首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
In situ measurements of both community metabolism (primary production and respiration) and PAM fluorometry were conducted during emersion on intertidal sediments in the Mont Saint-Michel Bay, in areas where oysters and mussels were cultivated. Results highlighted a low benthic metabolism compared to other intertidal areas previously investigated with the same methods. Comparisons between gross community primary production and relative electron transport rates confirmed this statement. More specifically, primary productivity remained very low all over the year, whereas the associated microalgal biomass was estimated to be high. We suggest that the microphytobenthic community studied was characterized by a self-limitation of its primary productivity by its own biomass, as previously shown in Marennes-Oléron Bay for example. The almost permanent high biomass would represent a limiting factor for micromigration processes within the first millimetres of the sediment. This could be explained by very low resuspension processes occurring in the western part of the bay, enhanced by the occurrence of numerous aquaculture structures that could decrease tidal currents in the benthic boundary layer. Handling editor: N. Desroy  相似文献   

2.
Factors controlling seasonal variations in benthic metabolism (O2 flux) and dissolved inorganic nitrogen (DIN) fluxes were examined during a 12–14 month period at three intertidal Wadden Sea stations. Since the flux measurements were made as small-scale laboratory core incubations, the results are primarily related to the microbenthic community (microalgae, bacteria, micro-, meio- and small macrofauna) and cannot be considered representative of the total benthic community in the Wadden Sea. Furthermore, it has to be emphasized that light intensity during day-time simulations were constant and saturating at all times. Benthic primary production and oxygen uptake appeared to be temperature dependent with a ‘seasonal Q10’ of 1.7–1.8 and 2.7–4.3, respectively. Inundation had no effect on oxygen fluxes as evidenced by similar sediment respiration with and without water cover. A stronger temperature dependence of primary production in muddy than in sandy sediment indicated that the overall control in the latter may be complex due to factors like macrofaunal grazing and nutrient availability. Benthic respiration may not be controlled by temperature alone, as sedimentary organic matter content correlated significantly with both temperature and benthic respiration. Annual gross primary production in high intertidal sandy sediment was 10 and 50% higher than in low intertidal sandy and muddy sediments, respectively. Since annual benthic community respiration was 2 times higher in muddy than sandy sediments, the annual net primary production was about 0 in the former and 17–19 mol C m?2 yr?1 in the latter. However, heterotrophic contribution by larger faunal components as well as removal of organic carbon by waves and tidal currents, which are not included here, may balance the budget at the sandy stations. There was no or only weak relationships between (light and dark) DIN exchange and factors like temperature, sedimentary organic content, and oxygen fluxes. Factors related to nutrient fluxes, such as denitrification and nutrient concentration in the overlying water, may have hampered any such relationships. In fact, DIN fluxes at all three stations appeared to be strongly controlled by DIN concentrations in the overlying water. On an annual basis, the sediment appeared to be a net sink for DIN.  相似文献   

3.
Metabolism of a Sonoran Desert stream was investigated by both enclosure and whole system oxygen techniques. We used recirculating chambers to estimate surface sediment metabolism and measured deep sediment respiration in isolated sediment cores. Metabolism of the stream ecosystem was determined for a 30-m reach as dark and light oxygen change with and without black plastic sheeting that darkened the stream and prevented diffusion. Average ecosystem respiration for two dates in August (440 mg O2 m-2 h-1) exceeded respiration of either the surface sediment community (155 Mg O2 m-2 h-1) or the hyporheic community (170 mg O2 m-2 h-1) alone. Deep sediments show substantial oxygen and nitrate uptake when isolated. In the stream, this low nitrate interstitial water is exchanged with surface water. Metabolism of the isolated surface community suggests a highly productive and autotrophic system, yet gross production is balanced or exceeded by community respiration when ecosystem boundaries include the hyporheic zone. Thus, despite high rates of gross primary production (600–1200 mg O2 m-2 h-1), desert streams may be heterotrophic (PG < R) during summer.  相似文献   

4.
Increased water clarity associated with zebra mussel (Dreissena polymorpha) populations may favor benthic algal primary production in freshwater systems previously dominated by pelagic phytoplankton production. While zebra mussel-mediated water clarity effects on benthic primary production have been implicated in published reports, few production estimates are available. This study estimates benthic primary production in Oneida Lake, NY before and after zebra mussel invasion (1992), using measured photosynthetic parameters ( , αB and β) from sampled benthic algal communities. In the summers of 2003 and 2004, primary production was measured as O2 evolution from algal communities on hard (cobble) and soft (sediment) substrate from several depths. We also backcast estimates of benthic primary production from measurements of light penetration since 1975. Estimates of whole-lake epipelic and epilithic algal primary production showed a significant (4%) increase and exhibited significantly less interannual variability subsequent to the establishment of zebra mussels. We applied our model to two lakes of differing trophic status; the model significantly overestimated benthic primary production in a hypereutrophic lake, but there was no significant difference between the actual and predicted primary production values in the oligotrophic lake. The hypereutrophic lake had higher zebra mussel densities than Oneida (224 vs. 41 per sample respectively). Though total community respiration (measured in total darkness) was factored into our model predictions of production, our model may need modification when heterotrophic respiration is a large portion of total community metabolism.  相似文献   

5.
The magnitudes of sediment oxygen consumption in the rural undrainable fish ponds of Orissa, India, were quantified and partitioned into bacterial, animal and chemical uptakes. It was in the low range, comprising a maximum of 30 % of the total community respiration. Chemical uptake was generally predominant, followed by bacterial respiration and low macroinvertebrate respiration. Evidence has been produced to the limiting effects of oxygen levels, mechanical disturbances and bioturbation on uptake rates in these ponds. The sediment layers are shown to act as energy traps, and measures are suggested for improved sediment -water interaction and enhanced nutrient recycling.  相似文献   

6.
Paolo Madoni 《Hydrobiologia》1987,144(2):113-120
Estimates of production and respiration rates by a field community of ciliates were made in an experimental ricefield located in the province of Reggio Emilia (Northern Italy) from June to September 13, 1983. Particular attention was given to ciliate communities inhabiting both the water column and the sediment. Production in the sediment was higher than in the water column during the first period of rice cultivation (June–July); in the second period (August–September) production was higher in the water column. A similar trend was recorded for respiration rates. During the entire period, production was estimated at 471 KJ m-2, while energy losses due to respiration accounted for 178 KJ m-2. The net production efficiency (K2) of the total ciliate community was 72.5%. Results obtained are discussed and compared with published data on ciliated Protozoa in other ecosystems.  相似文献   

7.
In May 1988, a study was made of the benthic community structure and benthic respiratory activity along two transects across the Mauritanian shelf off Banc d'Arguin. The main emphasis of the present paper is put on the macrobenthos, but results of a gross analysis of the meibenthos are discussed as well. Macrofaunal and meiofaunal density showed no consistent decrease with distance from the shore. The composition of the macrofauna taxa appeared to be closely correlated with sediment parameters and less so with depth. The highest macrofaunal biomass was found at the northern edge of the Banc d'Arguin, and the lowest biomass along the outer shelf. The biomass levels on the shelf match the ones reported for the northern Cap Blanc area where, in contrast to the seasonal upwelling in the investigated area, upwelling takes place all year round.Benthic respiration rates on the offshore shelf were relatively high at the nearshore stations and low near the shelf break. Experimental evidence suggests that the low O2 levels in the upwelling water covering part of shelf, inhibited benthic respiration. The high respiratory activity at some northern inshore stations coincided with the presence of oxygen-rich coastal water. In this area benthic respiration surpassed the level previously reported for the enriched Cap Blanc area. On the basis of our respiration data, an estimate is made of the total carbon demand of the benthic community on the shelf in May and this quantity is compared with the measurements of daily primary production.  相似文献   

8.
Seagrass meadows are important primary producers in SE-Asia coastal areas that are increasingly threatened by human activities resulting in a deterioration of the underwater light environment. The resilience of seagrass meadows to decreasing light availability should be approached in an integrative manner, because they shelter complex communities of primary and secondary producers. The aim of this study was to measure the in situ metabolism of a seagrass community under different levels of light availability following changes in the water column dissolved oxygen (DO) and dissolved inorganic carbon (DIC), the sediment redox potential and seagrass production. Net community production (NCP) and respiration were measured along two diel cycles to produce a balance of NCP under different light treatments. On a daily basis, at full irradiance, the community metabolism presented a net production which was close to zero, with values of −7.75 to 16.6 mmol O2 m−2 day−1 for DO, and −56.8 to 22.7 mmol C m−2 day−1 for DIC in the first and second incubation runs, respectively. Compensation irradiance for the NCP was thus found to be close to 80% of the present light availability. Shading resulted in a general decrease in the sediment redox potential, while the initial redox potential had not recovered 6 days after exposure to full sunlight. This community appears to be in a fragile equilibrium with the environment, and any minor decrease in the water transparency would lead to a shift from an autotrophic to a heterotrophic system.  相似文献   

9.
Abstract The response of a sediment microbial assemblage to a pulse of diatoms was studied over 36 days by measuring bacterial activity and biomass, ATP concentration, and overall community respiration in laboratory microcosms. Also, the contribution of macrofaunal chironomids to the decomposition of settling diatoms in benthic communities, and the relative importance of benthic meiofauna in community metabolism, were determined. The addition of diatoms resulted in an immediate response by sediment bacteria, with higher bacterial production recorded after only 2 h, and a more than tenfold increase within one day. The rapid response by sediment bacteria was accompanied by relatively high initial concentrations of dissolved organic carbon. In treatments receiving diatoms, higher bacterial production was sustained throughout the experiment. Surprisingly, neither these elevated production estimates, nor the starvation of controls affected bacterial abundance. Mean bacterial cell volume, however, was markedly affected by the addition of diatoms. Combining community respiration measurements and bacterial production estimates showed that growth efficiencies for sediment bacteria ranged from 14.6 to 34.5%. The contribution of ambient meiozoobenthos to carbon metabolism was less than 1%. Carbon budgets showed that 1.3 mg C was cooxidized along with 4.3 mg added diatom C. Sediment reworking by Chironomus larvae initially enhanced bacterial production, but the presence of Chironomus resulted in lower bacterial production estimates after 16 and 36 days. This was interpreted as a result of faster decomposition of diatoms in treatments with chironomids, which was validated by a faster decline of ATP and chlorophyll a in the sediment. Our results indicate that Chironomus larvae compete with sediment bacteria for available organic substrates. Received: 11 June 1996; Accepted: 13 August 1996  相似文献   

10.
D. M. Alongi 《Oecologia》1994,98(3-4):320-327
Benthic oxygen consumption and primary production were measured using the bell jar technique in deltaic and fringing mangrove forests of tropical northeastern Australia. In a deltaic forest, rates of sediment respiration ranged from 197 to 1645 mol O2 m–2 h–1 (mean=836), but did not vary significantly with season or intertidal zone. Gross primary production varied among intertidal zones and seasons, ranging from –281 to 1413 mol O2 m–2 h–1 (mean=258). Upon tidal exposure, rates of gross primary production increased, but respiration rates did not change significantly. In a fringing mangrove forest, benthic respiration and gross primary production exhibited strong seasonality. In both forests, rates of oxygen consumption and production were low compared to salt marshes, but equivalent to rates in other mangrove forests. The production:respiration (P/R) ratio varied greatly over space and time (range:–0.61 to 1.76), but most values were «1 with a mean of 0.15, indicating net heterotrophy. On a bare creek bank and a sandflat, rates of gross primary production and P/R ratios were generally higher than in the adjacent mangroves. Low microalgal standing stocks, low light intensity under the canopy, and differences in gross primary production between mangroves and tidal flats, and with tidal status, indicate that benthic microalgae are light-limited and a minor contributor to primary productivity in these tropical mangrove forests.  相似文献   

11.
While the importance of canopy‐forming algae in structuring ecosystems is recognized, their role in the carbon budget is still not well understood. To our knowledge, no measurements of rocky shores primary production and respiration under emersion periods have been carried out in situ. A benthic chamber coupled to a CO2‐infrared gas analyzer was used to measure gross primary production and respiration on the Ascophyllum nodosum (L.) Le Jol. zone of a sheltered rocky shore in Brittany, France. Over a year of monthly measurements on the zone with and without the A. nodosum canopy showed fairly high production and respiration values for the global community as well as carbon fluxes due to the canopy that largely dominated the benthic metabolism of the zone. The strong canopy respiration relative to the primary production also suggested a high metabolic activity by microscopic heterotrophs on the surface of the alga. Both the canopy and the understory annual primary production and respiration were under the control of light and temperature seasonal variations. Finally, the range of the amount of carbon produced on the A. nodosum zone during diurnal emersions was estimated. Additional measures accounting for the day–night cycles and seasonal light variations over an entire tidal cycle are, however, necessary to establish an annual carbon budget. Such measures using the benthic chamber together with complementary techniques would allow a better understanding of the functioning of sheltered rocky shores.  相似文献   

12.
Water flow causes complex patterns of sediment disturbance in sand-bed streams, but effects on stream metabolism resulting from different depths of sediment scour and fill are poorly known. We assessed such effects by manually disturbing sandy sediments of 16 experimental outdoor flumes to two different depths (1 and 4 cm) during an early and a more advanced stage of stream community succession. To separate effects on heterotrophic and autotrophic metabolism, half of the flumes were permanently covered. At the early successional stage, sediment disturbance did not affect net community production (NCP), while sediment mixing reduced production independent of disturbance depth in the later stage. Microbial respiration, in contrast, was significantly stimulated when sediment was mixed to greater depth. These results suggest that disturbing sediments during early successional stages has no effect on whole-stream metabolism, whereas at later stages, deep sediment disturbance can lead to a transitory shift toward heterotrophy. The recovery time of NCP from perturbation was independent of disturbance depth. Similar trajectories observed after deep and shallow sediment disturbance indicate that delayed recovery was not simply due to mixing algae into deeper sediment layers but primarily a result of disrupting the fine structure of the surface sediment.  相似文献   

13.
This study evaluates the effectiveness of community production and respiration measurements as monitoring tools for environmental impact evaluations and compares these data to community structural data.In Prickly Pear Creek, Montana, production and respiration rates were determined for periphyton communities in control, impact and recovery reaches using colonized granite substrates and sealed plexiglas chambers. Values for gross primary productivity (GPP), community respiration (CR24), ash-free dry mass (AFDM) and chlorophyll a content (Chla) were obtained for each granite slab. Of these, AFDM, Chla and CR24 were statistically significant among sites (P0.01). Although mean values for GPP appeared to differ among reaches, statistical differences could not be inferred because of large variances associated with this measure. These data indicate that inherent variability may limit the use of community function measures in routine environmental monitoring. However, production/respiration methods provide valuable data about emergent properties of aquatic communities that cannot be derived from routine population censuses.  相似文献   

14.
Gross primary production (GPP) and respiration (R) in an intertidal Zostera noltii (Hornemann, 1832) community were estimated each month from in situ CO2 flux measurements during the emersion period in the Bay of Morlaix (France). Simultaneously, the Chlorophyll a biomass of Z. noltii leaves, associated epiphytes and sediment within the benthic chambers were also monitored. The significant positive exponential relationship established between R and the maximum daily temperature emphasized that temperature was a good predictor of seasonal variation in the community R in Z. noltii bed. In contrast, the amplitude of the fitted curve on GPP was low and represented <25% of the annual mean value (90.9 ± 15.2 mgC m−2 h−1). The Chlorophyll a biomass of sediment was high (133.70 ± 22.96 mg m−2) but it was likely constituted by detritus which did not contribute much to the community GPP. The Chlorophyll a biomass of associated epiphytes was higher in winter and varied over the year inversely with Z. noltii. Therefore, the asynchronous dynamic of primary producers could support a constant rate of production at community scale over the year.  相似文献   

15.
The bulk of experiments that study stressor effects on ecosystem functioning consider only individual functions one at a time, and such narrow focus may well bias our understanding of the overall impact on ecosystem functioning. We used data from six published experiments in which marine illuminated sediment systems were exposed to nutrient enrichment, toxicants, sedimentation and warming, either alone or in combination. Measured functions were primary production, community respiration, inorganic nitrogen and phosphorus fluxes, and autotrophic biomass. We calculated two indices of multifunctionality that simultaneously considered all six functions: (i) a weighted average level of the functions and (ii) the number of functions that simultaneously exceed a critical threshold level. Stressors affected individual functions both positively and negatively, but multifunctionality was generally unaffected by both single and joint stressors. The filtering capacity of coastal illuminated sediment systems thus appears resilient to exposure to moderate levels of multiple stressors, most probably due to the robustness of the benthic microalgal community. We recommend using a multifunctionality approach in future studies on cumulative stressor effects on ecosystem functioning, particularly when considering functions related to ecosystem services.  相似文献   

16.
Periphyton production in Fort River, Massachusetts   总被引:4,自引:0,他引:4  
SUMMARY. The primary production and general ecology of a periphyton community of a New England, lowland stream were studied over a seventeen-month period. Temperature, light, periphyton chlorophyll-α, and community structure were monitored regularly. Seasonally distinct chlorophyll peaks coincided with the light maximum in early May, just prior to the appearance of leaves of riparian trees, and again in autumn after terrestrial leaf fall. During midwinter, despite low light and temperature levels and high stream discharge, mean chlorophyll concentrations remained similar to summer values.
A mathematical expression relating periphyton photosynthesis per unit chlorophyll-α to temperature, light and periphyton density was established with submersible light-dark chambers in situ . Survey data collected over the study period were employed in the empirical equation to estimate seasonal variations in periphyton primary production. Weekly mean daily estimates of periphyton gross production ranged from < 0.1 g O2 m−2, during midwinter, to 6.5 g O2 m−2 during early May. Estimated annual periphyton gross production and respiration were 0.58 and 1.27 kg O2 m−2, respectively. Factors influencing seasonal variations of Fort River periphyton standing crop are discussed.  相似文献   

17.
1. Five oligotrophic clear‐water lakes on the Faroe Islands were studied during August 2000. Algal and bacterial production rates, community respiration, and CO2 saturation were determined. In addition, we examined the plankton community composition (phytoplankton and heterotrophic nanoflagellates) and measured the grazing pressure exerted by common mixotrophic species on bacteria. 2. High respiration to primary production (6.6–33.2) and supersaturation of CO2 (830–2140 μatm) implied that the lakes were net heterotrophic and that the pelagic heterotrophic plankton were subsidised by allochthonous organic carbon. However, in spite of the apparent high level of net heterotrophy, primary production exceeded bacterial production and the food base for higher trophic levels appeared to be mainly autotrophic. 3. We suggest that the observed net heterotrophy in these lakes was a result of the oligotrophic conditions and hence low primary production in combination with an input of allochthonous C with a relatively high availability. 4. Mixotrophic phytoplankton (Cryptomonas spp., Dinobryon spp. and flagellates cf. Ochromonas spp.) constituted a large percentage of the plankton community (17–83%), possibly as a result of their capacity to exploit bacteria as a means of acquiring nutrients in these nutrient poor systems.  相似文献   

18.
Summary Primary production measurements of benthic micro-algal vegetations were carried out with samples from six permanent plots. These permanent plots were assumed to cover the range of salinities and sediments in the estuary. A modification of the standard14C-procedure (COLIJN and VAN BUURT, 1975) was used throught this study. The sensitivity and reliability of the modified method, based on combustion of the filtered sediments and subsequent scintillation counting, is discussed. The method proves to be a fast one, and reliable with recoveries over 95%. Moreover, counting efficiences can be based on one quench curve only for all sediment samples. The method is also applicable for planktic primary production. To make a direct comparison of the six permanent plot possible, the potential primary production was measured under saturating light intensities. The incubation temperature corresponded with the temperature during sampling.The results show a spring peak in both production and chlorophyll-a values on all permanent plots. Daily fixation rates were calculated, using daylength and tidal emersion data. No corrections for respiration during the dark period have been made. Production over 1975 was calculated, using 7 to 12 measurements per permanent plot. The results are given in Table I, which also shows the relative sediment composition and exposure time for the six permanent plots. The sediment composition is given as the mean extinction at 430 nm of a partly settled sediment suspension (SCHRÖDER, 1976).Partial correlation coefficients of primary production with five variables (station, level, chlorophyll-a, salinity and temperature) were computed. Only chlorophyll-a showed a positive significant correlation coefficient (r=0.683; n=53). In contrast to the results of CADÉE and HEGEMAN (1974) in the western Wadden Sea no correlation could be found between primary production and temperature. The absence of a spring peak in the western part of the Wadden Sea is another striking difference with our results, for which no explanation can be given.More measurements are needed over a longer period to model the benthic production of micro-algal vegetations. Such a model is needed to predict the primary production under changing environmental conditions.  相似文献   

19.
Submerged aquatic vegetation is known as a key structural component and regulator in ecosystems. In this mesocosm study, we examine community- and system-level responses to the presence of Vallisneria americana (L), a deep-rooted macrophyte. Phytoplankton, bacteria and filamentous algal biomasses were significantly lowered in the presence of V. americana. In addition, mesocosms with macrophytes had significantly reduced porewater phosphate and iron, water column dissolved organic carbon and total suspended solids, but elevated sediment redox. All mesocosms were net autotrophic (gross primary production/respiration >1). Compared to the macrophyte treatments, the control mesocosms had lower diel net primary production (NPP) midway through the experiment (d 16), but at the end of the experiment (d 36), the controls had the higher values, presumably due to increased filamentous algae. NPP and NPP/R were constant in the macrophyte treatments, whereas NPP/R increased significantly from middle to end of the experiment in the controls. We show that community and system-level responses to the presence of V. americana have significant consequences on system structure and function.  相似文献   

20.
Microbes are key players in oceanic carbon fluxes. Temperate ecosystems are seasonally variable and thus suitable for testing the effect of warming on microbial carbon fluxes at contrasting oceanographic conditions. In four experiments conducted in February, April, August and October 2013 in coastal NE Atlantic waters, we monitored microbial plankton stocks and daily rates of primary production, bacterial heterotrophic production and respiration at in situ temperature and at 2 and 4°C over ambient values during 4-day incubations. Ambient total primary production (TPP) exceeded total community respiration (< 200 µm, TR) in winter and fall but not in spring and summer. The bacterial contribution to ecosystem carbon fluxes was low, with bacterial production representing on average 6.9 ± 3.2% of TPP and bacterial respiration (between 0.8 and 0.2 µm) contributing on average 35 ± 7% to TR. Warming did not result in a uniform increase in the variables considered, and most significant effects were found only for the 4°C increase. In the summer and fall experiments, under warm and nutrient-deficient conditions, the net TPP/TR ratio decreased by 39 and 34% in the 4°C treatment, mainly due to the increase in respiration of large organisms rather than bacteria. Our results indicate that the interaction of temperature and substrate availability in determining microbial carbon fluxes has a strong seasonal component in temperate planktonic ecosystems, with temperature having a more pronounced effect and generating a shift toward net heterotrophy under more oligotrophic conditions as found in summer and early fall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号