repeating subunits was present. The structural pleomorphism which characterized the MP26-reconstituted proteoliposomes seems quite comparable to that visualized in natural fiber plasma membrane domains.  相似文献   

12.
Disruption of the plasma membrane is a primary cause of freezing injury. In this review, the mechanisms of injury resulting from freeze-induced cell dehydration are presented, including destabilization of the plasma membrane resulting from (a) freeze/thaw-induced osmotic excursions and (b) lyotropic phase transitions in the plasma membrane lipids. Cold acclimation dramatically alters the behavior of the plasma membrane during a freeze/thaw cycle—increasing the tolerance to osmotic excursions and decreasing the propensity for dehydration-induced lamellar to hexagonal-II phase transitions. Evidence for a casual relationship between the increased cryostability of the plasma membrane and alterations in the lipid composition is reviewed.  相似文献   

13.
Increased ethylene synthesis enhances chilling tolerance in tomato   总被引:4,自引:0,他引:4  
Freezing of nonacclimated protoplasts close to lethal temperatures induces alterations in the macromolecular organization of the plasma membrane but the significance of these structural changes in freezing injury is still uncertain. We therefore cooled non-acclimated protoplasts isolated from cultivars of winter rye ( Secale cereale L.) to two sub-zero temperatures using two different cooling rates and analyzed freeze-induced plasma membrane changes by freeze-fracture electron microscopy. When a high cooling rate was used a lipid phase transition was observed in 34% of the total membrane fracture faces of the protoplasts, while with a slow cooling rate it occurred only to a very small extent. Smooth, aparticulate lamellae were approximately three times more frequent at low than at high cooling rate. Lipid phase transition from lamellar to hexagonalII (HII) phase occurred at high cooling rate more frequently at −10°C than at −30°C in three cultivars. The results suggest that the greatly increased proportion of phase transition from bilayer to non-bilayer phase is an artifact caused by too fast a cooling rate of protoplasts. Furthermore, lateral phase separation of the plasma membrane with segregation of intramembrane particles and the appearance of membrane associated stacks of lipid lamellae, may cause cellular death by retarding the flow of intracellular water towards extracellular ice crystals formed during freezing.  相似文献   

14.
In the distal tubule, Na+ resorption is mediated by epithelial Na+ channels (ENaC). Hormones such as aldosterone, vasopressin, and insulin modulate ENaC membrane targeting, assembly, and/or kinetic activity, thereby regulating salt and water homeostasis. Insulin binds to a receptor on the basal membrane to initiate a signal transduction cascade that rapidly results in an increase in apical membrane ENaC. Current models of this signaling pathway envision diffusion of signaling intermediates from the basal to the apical membrane. This necessitates diffusion of several high-molecular-weight signaling elements across a three-dimensional space. Transduction of the insulin signal involves the phosphoinositide pathway, but how and where this lipid-based signaling pathway controls ENaC activity is not known. We used tagged channels, biosensor lipid probes, and intravital imaging to investigate the role of lipids in insulin-stimulated Na+ flux. Insulin-stimulated delivery of intracellular ENaC to apical membranes was concurrent with plasma membrane-limited changes in lipid composition. Notably, in response to insulin, phosphatidylinositol 3,4,5-trisphosphate (PIP3) formed in the basolateral membrane, rapidly diffused within the bilayer, and crossed the tight junction to enter the apical membrane. This novel signaling pathway takes advantage of the fact that the lipids of the plasma membrane's inner leaflet are not constrained by the tight junction. Therefore, diffusion of PIP3 as a signal transduction intermediate occurs within a planar surface, thus facilitating swift responses and confining and controlling the signaling pathway. phosphatidylinositol 3,4,5-trisphosphate; insulin-stimulated Na+ transport; metabolic syndrome; real-time confocal imaging  相似文献   

15.
Freeze-fracture observations on mammalian oocytes   总被引:1,自引:0,他引:1  
Freeze-fracture studies on mammalian oocytes have been hampered by the relatively small numbers of cells available at a given time as well as by difficulties encountered in effectively freezing these large, watery cells. We have nevertheless pursued this area because of the benefits of visualizing membrane faces involved in various fusion reactions by the freeze-fracture method. Our observations indicate no overall change in intramembranous particle (IMP) distribution before and after sperm penetration, although the question of possible alterations of these structures at the precise locus of sperm attachment remains open. Preliminary statistical analysis indicates that there is a much higher IMP density on the P face than on the E face of the plasma membrane and that the microvillar membranes bear more IMPs than those of the intermicrovillus regions. Probes of lipid subclasses were used to determine the distribution of cholesterol and anionic lipid in the egg plasma membrane. Filipin and tomatin showed extensive complex formation in microvillus as well as nonmicrovillus regions, whereas anionic lipids (using polymyxin B) have been difficult to detect on the oocyte surface. These results are discussed relative to current views of membrane fusion mechanisms.  相似文献   

16.
We have studied fluid secretion by the contractile vacuole apparatuss of the trypanosomatid flagellate Leptomonas collosoma with thin sections and freeze-fracture replicas of cells stabilized by ultrarapid freezing without prior fixation or cryoprotection. The ultrarapid freezing has revealed membrane specializations related to fluid segregation and transport as well as membrane rearrangements which may accompany water expulsion at systole. This osmoregulatory apparatu consists of the spongiome, the contractile vacuole, and the fluid discharge site. The coated tubules of the spongiome converge on the contractile vacuole from all directions. These 60- to 70-nm tubules contain characteristic double rows of 11-nm intramembrane particles in a helical configuration which fracture predominantly with the E face. Short double rows of similar particles are also frequently found on both faces of the contractile vacuole itself, in addition to many smaller particles on the P face. The spongiome tubules fuse with the vacuole during the filling stage of each cycle and then detach before secretion. The contractile vacuole membrane is permanently attached to the plasma membrane of the flagellar pocket by a dense adhesion plaque. In some ultrarapidly frozen cells, 20- to 40-nm perforations can be visualized within the plaque and the adjacent membranes during the presumptive time of discharge. The formation of the plaque perforations and the membrane channels occurs without fusion of the vacuole and the plasma membrane and does not require extracellular calcium. On the basis of our results, we have developed a model for water secretion which suggests that the adhesion plaque may induce pore formation in the adjoining lipid bilayers, thereby allowing bulk expulsion of the fluid.  相似文献   

17.
Melittin-induced membrane fusion between neutral and acidic phospholipids was examined in liposome systems with a high-sensitivity differential scanning calorimeter. Membrane fusion could be detected by calorimetric measurement by observing thermograms of mixed liposomal lipids. The roles of hydrophobic and electrostatic interactions were investigated in membrane fusion induced by melittin. Melittin, a bee venom peptide, is composed of a hydrophobic region including hydrophobic amino acids and a positively charged region including basic amino acids. When phosphatidylcholine liposomes were prepared in the presence of melittin, reductions in the phase transition enthalpies were observed in the following order; dimyristoylphosphatidylcholine (DMPC) > dipalmitoylphosphatidylcholine (DPPC) > distearoylphosphatidylcholine (DSPC) > dielaidoylphosphatidylcholine (DEPC). The plase transition enthalpy of an acidic phospholipid, dipalmitoylphosphatidylserine (DPPS), was raised by melittin at low concentrations, then reduced at higher concentrations. DPPC liposomes prepared in melittin solution were fused with DPPS liposomes when the liposomal dispersions were mixed and incubated. Similar fusion was observed between dipalmitoylphosphatidylcholine and dimyristoylphosphatidic acid (DMPA) liposomes. These results indicate that a peptide including hydrophobic and basic regions can mediate membrane fusion between neutral and acidic liposomes by hydrophobic and electrostatic interactions.  相似文献   

18.
In polarized Madin-Darby canine kidney epithelial cells, components of the plasma membrane fusion machinery, the t-SNAREs syntaxin 2, 3, and 4 and SNAP-23, are differentially localized at the apical and/or basolateral plasma membrane domains. Here we identify syntaxin 11 as a novel apical and basolateral plasma membrane t-SNARE. Surprisingly, all of these t-SNAREs redistribute to intracellular locations when Madin-Darby canine kidney cells lose their cellular polarity. Apical SNAREs relocalize to the previously characterized vacuolar apical compartment, whereas basolateral SNAREs redistribute to a novel organelle that appears to be the basolateral equivalent of the vacuolar apical compartment. Both intracellular plasma membrane compartments have an associated prominent actin cytoskeleton and receive membrane traffic from cognate apical or basolateral pathways, respectively. These findings demonstrate a fundamental shift in plasma membrane traffic toward intracellular compartments while protein sorting is preserved when epithelial cells lose their cell polarity.  相似文献   

19.
The G protein of vesicular stomatitis virus was implanted in the apical plasma membrane of Madin-Darby canine kidney cells by low pH-dependent fusion of the viral envelope with the cellular membrane. The amount of fusion as determined by removal of unfused virions, either by tryptic digestion or by EDTA treatment at 0 degree C, was 22-24% of the cell- bound virus radioactivity. Upon incubation of cells after implantation, the amount of G protein as detected by immunofluorescence diminished on the apical membrane and appeared within 30 min on the basolateral membrane. At the same time some G protein fluorescence was also seen in intracellular vacuoles. The observations by immunofluorescence were confirmed and extended by electron microscopy. Using immunoperoxidase localization, G protein was seen to move into irregularly shaped vacuoles (endosomes) and multivesicular bodies and to appear on the basolateral plasma membrane. These results suggest that the apical and basolateral domains of Madin-Darby canine kidney cells are connected by an intracellular route.  相似文献   

20.
Seedlings of Triticum aestivum L. cv. Lennox were grown in different environments to obtain different hardiness. Pieces of laminae and leaf bases were slowly cooled to sub-zero temperatures and the damage caused was assessed by an ion-leakage method. Comparable pieces of tissue were slowly cooled to temperatures between 2° and-14°C and were then freeze-fixed and freeze-etched. Membranes generally retained their lamellar structures indicated by the abundance of typical membrane fracture faces in all treatments, and some membrane fracture faces had patches which lacked the usual scattering of intramembranous particles (IMP). These IMP-free areas were present in the plasma membrane of tissues given a damaging freezing treatment, but were absent from the plasma membrane of room-temperature controls, of supercooled tissues, and of tissues given a non-damaging freezing treatment. The frequency of IMP-free areas and the proportion of the plasma membrane affected increased with increasing damage. In the most damaged tissue (79% damage; leaf bases exposed to-8°C), 20% of the plasma membrane was IMP-free. The frequencies of IMP at a distance from the IMP-free areas were unaffected by freezing treatments. There was a patchy distribution of IMP in other membranes (nuclear envelope, tonoplast, thylakoids, chloroplast envelope), but only in the nuclear envelope did it appear possible that their occurrence coincided with damage. The IMP-free areas of several membranes were sometimes associated together in stacks. Such membranes lay both to the outside and inside of the plasma membrane, indicating that at least some of the adjacent membrane fragments arose as a result of membrane reorganization induced by the damaging treatment. Occasional views of folded IMP-free plasma membrane tended to confirm this conclusion. The following hypothesis is advanced to explain the damage induced by extracellular freezing. Areas of plasma membrane become free of IMP, probably as a result of the freezing-induced cellular dehydration. The lipids in these IMP-free patches may be in the fluid rather than the gel phase. The formation of these IMP-free patches, especially in the plasma membrane, initiates or involves proliferation and possibly fusion of membranes, and during or following this process, the cells become leaky.Abbreviations EF exoplasmatic fracture face - IMP intramembranous particles - PF protoplasmatic fracture face  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号