首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The peptidoglycan cross-bridges of Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium consist of the sequences Gly(5), l-Ala(2), and d-Asx, respectively. Expression of the fmhB, femA, and femB genes of S. aureus in E. faecalis led to the production of peptidoglycan precursors substituted by mosaic side chains that were efficiently used by the penicillin-binding proteins for cross-bridge formation. The Fem transferases were specific for incorporation of glycyl residues at defined positions of the side chains in the absence of any additional S. aureus factors such as tRNAs used for amino acid activation. The PBPs of E. faecalis displayed a broad substrate specificity because mosaic side chains containing from 1 to 5 residues and Gly instead of l-Ala at the N-terminal position were used for peptidoglycan cross-linking. Low affinity PBP2a of S. aureus conferred beta-lactam resistance in E. faecalis and E. faecium, thereby indicating that there was no barrier to heterospecific expression of resistance caused by variations in the structure of peptidoglycan precursors. Thus, conservation of the structure of the peptidoglycan cross-bridges in members of the same species reflects the high specificity of the enzymes for side chain synthesis, although this is not essential for the activity of the PBPs.  相似文献   

2.
Exposure of brown adipocytes to phenylephrine activates a phospholipase A2 producing arachidonic acid and lysophospholipids. When adipocytes were incubated with adenosine deaminase, a greater release of arachidonic acid and accumulation of lysophosphatidyl-choline in response to phenylephrine was noted. The potentiating effect of adenosine deaminase was also observed in the presence of A23187 and for both stimuli, the effect of adenosine deaminase was reversed by phenylisopropyladenosine. These results suggest the presence of an heretofore unrecognized action of adenosine, namely inhibition of phospholipase A2 activity in brown fat cells.  相似文献   

3.
Eukaryotic peptidoglycan recognition proteins (PGRPs) are related to bacterial amidases. In Drosophila, PGRPs bind peptidoglycan and function as central sensors and regulators of the innate immune response. PGRP-LC/PGRP-LE constitute the receptor complex in the immune deficiency (IMD) pathway, which is an innate immune cascade triggered upon Gram-negative bacterial infection. Here, we present the functional analysis of the nonamidase, membrane-associated PGRP-LF. We show that PGRP-LF acts as a specific negative regulator of the IMD pathway. Reduction of PGRP-LF levels, in the absence of infection, is sufficient to trigger IMD pathway activation. Furthermore, normal development is impaired in the absence of functional PGRP-LF, a phenotype mediated by the JNK pathway. Thus, PGRP-LF prevents constitutive activation of both the JNK and the IMD pathways. We propose a model in which PGRP-LF keeps the Drosophila IMD pathway silent by sequestering circulating peptidoglycan.  相似文献   

4.
5.
6.
7.
Novel glycopeptide analogs are known that have activity on vancomycin resistant enterococci despite the fact that the primary site for drug interaction, D-ala-D-ala, is replaced with D-ala-D-lactate. The mechanism of action of these compounds may involve dimerization and/or membrane binding, thus enhancing interaction with D-ala-D-lactate, or a direct interaction with the transglycosylase enzymes involved in peptidoglycan polymerization. We evaluated the ability of vancomycin (V), desleucyl-vancomycin (desleucyl-V), chlorobiphenyl-vancomycin (CBP-V), and chlorobiphenyl-desleucyl-vancomycin (CBP-desleucyl-V) to inhibit (a) peptidoglycan synthesis in vitro using UDP-muramyl-pentapeptide and UDP-muramyl-tetrapeptide substrates and (b) growth and peptidoglycan synthesis in vancomycin resistant enterococci. Compared to V or CBP-V, CBP-desleucyl-V retained equivalent potency in these assays, whereas desleucyl-V was inactive. In addition, CBP-desleucyl-V caused accumulation of N-acetylglucosamine-beta-1, 4-MurNAc-pentapeptide-pyrophosphoryl-undecaprenol (lipid II). These data show that CBP-desleucyl-V inhibits peptidoglycan synthesis at the transglycosylation stage in the absence of binding to dipeptide.  相似文献   

8.
Forskolin at 10 muM caused a 100-fold increase in the intracellular concentration of cyclic AMP and a 6-fold increase in glycerol release in the human adipocyte. These responses are comparable to those prompted by 10 muM isoproterenol. The effects of forskolin on cyclic AMP and lipolysis were dose-dependent. Alpha-2 adrenergic activation, achieved with 10 muM epinephrine and 30 muM propranolol, significantly inhibited forskolin-stimulated cyclic AMP accumulation and glycerol release, shifting the dose-response curves to the right. Forskolin at 10 muM caused a 4.5-fold increase in the adenylate cyclase activity of human adipocyte membranes. When either isoproterenol or epinephrine (0.1 mM) was combined with forskolin, the magnitude of response was substantially greater than the sum of responses achieved by each agent incubated alone.  相似文献   

9.
Colicin M is unique among the colicins in that it causes lysis of cells. Synthesis of peptidoglycan was inhibited before colicin-induced cell lysis occurred. This suggested that inhibition of peptidoglycan synthesis was the primary effect of the colicin which was followed by cell lysis. Following colicin M treatment, soluble peptidoglycan nucleotide precursors accumulated, and radioactivity associated with the membrane-bound carrier lipid almost disappeared. Further metabolism of radiolabeled intermediates bound to the lipid carrier (lipid intermediates) was not inhibited by colicin M. The two lipid intermediates decreased to a level where equal amounts of both were present. The data indicated that translocation of nucleotide precursors to the lipid carrier was not inhibited. In vitro peptidoglycan synthesis agreed with the in vivo results. It is concluded that colicin M inhibits peptidoglycan biosynthesis by preventing regeneration of the lipid carrier.  相似文献   

10.
The Drosophila immune system is able to discriminate between classes of bacteria. Detection of Gram-positive bacteria involves a complex of two pattern recognition receptors: peptidoglycan recognition protein SA (PGRP-SA) and Gram-negative binding protein 1 (GNBP1). These activate the Toll signalling pathway. To define the cell wall components sensed by the host, we used highly purified peptidoglycan fragments of two principal Gram-positive bacterial pathogens Staphylococcus aureus and Streptococcus pneumoniae. We report that in both peptidoglycans, the minimal structure needed to activate the Toll pathway is a muropeptide dimer and that the free reducing end of the N-acetyl muramic acid residues of the muropeptides is essential for activity. Monomeric muropeptides were inactive and inhibitory in combination with dimers. Finally, peptidoglycan was degraded by the haemolymph of wild-type but not GNBP1 mutant flies. We suggest a model whereby GNBP1 is involved in the hydrolysis of Gram-positive peptidoglycan producing new glycan reducing ends, which are subsequently detected by PGRP-SA.  相似文献   

11.
Resveratrol (Res) is a natural polyphenolic compound with anti-inflammatory and antioxidant properties. Also, Res can inhibit lipogenesis and adipocyte differentiation. However, the underlying mechanisms of Res's functions remain largely unknown. AMP-activated protein kinase (AMPK) is a key player in adipocyte differentiation. Therefore, the purpose of our study was to determine the role played by AMPK in the Res-mediated regulation of adipocyte differentiation. Incubation of 3T3-L1 cells with Res confirmed that Res inhibited adipocyte differentiation. The phosphorylation of AMPKα was increased by Res in a dose-dependent manner, while total AMPKα levels were unchanged, and peroxisome proliferator-activated receptor γ (PPARγ), CCAAT-enhancer-binding protein α (C/EBPα), and sterol regulatory element-binding protein 1c (SREBP-1c) levels were decreased. Interestingly, pretreatment with AMPKα siRNA and Res promoted adipocyte differentiation, while the decrease of p-AMPKα increased PPARγ, C/EBPα, and SREBP-1c protein expression. Our study shows that Res is capable of inhibiting lipogenesis and differentiation of 3T3-L1 adipocytes via activation of AMPK, suggesting its potential therapeutic application in the treatment or prevention of obesity.  相似文献   

12.
Genetic evidence indicates that Drosophila defense against Gram-positive bacteria is mediated by two putative pattern recognition receptors acting upstream of Toll, namely Gram-negative binding protein 1 (GNBP1) and peptidoglycan recognition protein SA (PGRP-SA). Until now however, the molecular recognition proceedings for sensing of Gram-positive pathogens were not known. In the present, we report the physical interaction between GNBP1 and PGRP-SA using recombinant proteins. GNBP1 was able to hydrolyze Gram-positive peptidoglycan (PG), while PGRP-SA bound highly purified PG fragments (muropeptides). Interaction between these proteins was enhanced in the presence of PG or muropeptides. PGRP-SA binding depended on the polymerization status of the muropeptides, pointing to constraints in the number of PGRP-SA molecules bound for signaling initiation. We propose a model whereby GNBP1 presents a processed form of PG for sensing by PGRP-SA and that a tripartite interaction between these proteins and PG is essential for downstream signaling.  相似文献   

13.
肽聚糖是乳酸菌细胞壁的必需成分,它的化学结构较为保守固定,而其合成是一个涉及多步反应的复杂过程。乳酸菌肽聚糖具有多种生物学活性,比如免疫增强功能、抗感染、抗肿瘤及抗过敏等。本文对乳酸菌肽聚糖的组成结构和生物学活性进行了简要的介绍,重点综述了近年来乳酸菌肽聚糖代谢及其调控过程的研究进展,并指出了乳酸菌肽聚糖未来研究的方向。  相似文献   

14.
Although the importance of peptidoglycan recognition proteins (PGRPs) in detecting bacteria and promoting immunity is well recognized in Drosophila melanogaster and other insect species, such a role has not yet been experimentally established for PGRPs in the tobacco hornworm, Manduca sexta. In this study, we purified M. sexta PGRP1 from the baculovirus-insect cell expression system, tested its association with peptidoglycans and intact bacteria, and explored its possible link with the prophenoloxidase activation system in larval hemolymph. Sequence comparison suggested that PGRP1 is not an amidase and lacks residues for interacting with the carboxyl group of meso-diaminopimelic acid-peptidoglycans (DAP-PGs). M. sexta PGRP1 gene was constitutively expressed at a low level in fat body, and the mRNA concentration became much higher after an injection of Escherichia coli. Consistently, the protein concentration in larval plasma increased in a time-dependent manner after the immune challenge. Purified recombinant PGRP1 specifically bound to soluble DAP-PG of E. coli but not to soluble Lys-type PG of Staphylococcus aureus. In addition, this recognition protein completely bound to insoluble PGs from Micrococcus luteus, Bacillus megaterium and Bacillus subtilis, whereas its association with the bacterial cells was low even though their peptidoglycans are exposed on the cell surface. After PGRP1 had been added to plasma of naïve larvae in the absence of microbial elicitor, there was a concentration-dependent increase in prophenoloxidase activation. Phenoloxidase activity, as usual, increased after the plasma was incubated with peptidoglyans or bacterial cells. These increases became more prominent when insoluble M. luteus or B. megaterium PG or soluble E. coli PG and PGRP1 were both present. Statistic analysis suggested a synergistic effect caused by interaction between PGRP1 and these PGs. Taken together, these results indicated that PGRP1 is a member of the M. sexta prophenoloxidase activation system, which recognizes peptidoglycans from certain bacteria and initiates the host defense response. The unexplained difference between the purified PGs and intact bacteria clearly reflects our general lack of understanding of PGRP1-mediated recognition and how it leads to proPO activation.  相似文献   

15.
The current model of immune activation in Drosophila melanogaster suggests that fungi and Gram-positive (G(+)) bacteria activate the Toll/Dif pathway and that Gram-negative (G(-)) bacteria activate the Imd/Relish pathway. To test this model, we examined the response of Relish and Dif (Dorsal-related immunity factor) mutants to challenge by various fungi and G(+) and G(-) bacteria. In Relish mutants, the Cecropin A gene was induced by the G(+) bacteria Micrococcus luteus and Staphylococcus aureus, but not by other G(+) or G(-) bacteria. This Relish-independent Cecropin A induction was blocked in Dif/Relish double mutant flies. Induction of the Cecropin A1 gene by M. luteus required Relish, whereas induction of the Cecropin A2 gene required Dif. Intact peptidoglycan (PG) was necessary for this differential induction of Cecropin A. PG extracted from M. luteus induced Cecropin A in Relish mutants, whereas PGs from the G(+) bacteria Bacillus megaterium and Bacillus subtilis did not, suggesting that the Drosophila immune system can distinguish PGs from various G(+) bacteria. Various fungi stimulated antimicrobial peptides through at least two different pathways requiring Relish and/or Dif. Induction of Attacin A by Geotrichum candidum required Relish, whereas activation by Beauvaria bassiana required Dif, suggesting that the Drosophila immune system can distinguish between at least these two fungi. We conclude that the Drosophila immune system is more complex than the current model. We propose a new model to account for this immune system complexity, incorporating distinct pattern recognition receptors of the Drosophila immune system, which can distinguish between various fungi and G(+) bacteria, thereby leading to selective induction of antimicrobial peptides via differential activation of Relish and Dif.  相似文献   

16.
Genistein, a major soy isoflavone, has been reported to exhibit antiadipogenic and proapoptotic potential in vivo and in vitro. It is also a phytoestrogen which has high affinity to estrogen receptor beta. In this study, we determined the effect of genistein on adipogenesis and estrogen receptor (ER) alpha and beta expression during differentiation in primary human preadipocytes. Genistein inhibited lipid accumulation in a dose-dependent manner at concentrations of 6.25 microM and higher, with 50 microM genistein inhibiting lipid accumulation almost completely. Low concentrations of genistein (3.25 microM) increased cell viability and higher concentrations (25 and 50 microM) decreased it by 16.48+/-1.35% (P<.0001) and 50.68+/-1.34% (P<.0001). Oil Red O staining was used to confirm the effects on lipid accumulation. The inhibition of lipid accumulation was associated with inhibition of glycerol-3-phosphate dehydrogenase activity and down-regulation of expression of adipocyte-specific genes, including peroxisome proliferator-activated receptor gamma, CCAAT/enhancer binding protein alpha, glycerol-3-phosphate dehydrogenase, adipocyte fatty acid binding protein, fatty acid synthase, sterol regulatory element-binding protein 1, perilipin, leptin, lipoprotein lipase and hormone-sensitive lipase. These effects of genistein during the differentiation period were associated with down-regulation of ERalpha and ERbeta expression. This study adds to the elucidation of the molecular pathways involved in the inhibition of adipogenesis by phytoestrogens.  相似文献   

17.
The specificity of antibodies directed against the peptidoglycan of gram-negative bacteria was studied. The peptidoglycans of Proteus vulgaris, Escherichia coli, Moraxella glucidolytica, Neisseria perflava, give identical precipitin reactions. By means of inhibition studies with various peptidoglycan subunits and synthetic peptides, it was shown that the antibodies are essentially directed against the peptide moiety of the peptidoglycan: L-Ala-D-Glu (L)-mesoA2pm-(L)-D-Ala, that the peptide reacts better with antibodies when it is not cross-linked, and that the C-terminal portion-meso-A2pm-D-Ala of the peptide is immunodominant. These results explain the immunological identity of the peptidoglycans of gram-negative bacteria, which possess the same peptide subunit. Only weak cross-reactivity was observed with the peptidoglycans of gram-positive bacteria (Streptococcus faecium, Micrococcus lysodeikticus, Corynebacterium poinsettiae) where meso-diaminopimelic acid is replaced by L-lysine or L-homoserine. However, the peptidoglycan of Bacillus megaterium which possesses the same peptide subunit as gram-negative bacteria, gives only a reaction of partial identity with these bacteria. This result suggests the presence on the peptidoglycan of gram-negative bacteria, of other undefined antigenic determinants.  相似文献   

18.
19.
Plasminogen was incubated with lactic acid bacteria and the plasmin activity in the mixture was measured. Three of 15 strains tested revealed significant plasminogen activation ability. Lactococcus lactis subsp. lactis biovar diacetylactis NIAI C59 showed the highest activity. The strain activated not only human plasminogen but also bovine plasminogen. The activity demonstrated a high level of thermal stability within a range of pH 3.0-9.0. The plasminogen activator activity in strain C59 increased after 15 h of cultivation, and reached a plateau after 21 h. A remarkable amount of activity was transferred to the solution when C59 cells were incubated in buffer solutions at pH 9.0 and above.  相似文献   

20.
The mechanisms that control differentiation of stem cells to specialised cell types probably include factors intrinsic to stem cells as well as extrinsic factors produced by the microenvironment of the stem cell niche. The Drosophila male germline is renewed from a population of stem cells located in the apical tip of the adult testis. The morphological relationship between germline stem cells and their surrounding somatic cells is well understood but the factors that regulate stem cell proliferation and differentiation are still being uncovered. This study examined the effect of stimulating Dpp signalling directly in male germ cells. Ectopic Dpp or Activin signalling resulted in overproliferation of both stem cell-like and spermatogonial-like cells in the apical region of the testis. A third cell population that expressed stem cell markers was seen to proliferate in the distal testis when Dpp signalling was either stimulated or repressed in germline stem cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号