首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Background and Aims Volatile organic compounds (VOCs) play various roles in plant–plant interactions, and constitutively produced VOCs might act as a cue to sense neighbouring plants. Previous studies have shown that VOCs emitted from the barley (Hordeum vulgare) cultivar ‘Alva’ cause changes in biomass allocation in plants of the cultivar ‘Kara’. Other studies have shown that shading and the low red:far-red (R:FR) conditions that prevail at high plant densities can reduce the quantity and alter the composition of the VOCs emitted by Arabidopsis thaliana, but whether this affects plant–plant signalling remains unknown. This study therefore examines the effects of far-red light enrichment on VOC emissions and plant–plant signalling between ‘Alva’ and ‘Kara’.Methods The proximity of neighbouring plants was mimicked by supplemental far-red light treatment of VOC emitter plants of barley grown in growth chambers. Volatiles emitted by ‘Alva’ under control and far-red light-enriched conditions were analysed using gas chromatography–mass spectrometry (GC-MS). ‘Kara’ plants were exposed to the VOC blend emitted by the ‘Alva’ plants that were subjected to either of the light treatments. Dry matter partitioning, leaf area, stem and total root length were determined for ‘Kara’ plants exposed to ‘Alva’ VOCs, and also for ‘Alva’ plants exposed to either control or far-red-enriched light treatments.Key Results Total VOC emissions by ‘Alva’ were reduced under low R:FR conditions compared with control light conditions, although individual volatile compounds were found to be either suppressed, induced or not affected by R:FR. The altered composition of the VOC blend emitted by ‘Alva’ plants exposed to low R:FR was found to affect carbon allocation in receiver plants of ‘Kara’.Conclusions The results indicate that changes in R:FR light conditions influence the emissions of VOCs in barley, and that these altered emissions affect VOC-mediated plant–plant interactions.  相似文献   

2.
Ethnographic research highlights that there are constraints placed on the time available to produce cultural artefacts in differing circumstances. Given that copying error, or cultural ‘mutation’, can have important implications for the evolutionary processes involved in material culture change, it is essential to explore empirically how such ‘time constraints’ affect patterns of artefactual variation. Here, we report an experiment that systematically tests whether, and how, varying time constraints affect shape copying error rates. A total of 90 participants copied the shape of a 3D ‘target handaxe form’ using a standardized foam block and a plastic knife. Three distinct ‘time conditions’ were examined, whereupon participants had either 20, 15, or 10 minutes to complete the task. One aim of this study was to determine whether reducing production time produced a proportional increase in copy error rates across all conditions, or whether the concept of a task specific ‘threshold’ might be a more appropriate manner to model the effect of time budgets on copy-error rates. We found that mean levels of shape copying error increased when production time was reduced. However, there were no statistically significant differences between the 20 minute and 15 minute conditions. Significant differences were only obtained between conditions when production time was reduced to 10 minutes. Hence, our results more strongly support the hypothesis that the effects of time constraints on copying error are best modelled according to a ‘threshold’ effect, below which mutation rates increase more markedly. Our results also suggest that ‘time budgets’ available in the past will have generated varying patterns of shape variation, potentially affecting spatial and temporal trends seen in the archaeological record. Hence, ‘time-budgeting’ factors need to be given greater consideration in evolutionary models of material culture change.  相似文献   

3.
A computer program that tracks animal behavior, thereby revealing various features and mechanisms of social animals, is a powerful tool in ethological research. Because honeybee colonies are populated by thousands of bees, individuals co-exist in high physical densities and are difficult to track unless specifically tagged, which can affect behavior. In addition, honeybees react to light and recordings must be made under special red-light conditions, which the eyes of bees perceive as darkness. The resulting video images are scarcely distinguishable. We have developed a new algorithm, K-Track, for tracking numerous bees in a flat laboratory arena. Our program implements three main processes: (A) The object (bee''s) region is detected by simple threshold processing on gray scale images, (B) Individuals are identified by size, shape and spatiotemporal positional changes, and (C) Centers of mass of identified individuals are connected through all movie frames to yield individual behavioral trajectories. The tracking performance of our software was evaluated on movies of mobile multi-artificial agents and of 16 bees walking around a circular arena. K-Track accurately traced the trajectories of both artificial agents and bees. In the latter case, K-track outperformed Ctrax, well-known software for tracking multiple animals. To investigate interaction events in detail, we manually identified five interaction categories; ‘crossing’, ‘touching’, ‘passing’, ‘overlapping’ and ‘waiting’, and examined the extent to which the models accurately identified these categories from bee''s interactions. All 7 identified failures occurred near a wall at the outer edge of the arena. Finally, K-Track and Ctrax successfully tracked 77 and 60 of 84 recorded interactive events, respectively. K-Track identified multiple bees on a flat surface and tracked their speed changes and encounters with other bees, with good performance.  相似文献   

4.
The existence of consistent individual differences in behaviour (‘animal personality’) has been well documented in recent years. However, how such individual variation in behaviour is maintained over evolutionary time is an ongoing conundrum. A well-studied axis of animal personality is individual variation along a bold–shy continuum, where individuals differ consistently in their propensity to take risks. A predation-risk cost to boldness is often assumed, but also that the reproductive benefits associated with boldness lead to equivalent fitness outcomes between bold and shy individuals over a lifetime. However, an alternative or complementary explanation may be that bold individuals phenotypically compensate for their risky lifestyle to reduce predation costs, for instance by investing in more pronounced morphological defences. Here, we investigate the ‘phenotypic compensation’ hypothesis, i.e. that bold individuals exhibit more pronounced anti-predator defences than shy individuals, by relating shell shape in the aquatic snail Radix balthica to an index of individual boldness. Our analyses find a strong relationship between risk-taking propensity and shell shape in this species, with bolder individuals exhibiting a more defended shell shape than shy individuals. We suggest that this supports the ‘phenotypic compensation’ hypothesis and sheds light on a previously poorly studied mechanism to promote the maintenance of personality variation among animals.  相似文献   

5.
Artificial lighting is a particular problem for animals active at night. Approximately 69% of mammal species are nocturnal, and one-third of these are bats. Due to their extensive movements—both on a nightly basis to exploit ephemeral food supplies, and during migration between roosts—bats have an unusually high probability of encountering artificial light in the landscape. This paper reviews the impacts of lighting on bats and their prey, exploring the direct and indirect consequences of lighting intensity and spectral composition. In addition, new data from large-scale surveys involving more than 265 000 bat calls at more than 600 locations in two countries are presented, showing that prevalent street-lighting types are not generally linked with increased activity of common and widespread bat species. Such bats, which are important to ecosystem function, are generally considered ‘light-attracted’ and likely to benefit from the insect congregations that form at lights. Leisler''s bat (Nyctalus leisleri) may be an exception, being more frequent in lit than dark transects. For common pipistrelle bats (Pipistrellus pipistrellus), lighting is negatively associated with their distribution on a landscape scale, but there may be local increases in habitats with good tree cover. Research is now needed on the impacts of sky glow and glare for bat navigation, and to explore the implications of lighting for habitat matrix permeability.  相似文献   

6.
Research in the past decade has established the existence of consistent individual differences or ‘personality’ in animals and their important role in many aspects of animal behaviour. At the same time, research on honest signalling of aggression has revealed that while some of the putative aggression signals are reliable, they are only imperfectly so. This study asks whether a significant portion of the variance in the aggression-signal regression may be explained by individual differences in signalling strategies. Using the well-studied aggressive signalling system of song sparrows (Melospiza melodia), we carried out repeated assays to measure both aggressive behaviours and aggressive signalling of territorial males. Through these assays, we found that aggressive behaviours and aggressive signalling were both highly repeatable, and moreover that aggressive behaviours in 2009–2010 predicted whether the birds would attack a taxidermic mount over a year later. Most significantly, we found that residual variation in signalling behaviours, after controlling for aggressive behaviour, was individually consistent, suggesting there may be a second personality trait determining the level of aggressive signalling. We term this potential personality trait ‘communicativeness’ and discuss these results in the context of honest signalling theories and recent findings reporting prevalence of ‘under-signalling’.  相似文献   

7.
The question of whether animals possess ‘cultures’ or ‘traditions’ continues to generate widespread theoretical and empirical interest. Studies of wild chimpanzees have featured prominently in this discussion, as the dominant approach used to identify culture in wild animals was first applied to them. This procedure, the ‘method of exclusion,’ begins by documenting behavioural differences between groups and then infers the existence of culture by eliminating ecological explanations for their occurrence. The validity of this approach has been questioned because genetic differences between groups have not explicitly been ruled out as a factor contributing to between-group differences in behaviour. Here we investigate this issue directly by analysing genetic and behavioural data from nine groups of wild chimpanzees. We find that the overall levels of genetic and behavioural dissimilarity between groups are highly and statistically significantly correlated. Additional analyses show that only a very small number of behaviours vary between genetically similar groups, and that there is no obvious pattern as to which classes of behaviours (e.g. tool-use versus communicative) have a distribution that matches patterns of between-group genetic dissimilarity. These results indicate that genetic dissimilarity cannot be eliminated as playing a major role in generating group differences in chimpanzee behaviour.  相似文献   

8.
Urbanization exposes wild animals to increased levels of light, affecting particularly nocturnal animals. Artificial light at night might shift the balance of predator–prey interactions, for example, of nocturnal echolocating bats and eared moths. Moths exposed to light show less last‐ditch maneuvers in response to attacking close‐by bats. In contrast, the extent to which negative phonotaxis, moths’ first line of defense against distant bats, is affected by light is unclear. Here, we aimed to quantify the overall effect of light on both types of sound‐evoked antipredator flight, last‐ditch maneuvers and negative phonotaxis. We caught moths at two light traps, which were alternately equipped with loudspeakers that presented ultrasonic playbacks to simulate hunting bats. The light field was omnidirectional to attract moths equally from all directions. In contrast, the sound field was directional and thus, depending on the moth''s approach direction, elicited either only negative phonotaxis, or negative phonotaxis and last‐ditch maneuvers. We did not observe an effect of sound playback on the number of caught moths, suggesting that light might suppress both types of antipredator flight, as either type would have caused a decline in the number of caught moths. As control, we confirmed that our playback was able to elicit evasive flight in moths in a dark flight room. Showing no effect of a treatment, however, is difficult. We discuss potential alternative explanations for our results, and call for further studies to investigate how light interferes with animal behavior.  相似文献   

9.
《Chronobiology international》2013,30(10):1239-1246
Although circadian disruption is an accepted term, little has been done to develop methods to quantify the degree of disruption or entrainment individual organisms actually exhibit in the field. A variety of behavioral, physiological and hormonal responses vary in amplitude over a 24-h period and the degree to which these circadian rhythms are synchronized to the daily light–dark cycle can be quantified with a technique known as phasor analysis. Several studies have been carried out using phasor analysis in an attempt to measure circadian disruption exhibited by animals and by humans. To perform these studies, species-specific light measurement and light delivery technologies had to be developed based upon a fundamental understanding of circadian phototransduction mechanisms in the different species. When both nocturnal rodents and diurnal humans, experienced different species-specific light–dark shift schedules, they showed, based upon phasor analysis of the light–dark and activity–rest patterns, similar levels of light-dependent circadian disruption. Indeed, both rodents and humans show monotonically increasing and quantitatively similar levels of light-dependent circadian disruption with increasing shift-nights per week. Thus, phasor analysis provides a method for quantifying circadian disruption in the field and in the laboratory as well as a bridge between ecological measurements of circadian entrainment in humans and parametric studies of circadian disruption in animal models, including nocturnal rodents.  相似文献   

10.
Identification of the ontogenetic status of an extinct organism is complex, and yet this underpins major areas of research, from taxonomy and systematics to ecology and evolution. In the case of the non-avialan dinosaurs, at least some were reproductively mature before they were skeletally mature, and a lack of consensus on how to define an ‘adult’ animal causes problems for even basic scientific investigations. Here we review the current methods available to determine the age of non-avialan dinosaurs, discuss the definitions of different ontogenetic stages, and summarize the implications of these disparate definitions for dinosaur palaeontology. Most critically, a growing body of evidence suggests that many dinosaurs that would be considered ‘adults’ in a modern-day field study are considered ‘juveniles’ or ‘subadults’ in palaeontological contexts.  相似文献   

11.
The human visual system has evolved to be highly sensitive to visual information about other persons and their movements as is illustrated by the effortless perception of point-light figures or ‘biological motion’. When presented orthographically, a point-light walker is interpreted in two anatomically plausible ways: As ‘facing the viewer’ or as ‘facing away’ from the viewer. However, human observers show a ‘facing bias’: They perceive such a point-light walker as facing towards them in about 70-80% of the cases. In studies exploring the role of social and biological relevance as a possible account for the facing bias, we found a ‘figure gender effect’: Male point-light figures elicit a stronger facing bias than female point-light figures. Moreover, we also found an ‘observer gender effect’: The ‘figure gender effect’ was stronger for male than for female observers. In the present study we presented to 11 males and 11 females point-light walkers of which, very subtly, the perspective information was manipulated by modifying the earlier reported ‘perspective technique’. Proportions of ‘facing the viewer’ responses and reaction times were recorded. Results show that human observers, even in the absence of local shape or size cues, easily pick up on perspective cues, confirming recent demonstrations of high visual sensitivity to cues on whether another person is potentially approaching. We also found a consistent difference in how male and female observers respond to stimulus variations (figure gender or perspective cues) that cause variations in the perceived in-depth orientation of a point-light walker. Thus, the ‘figure gender effect’ is possibly caused by changes in the relative locations and motions of the dots that the perceptual system tends to interpret as perspective cues. Third, reaction time measures confirmed the existence of the facing bias and recent research showing faster detection of approaching than receding biological motion.  相似文献   

12.
Many animals experience marked seasonal fluctuations in environmental conditions. In response, animals display adaptive alterations in physiology and behaviour, including seasonal changes in immune function. During winter, animals must reallocate finite energy stores from relatively costly, less exigent systems (e.g. reproduction and immunity) to systems critical for immediate survival (e.g. thermoregulation). Seasonal changes in immunity are probably mediated by neuroendocrine factors signalling current energetic state. One potential hormonal candidate is insulin, a metabolic hormone released in response to elevated blood glucose levels. The aim of the present study was to explore the potential role of insulin in signalling energy status to the immune system in a seasonally breeding animal, the Siberian hamster (Phodopus sungorus). Specifically, exogenous insulin was administered to male hamsters housed in either long ‘summer-like’ or short ‘winter-like’ days. Animals were then challenged with an innocuous antigen and immune responses were measured. Insulin treatment significantly enhanced humoural immune responses in short, but not long days. In addition, insulin treatment increased food intake and decreased blood glucose levels across photoperiodic treatments. Collectively, these data support the hypothesis that insulin acts as an endocrine signal integrating seasonal energetic changes and immune responses in seasonally breeding rodents.  相似文献   

13.
The white-lipped peccary (Tayassu pecari) is an endangered species whose bold anti-predator behaviour in comparison to related species may increase its vulnerability to hunting and predation. We used a judgement bias test to investigate whether captive peccaries that had recently experienced a trapping event made more ‘pessimistic’ decisions under ambiguity. If so, this would indicate (i) that the procedure may induce a negative affective state and hence have welfare implications, and (ii) that the species is able to adopt a cautious response style despite its bold phenotype. Eight individuals were trained to ‘go’ to a baited food bowl when a positive auditory cue (whistle; CS+) was given and to ‘no-go’ when a negative cue (horn A; CS-) was sounded to avoid a loud sound and empty food bowl. An ‘ambiguous’ auditory cue (bell; CSA) was presented to probe decision-making under ambiguity. Individuals were subjected to three tests in the order: T1 (control-no trap), T2 (24h after-trap procedure), and T3 (control-no trap). In each test, each animal was exposed to 10 judgement bias trials of each of the three cue types: CS+,CS-,CSA. We recorded whether animals reached the food bowl within 60s (‘go’ response) and their response speed (m/s). The animals varied in their responses to the CSA cue depending on test type. In all tests, animals made more ‘go’ responses to CS+ than CSA. During control tests (T1 and T3), the peccaries showed higher proportions of ‘go’ responses to CSA than to CS-. In T2, however, the animals showed similar proportions of ‘go’ responses to CSA and CS-, treating the ambiguous cue similarly to the negative cue. There were differences in their response speed according to cue type: peccaries were faster to respond to CS+ than to CS- and CSA. Trapping thus appeared to cause a ‘pessimistic’ judgement bias in peccaries, which may reflect a negative affective state with implications for the welfare and management of captive individuals, and also function to increase caution and survival chances following such an event in the wild environment.  相似文献   

14.
Brown marmorated stink bug, Halyomorpha halys (Stål), (Hemiptera: Pentatomidae) is an invasive polyphagous agricultural and urban nuisance pest of Asian origin that is becoming widespread in North America and Europe. Despite the economic importance of pentatomid pests worldwide, their feeding behavior is poorly understood. Electronically monitored insect feeding (EMIF) technology is a useful tool in studies of feeding behavior of Hemiptera. Here we examined H. halys feeding behavior using an EMIF system designed for high throughput studies in environmental chambers. Our objectives were to quantify feeding activity by monitoring proboscis contacts with green beans, including labial dabbing and stylet penetration of the beans, which we collectively define as ‘probes’. We examined frequency and duration of ‘probes’ in field-collected H. halys over 48 hours and we determined how environmental conditions could affect diel and seasonal periodicity of ‘probing’ activity. We found differences in ‘probing’ activity between months when the assays were conducted. These differences in activity may have reflected different environmental conditions, and they also coincide with what is known about the phenology of H. halys. While a substantial number of ‘probes’ occurred during scotophase, including some of the longest mean ‘probe’ durations, activity was either lower or similar to ‘probing’ activity levels during photophase on average. We found that temperature had a significant impact on H. halys ‘probing’ behavior and may influence periodicity of activity. Our data suggest that the minimal temperature at which ‘probing’ of H. halys occurs is between 3.5 and 6.1°C (95% CI), and that ‘probing’ does not occur at temperatures above 26.5 to 29.6°C (95% CI). We estimated that the optimal temperature for ‘probing’ is between 16 and 17°C.  相似文献   

15.
《Chronobiology international》2013,30(8):1016-1023
Artificial nighttime illumination has recently become commonplace throughout the world; however, in common with other animals, humans have not evolved in the ecological context of chronic light at night. With prevailing evidence linking the circadian, endocrine, immune, and metabolic systems, understanding these relationships is important to understanding the etiology and progression of several diseases. To eliminate the covariate of sleep disruption in light at night studies, researchers often use nocturnal animals. However, the assumption that light at night does not affect sleep in nocturnal animals remains unspecified. To test the effects of light at night on sleep, we maintained Swiss-Webster mice in standard light/dark (LD) or dim light at night (DLAN) conditions for 8–10 wks and then measured electroencephalogram (EEG) and electromyogram (EMG) biopotentials via wireless telemetry over the course of two consecutive days to determine differences in sleep timing and homeostasis. Results show no statistical differences in total percent time, number of episodes, maximum or average episode durations in wake, slow-wave sleep (SWS), or rapid eye movement (REM) sleep. No differences were evident in SWS delta power, an index of sleep drive, between groups. Mice kept in DLAN conditions showed a relative increase in REM sleep during the first few hours after the dark/light transition. Both groups displayed normal 24-h circadian rhythms as measured by voluntary running wheel activity. Groups did not differ in body mass, but a marked negative correlation of body mass with percent time spent awake and a positive correlation of body mass with time spent in SWS was evident. Elevated body mass was also associated with shorter maximum wake episode durations, indicating heavier animals had more trouble remaining in the wake vigilance state for extended periods of time. Body mass did not correlate with activity levels, nor did activity levels correlate with time spent in different sleep states. These data indicate that heavier animals tend to sleep more, potentially contributing to further weight gain. We conclude that chronic DLAN exposure does not significantly affect sleep timing or homeostasis in mice, supporting the use of dim light with nocturnal rodents in chronobiology research to eliminate the possible covariate of sleep disruption.  相似文献   

16.

Background

Numerous studies have reported on the healing powers of plants and nature, but there have not been so many instances of experimental research. In particular, there are very few psychological and physiological studies using tactile stimuli. This study examines the psychological and physiological effects of touching plant foliage by using an evaluation profile of the subjects’ impressions and investigating cerebral blood flow.

Methods

The subjects were 14 young Japanese men aged from 21 to 27 years (mean ± standard deviation: 23.6 ± 2.4). With their eyes closed, the subjects touched four different tactile samples including a leaf of natural pothos (Epipremnum aureum). The physiological indices were compared before and after each stimulus. Psychological indices were obtained using a ‘semantic differential’ method.

Results

The fabric stimulus gave people ‘soft’ and ‘rough’ impressions, ‘kind’, ‘peaceful’ and ‘pleasant’ feelings psychologically, and a sense of physiological calm. On the other hand, the metal stimulus gave people ‘cold’, ‘smooth’ and ‘hard’ impressions and an image of something ‘artificial’. The metal stimulus caused a stress response in human cerebral blood flow although its evaluation in terms of ‘pleasant or unpleasant’ was neutral. There were no remarkable differences between the stimuli of natural and artificial pothos compared with other types of stimulus psychologically. However, only the natural pothos stimulus showed a sense of physiological calm in the same appearance as the fabric stimulus.

Conclusions

This study shows that people experience an unconscious calming reaction to touching a plant. It is to be concluded that plants are an indispensable element of the human environment.  相似文献   

17.
Understanding rooting dynamics using the minirhizotron technique is useful for cultivar selection and to quantify nematode damage to roots. A 2-yr microplot study including five bermudagrass (‘Tifway’, Belonolaimus longicaudatus susceptible; two commercial cultivars [TifSport and Celebration] and two genotypes [‘BA132’ and ‘PI 291590’], which have been reported to be tolerant to B. longicaudatus) and two St. Augustinegrass (‘FX 313’, susceptible, and ‘Floratam’ that was reported as tolerant to B. longicaudatus) genotypes in a 5 x 2 and 2 x 2 factorial design with four replications, respectively, was initiated in 2012. Two treatments included were uninoculated and B. longicaudatus inoculated. In situ root images were captured each month using a minirhizotron camera system from April to September of 2013 and 2014. Mixed models analysis and comparison of least squares means indicated significant differences in root parameters studied across the genotypes and soil depths of both grass species. ‘Celebration’, ‘TifSport’ and ‘PI 291590’ bermudagrass, and ‘Floratam’ St. Augustinegrass had significantly different root parameters compared to the corresponding susceptible genotypes (P ≤ 0.05). Only ‘TifSport’ had no significant root loss when infested with B. longicaudatus compared to non-infested. ‘Celebration’ and ‘PI 291590’ had significant root loss but retained significantly greater root densities than ‘Tifway’ in B. longicaudatus-infested conditions (P ≤ 0.05). Root lengths were greater at the 0 to 5 cm depth followed by 5 to 10 and 10 to 15 cm of vertical soil depth for both grass species (P ≤ 0.05). ‘Celebration’, ‘TifSport’, and ‘PI 291590’ had better root vigor against B. longicaudatus compared to Tifway.  相似文献   

18.
In this paper, we explore the question, why are striking special skills so much more common in autism spectrum conditions (ASC) than in other groups? Current cognitive accounts of ASC are briefly reviewed in relation to special skills. Difficulties in ‘theory of mind’ may contribute to originality in ASC, since individuals who do not automatically ‘read other minds’ may be better able to think outside prevailing fashions and popular theories. However, originality alone does not confer talent. Executive dysfunction has been suggested as the ‘releasing’ mechanism for special skills in ASC, but other groups with executive difficulties do not show raised incidence of talents. Detail-focused processing bias (‘weak coherence’, ‘enhanced perceptual functioning’) appears to be the most promising predisposing characteristic, or ‘starting engine’, for talent development. In support of this notion, we summarize data from a population-based twin study in which parents reported on their 8-year-olds'' talents and their ASC-like traits. Across the whole sample, ASC-like traits, and specifically ‘restricted and repetitive behaviours and interests’ related to detail focus, were more pronounced in children reported to have talents outstripping older children. We suggest that detail-focused cognitive style predisposes to talent in savant domains in, and beyond, autism spectrum disorders.  相似文献   

19.
Human–wildlife conflicts have intensified by many folds and at different levels in recent years. The same is true in the case of the Hindu Kush Himalaya (HKH), the roof of the world, and a region known for its wealth in biodiversity. We present a systematic literature review (SLR) using the search, appraisal, synthesis, and analysis (SALSA) framework; and for spatial and network analysis, we employed the VOSviewer software. The review—covering 240 peer—articles within a span of 27 years (from 1982 to 2019)—revealed that in the last decade, there was a 57% increase in publications but with a disproportionate geographical and thematic focus. About 82% of the research concentrated on protected areas and large carnivores and mega herbivores played a big role in such conflicts. About 53% of the studies were based on questionnaires, and the main driver reported was habitat disturbance of animals due to land‐cover change, urbanization, and increase in human population. On the management front, the studies reported the use of traditional protection techniques like guarding and fencing. Our analysis of 681 keywords revealed a prominent focus on ‘human‐wildlife conflict,’ ‘Nepal,’ ‘Bhutan,’ ‘Snow Leopard,’ and ‘Leopard’ indicating the issue linked with these species and countries. The involvement of 640 authors from 36 countries indicates increasing interest, and Nepal and India are playing key roles in the region. As for the spatial analysis that was conducted, while it showed regional variations, there were conspicuous limitations in terms of having a transboundary focus. Thus, particular attention ought to be paid to building transboundary partnerships and improving management interventions; there is also a pressing need to understand the patterns of human–wildlife convergence, especially involving meso‐mammals.  相似文献   

20.
The question of how people recognize themselves and separate themselves from the environment and others has long intrigued philosophers and scientists. Recent findings have linked regions of the ‘default brain’ or ‘intrinsic system’ to self-related processing. We used a paradigm in which subjects had to rely on subtle sensory-motor synchronization differences to determine whether a viewed movement belonged to them or to another person, while stimuli and task demands associated with the “responded self” and “responded other” conditions were precisely matched. Self recognition was associated with enhanced brain activity in several ROIs of the intrinsic system, whereas no differences emerged within the extrinsic system. This self-related effect was found even in cases where the sensory-motor aspects were precisely matched. Control conditions ruled out task difficulty as the source of the differential self-related effects. The findings shed light on the neural systems underlying bodily self recognition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号