首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Oxidative dimerization of 7,8-dideoxy-1,2:3,4-di-O-isopropylidene-d-glycero-α-d-galacto-oct-7-ynopyranoside (1) gave a high yield of the diyne 2, readily reduced by lithium aluminum hydride to the trans,trans-diene (4). The structures of 2 and 4 were established spectroscopically and by degradation of 4 to d-glycero-d-galacto-heptitol (perscitol). A mixture of the alkyne 1 and its 7-epimer 10 was readily oxidized by dimethyl sulfoxide-acetic anhydride to the 6-ketone 11, and the 8-alkene analog was similarly prepared from the alkenes derived from 1 and 10. Likewise, oxidation of 6,7-dideoxy-1,2-O-isopropylidene-α-d-gluco(and β-L-ido)-hept-6-enopyranose gave the corresponding 5-ketone. The acetylenic ketone 11 gave a crystalline oxime and (2,4-dinitrophenyl)hydrazone, the latter being accompanied by the product of attack of the reagent at the acetylene terminus (C-8). Previous work had shown that formyl-methylenetriphenylphosphorane did not convert 1,2:3,4-di-O-isopropylidene-6-aldehydo-α-d-galacto-hexodialdo-1,5-pyranose into the corresponding C8 unsaturated aldehyde, although the latter was obtainable via1 and 10 by an ethynylation-hydroboration sequence. The Wittig route with formylmethylenetriphenylphosphorane is shown to be satisfactory for obtaining C7 unsaturated aldehydes from 3-O-benzyl-1,2-O-isopropylidene-5-aldehydo-α-d-xylo-pentodialdo-1,4-furanose (22) and the 3-epimer of 22, respectively. These reactions provide convenient access to higher-carbon sugars and chiral dienes for synthesis of optically pure products of cyclo-addition reactions.  相似文献   

2.
Condensation of 6-O-benzyl-7,8-dideoxy-1,2:3,4-di-O-isopropylidene-d-glycero-α-d-galacto-oct-7-ynopyranose with methyl 2,3,4-tri-O-benzyl-6-deoxy-β-d-galacto-heptodialdo-1,5-pyranoside afforded a 2:1 mixture of the 1S and 1R isomers (1a and 1b) of 3-[6(R)-O-benzyl-1,2:3,4-di-O-isopropylidene-α-d-galactopyranos-6-yl]-1-hydroxy-1-(methyl 2,3,4-tri-O-benzyl-6-deoxy-β-d-galactopyranosid-6-yl)propyne. A single crystal of the 1-O-acetyl derivative (1c) of 1a was investigated by X-ray diffraction methods in a four-circle diffractometer. Compound 1c crystallises in the monoclinic system, space group P21 (Z = 2) with cell dimensions a = 14.896(2), b = 8.295(1), c = 20.547(3) Å, and β = 102.66(1)°. The structure was solved by direct methods and refined by a full-matrix, least-squares procedure against 3839 unique reflections (F > 2σF), resulting in a final R = 0.045 (unit weights). The configuration at the new chiral center (C-1) was established as S(d). The galactopyranose rings have conformations 4C1 (tri-O-benzylated moiety) and °S5 + °T2 (di-O-isopropylidenated moiety). The 1,2- and 3,4-O-isopropylidene rings have 3T2 and 2E conformations, respectively.  相似文献   

3.
Condensation of 1,2:5,6-di-O-isopropylidene-α-d-xylo-hexofuranos-3-ulose (1) with diethyl cyanomethylphosphonate afforded a mixture of the cis- and trans-3-cyanomethylene-3-deoxy-1,2:5,6-di-O-isopropylidene-α-d-xylo-hexofuranoses (2) in 80% yield. Catalytic reduction of 2 yielded 3-C-cyanomethyl-3-deoxy-1,2:5,6-di-O-isopropylidene-α-d-gulofuranose (4) exclusively. Palladium and hydrogen was found to rearrange the exocyclic double bond of 2 to give the 3,4-ene (3). Catalytic reduction of 3 also proceeded stereospecifically to yield 4. Selective hydrolysis of 4 yielded the diol 5, which was cleaved with periodate and the product reduced with sodium borohydride to afford crystalline 3-C-cyanomethyl-3-deoxy-1,2-O-isopropylidene-β-l-lyxofuranose (6) in 87% yield. Catalytic reduction of the latter with hydrogen and platinum in the presence of acetic anhydride and ethanol gave the crystalline l-amino sugar, 3-C-(2-acetamidoethyl)-3-deoxy-1,2-O-isopropylidene-β-l-lyxofuranose (7) in 92% yield.  相似文献   

4.
Anti-Markovnikov hydration of the olefinic bond of 5,6-dideoxy-1,2-O-isopropylidene-3-O-p-tolylsulfonyl-α- d-xylo-hex-5-enofuranose (4) and methyl 5,6-dideoxy-2,3-di-O-p-tolylsulfonyl-α-l-arabino-hex-5-enofuranoside (11) by the addition of iodine trifluoroacetate, followed by hydrogenation in the presence of a Raney nickel catalyst in ethanol containing triethylamine, afforded 5-deoxy-1,2-O-ísopropylidene-3-O-p-tolylsulfonyl-α-d-xylo-hexofuranose (6) and methyl 5-deoxy-2,3-di-O-p-tolylsulfonyl-α-d-arabino-hexofuranoside (14), respectively. 5-deoxy-d-xylo-hexose and 5-deoxy-l-arabino-hexose were prepared from 6 and 14, respectively, by photolytic O-detosylation and acid hydrolysis. Syntheses of 9-(5-deoxy-β-d-xylo-hexofuranosyl)-adenine and 9-(5-deoxy-α-l-arabino-hexofuranosyl)adenine are also described. Application of the sodium naphthalene procedure, for O-detosylation, to 11 is reported in connection with an alternative synthetic route to methyl 5-deoxy-α-l-arabino- hexofuranoside.  相似文献   

5.
7-Acetamido-6,7,8-trideoxy-1,2:3,4-di-O-isopropylidene-α-d- and -β-l-glycero-d-galacto-octopyranoses (8) and (9), intermediates for the synthesis of analogs of the antibiotic lincomycin, have been synthesized from cis-6,7,8-trideoxy-1,2:3,4-di-O-isopropylidine-7-C-nitro-α-d-galacto-oct-6-enose (4). The configuration of C-7 in compound 8 was determined by X-ray crystallagraphy. The crystals are orthorhombic, space group P21,2121 with Z4, in a unit cell of dimensions a2.457(1) nm, b1.380(1) nm, and c526(1) pm. The conformation of compound 8 in the solid state is °S2, slightly distorted towards °H5.  相似文献   

6.
Hydroxylation of trans-1,3,4-trideoxy-5,6-O-isopropylidene-3-C-methyl-d-glycero-hex-3-enulose with osmium tetraoxide gave a mixture of 1-deoxy-5,6-O-isopropylidene-3-C-methyl-d-arabino- and -d-xylo-hexulose that was partially resolved by acetonation to give 1-deoxy-2,3:4,5-di-O-isopropylidene-3-C-methyl-β-d-fructopyranose (4), 1-deoxy-3,4:5,6-di-O-isopropylidene-3-C-methyl-keto-d-fructose (5), and 1-deoxy-2,3:4,6-di-O-isopropylidene-3-C-methyl-α-d-sorbofuranose (6). Treatment of a mixture of 4 and 5 with sodium borohydride gave, after column chromatography, 4 and 1-deoxy-3,4:5,6-di-O-isopropylidene-3-C-methyl-d-manno- and -d-gluco-hexitol. Deuterated derivatives corresponding to 46 were obtained when isopropylidenation was carried out with acetone-d6. Deacetonation of 4 and 5 yielded 1-deoxy-3-C-methyl-d-fructose, and 6 similarly afforded 1-deoxy-3-C-methyl-d-sorbose.  相似文献   

7.
The pyranoid conformations of 7-acetamido-6,7,8-trideoxy-1,2:3,4-di-O-isopropylidene-d-glycero-α-d-galacto-octopyranose (3) and 7-acetamido-7,8-dideoxy-1,2:3,4-di-O-isopropylidene-l-threo-α-d-galacto-octopyranose (4) in solution have been determined by calculation of the dihedral angles from the vicinal, proton-proton coupling-constants, using three modifications of the Karplus equation. Of these, only the equation 3J(HCCH)(φ)  (7.48  0.74 -ΣδEx)  (2.03  0.17 ΣEx)cos φ + (4.60  0.23 ΣδEx)cos 2φ + 0.06 (Σ ± ΔEx)sin φ + 0.62 (Σ ± ΔEx)sin 2φ indicates that the pyranoid part of 3 and 4 has the °S2 conformation, very slightly distorted towards °H5, in agreement with the conformations determined for the crystalline state. Analysis of the 1H-n.m.r. data for a series of 1,2:3,4-di-O-isopropyl-idene-α-d-galacto-octopyranose derivatives shows that the pyranoid parts of these compounds adopt the same conformation as that found for 3 and 4.  相似文献   

8.
Ethyl 6-O-benzyl-2,3-dideoxy-α-d-erythro-hex-2-enopyranoside (2) was converted, in three steps and in 73% overall yield, into ethyl 6-O-benzyl-2,3-dideoxy-3-C-(hydroxymethyl)-α-d-ribo-hex-2-enopyranoside. This transformation involved silylation of 2 with (bromomethyl)chlorodimethylsilane and application of the Nishiyama-Stork radical cyclisation, followed by Tamao oxidation of the sila cycle. Ethyl 6-O-benzyl-2,3-dideoxy-α-d-threo-hex-2-enopyranoside and benzyl 2,6-di-O-benzyl-α-l-threo-hex-4-enopyranoside were similarly transformed into, respectively, ethyl 6-O-benzyl-2,3-dideoxy-3-C-(hydroxymethyl)-α-d-lyxo-hex-2-enopyranoside (50%), and benzyl 2,6-di-O-benzyl-4-deoxy-4-C-(hydroxymethyl)-β-d-galactopyranoside (71%).  相似文献   

9.
3-Acetamido-3-deoxy-4,5:6,7-di-O-isopropylidene-d-glycero-d-galacto-heptose diethyl dithioacetal was transformed into 3-acetamido-3-deoxy-4,5:6,7-di-O-isopro-pylidene-2-O-methyl-aldehydro-d-glycero-d-galacto-heptose after O-methylation followed by desulfuration. A Wittig reaction with an excess of [ethoxy(ethoxycarbonyl)-methylene]triphenylphosphorane in the presence of benzoic acid gave a mixture of ethyl 5-acetamido-3.5-dideoxy-2-O-ethyl-6,7:8,9-di-O-isopropylidene-4-O-methyl-d-glycero-d-galacto-non-2-enonate (23 %) and the d-glycero-d-talo (22 %) isomer. An ethoxymercuration-demercuration reaction, followed by acid hydrolysis, converted the former into ethyl 4-O-methyl-N-acetylneuraminate and the latter into the C-4 stereoisomer. 4-O-Methyl-N-acetylneuraminic acid was then obtained in crystalline form, and its structure ascertained by mass spectrometry and 1H- and 13C-nuclear magnetic resonance.  相似文献   

10.
Nucleophilic Michael-type additions to aldohexofuranoid 3-C-methylene derivatives, namely, 3-deoxy-1,2:5,6-di-O-isopropylidene-3-C-nitromethylene-α-d-ribo-hexofuranose and 3-C-[cyano(ethoxycarbonyl)methylene]-3-deoxy-1,2:5,6-di-O-isopropylidene-α-d-ribo-hexofuranose employing phase-transfer catalysis, afforded novel gem-di-C-substituted sugars. The conversion of 3-deoxy-1,2:5,6-di-O-isopropylidene-3-C-methyl-3-C-nitromethyl-α-d-allo-hexofuranose into a 3-C-hydroxymethyl-3-C-methyl derivative with titanium trichloride, and that of the nitromethyl groups of 3-deoxy-1,2:5,6-di-O-isopropylidene-3,3-di-C-nitromethyl-α-d-ribo-hexofuranose, and 3-deoxy-1,2:5,6-di-O-isopropylidene-3-C-methyl-3-C-nitromethyl- and -3-C-nitromethyl-α-d-allo-hexofuranose into cyano groups with phosphorus trichloride in pyridine is also described.  相似文献   

11.
Addition of ethyl isocyanoacetate to 3-O-benzyl-1,2-O-isopropylidene-α-D-ribo-pentodialdo-1,4-furanose in ethanolic sodium cyanide gave two oxazolines that were hydrolysed during chromatography to two isomeric ethyl 3-O-benzyl-6-deoxy-6-formamido-1,2-O-isopropylidene-heptofuranuronates. Similarly, 1,2-O-isopropyl-idene-3-O-methyl-α-D-xylo-pentodialdo-1,4-furanose gave the 3-O-methyl-heptofuranuronates 7 and 11. Reduction of 7 and 11 gave N-methylamino esters that exhibited Cotton effects from which the configurations at C-6 of 7 and 11 were deduced. The chiralities at C-5 of 7 and 11 were established by tetrahydropyranlation of 7 and 11, followed by consecutive treatment with bis(2-methoxyethoxy)aluminium hydride, periodate, sodium borohydride, and dilute acid, to give 1,2-O-isopropylidene-3-O-methyl-α-D-glucofuranose and its β-L-ido epimer, respectively. Attempts to methylate HO-5 of 7 and 11 resulted in elimination. On formylaminomethylenation (ethyl isocyanoacetate and potassium hydride in tetrahydrofuran), 3-O-benzyl-1,2-O-isopropylidene-α-D-ribo-pentodialdo-1,4-furanose and its 3-O-methyl-α-D-xylo epimer each gave (E)- and (Z)-mixtures of alkenes that were hydrogenated to give mixtures of 5,6-dideoxy-6-formamido-heptofuranuronates.  相似文献   

12.
Three different approaches starting from 1,2-O-isopropylidene-α-d-glucofuranose were tested for the synthesis of daunosamine hydrochloride (24), the sugar constituent of the antitumor antibiotics daunomycin and adriamycin. The third route, affording 24 in ~5% overall yield in 11 steps, constitutes a useful, preparative synthesis, 3,5,6-Tri-O-benzoyl-1,2-O-isopropylidene-α-d-glucofuranose was converted via methyl 2,3-anhydro-β-d-mannofuranoside into methyl 2,3:5,6-dianhydro-α-l-gulofuranoside, the terminal oxirane ring of which was split selectively on reduction with borohydride, to afford methyl 2,3-anhydro-6-deoxy-α-l-gulofuranoside (31). Compound 31 was converted into methyl 2,3-anhydro-5-O-benzyl-6-deoxy-α-l-gulofuranoside, which was selectively reduced at C-2 on treatment with lithium aluminum hydride, affording methyl 5-O-benzyl-2,6-dideoxy-α-l-xylo-hexofuranoside. Subsequent mesylation, and replacement of the mesoloxy group by azide, with inversion, afforded methyl 3-azido-5-O-benzyl-2,6-dideoxy-α-l-lyxo-hexofuranoside, which could be converted into either 24 or methyl 3-acetamido-5-O-acetyl-2,3,6-trideoxy-α-l-lyxo-hexofuranoside, which can be used as a starting material for the synthesis of daunomycin analogs.  相似文献   

13.
Starting from methyl 4,6-dichloro-4,6-dideoxy-α-D-galactopyranoside (1), D-chalcose (4,6-dideoxy-3-O-methyl-D-xcylo-hexopyranose) (5) was prepared by dechlorination with tributyltin hydride, selective benzoylation with benzoyl cyanide at O-2, methylation at O-3, and acid hydrolysis. D-Chalcose (5) was obtained as well by direct methylation of 1 with diazomethane at O-3, reduction with tin hydride, and hydrolysis. Chalcosyl bromide prepared from 5 was not very suitable for β-glycoside synthesis under Koenigs-Knorr conditions, and better results were obtained with 2- O-acetyl-4,6-dichloro-4,6-dideoxy-3-O-methyl-α-D-galactopyranosyl bromide, which gave β-glycosides with methanol, cyclohexanol, benzyl alcohol, 1,2:3,4-di-O-isopropylidene-α-D-galactopyranose, and methyl 2,3-di-O-benzyl-6-deoxy-α-D-glucopyranoside. After dechlorination with tributyltin hydride, the corresponding β-glycosides of D-chalcose were obtained in good yield.  相似文献   

14.
The formation of (4R)-4-carbamoyl-4-[(4R)-3-O-benzyl-1,2-O-isopropylidene-β-l-threofuranos-4-C-yl]-oxazolidin-2-one instead of expected imidazolidin-2,4-dione (hydantoin) derivative from 5-amino-5-cyano-5-deoxy-3-O-benzyl-1,2-O-isopropylidene-α-d-glucofuranose or 3-O-benzyl-1,2-O-isopropylidene-α-d-xylo-hexofuranos-5-ulose under Bucherer-Bergs reaction conditions is reported. Single crystal X-ray diffraction data revealed that 3T4 is the prefered conformation for the furanose ring, while E2 and 2T1 conformations are adopted by the 1,3-dioxolane and 2-oxazolidinone five-membered rings, respectively.  相似文献   

15.
The reaction of 1,2-O-isopropylidene-α- d-glucofuranose with sulfuryl chloride at 0° and at 50° afforded 6-chloro-6-deoxy-1,2-O-isopropylidene-α- d-glucofuranose 3,5-bis(chlorosulfate) ( 3) and 5,6-dichloro-5,6-dideoxy-1,2-O-isopropylidene-β- l-idofuranose 3-chlorosulfate ( 7, not characterised), respectively. Dechlorosulfation of 3 afforded the hydroxy derivative, whereas treatment of 3 with pyridine gave the 3,5-(cyclic sulfate). Dechlorosulfation of 7 afforded 5,6-dichloro-5,6-dideoxy-1,2-O-isopropylidene-β- l-idofuranose which, on acid hydrolysis, was converted into 3,6-anhydro-5-chloro-5-deoxy- l-idofuranose. 5-Chloro-5-deoxy-α- l-idofuranosidurono-6,3-lactone and 5-chloro-5-deoxy-β- l-idofuranurono-6,3-lactone derivatives were also prepared.  相似文献   

16.
Addition of ethyl isocyanoacetate in strongly basic medium to the glycosuloses 1,2:5,6-di-O-isopropylidene-α-d-ribo-hexofuranos-3-ulose (1) and 1,2-O-isopropylidene-5-O-trityl-d-erythro-pentos-3-ulose (2) gave the unsaturated derivatives (E)- and (Z)-3-deoxy-3-C-ethoxycarbonyl(formylamino)methylene-1,2:5,6-di-O-isopropylidene-α-d-glucofuranose (3 and 4), and (E)-3-deoxy-3-C-ethoxycarbonyl(formylamino)methylene-1,2-O-isopropylidene-5-O-trityl-α-d-ribofuranose (5). In weakly basic medium, ethyl isocyanoacetate and 1 gave 3-C-ethoxycarbonyl(formylamino)methyl-1,2:5,6-di-O-isopropylidene-α-d-allofuranose (12) in good yield. The oxidation of 3 and 4 with osmium tetraoxide to 3-C-ethoxalyl-1,2:5,6-di-O-isopropylidene-α-d-glucofuranose (17), and its subsequent reduction to 3-C-(R)-1′,2′-dihydroxyethyl-1,2:5,6-di-O-isopropylidene-α-d-glucofuranose (18) and its (S) epimer (19) and to 3-C-(R)-ethoxycarbonyl(hydroxy)methyl-1,2:5,6-di-O-isopropylidene-α-d-glucofuranose (21) and its (S) epimer (22) are described. Hydride reductions of 12 yielded the corresponding 3-C-(1-formylamino-2-hydroxyethyl), 3-C-(2-hydroxy-1-methylaminoethyl), and 3-C-(R)-ethoxycarbonyl(methylamino)methyl derivatives (13, 14 and 16). Catalytic reduction of 3 and 4 yielded the 3-deoxy-3-C-(R)-ethoxycarbonyl-(formylamino)methyl derivative 6 and its 3-C-(S) epimer. Further reduction of 6 gave 3-deoxy-3-C-(R)-(1-formylamino-2-hydroxyethyl)-1,2:5,6-di-O-isopropylidene-α-d-allofuranose (23) which was deformylated with hydrazine acetate to 3-C-(R)-(1-amino-2-hydroxyethyl)-3-deoxy-1,2:5,6-di-O-isopropylidene-α-d-allofuranose (24). The configurations of the branched-chains in 16, 21, and 22 were determined by o.r.d.  相似文献   

17.
The following primary sulphonates have been converted into the corresponding deoxyfluoro derivatives by reaction with potassium fluoride in ethylene glycol:1,2:3,4-di-O-isopropylidene-6-O-tosyl α-D-galactopyranose (1), methyl 2,3-O2-isopropyliden-5-O-tosyl-α,β-D-ribofuranoside (2), 1,2:3,4-di-O-methylene-6-O-tosyl-α-D-glucofuranose (3), 3,5-di-O-benzylidene-1,2-O-isopropylidene-6-O-tosyl-α-D-glucofuranose (4), and 1,2:3,5-di-O-isopropylidene-6-O-tosyl-α-D-glucofuranose (5). The yields were generally poor; in the reaction of 1, a major by-product was 6-O-(2-hydroxyethyl)-1,2:3,4-di-O-isopropylidene-α-D-galactopyranose (11). The reaction of the primary hydroxyl precursor of each of the above tosylates with N2-(2-chloro- 1,1,2-trifluoroethyl)-N,N-diethylamine generally yielded the O-chlorofluoroacetyl derivative; however, 1,2:3,5-di-O-methylene-α-D-glucofuranose (12) was converted into the 6-deoxy-6-fluoro derivative (8). The 19F resonances of compounds containing the CH2F moiety fall between φC +213 and φC +235 p.p.m. The differences between the vicinal19F-1H couplings of compounds having the D-gluco and D-galacto configurations clearly reflect the influence of the C-4O-4 substitutents on the populations of the C-5C-6 rotamers. A novel type of noise-modulated, heteronuclear decoupling experiment is described.  相似文献   

18.
A model study for a synthetic approach to the α,β-unsaturated δ-lactone olguine is reported starting from 1,2:3,4-di-O-isopropylidene-α-d-galacto-hexodialdo-1,5-pyranose by Wittig reaction with (1,3-dioxolan-2-ylmethyl)triphenyl-phosphonium bromide and epoxidation of the resulting olefins. The crystal and molecular structures of the intermediate epoxide 6,7-anhydro-1,2:3,4-di-O-isopropylidene-α-l-erythro-d-galacto-octopyranose have been determined.  相似文献   

19.
The 3,4-O- and 1,2:3,4-di-O-isopropylidene derivatives (7 and 8) of l-dendroketose [4-C-(hydroxymethyl)-l-glycero-pentulose] (1) have been synthesized stereo-specifically from 4-C-(hydroxymethyl)-1,2:3,4-di-O-isopropylidene-l-erythro-pentitol (2).  相似文献   

20.
2-Methyl-(2-acetamido-3,4,6-tri-O-benzyl-1,2-dideoxy-α-D-glucopyrano)-[2,1-d]-2-oxazoline,2-methyl-(2-acetamido-6-O-acetyl-3,4-di-O-benzyl-1,2-dideoxy-α-D-glucopyrano)-[2,1-d]-2-oxazoline,and 2-methyl-(2-acetamido-4-O-acetyl-3,6-di-O-benzyl-1,2-dideoxy-α-D-glucopyrano)-[2,1-d]-2-oxazoline were synthesized from the allyl 2-acetamido-3,4,6-tri-O-benzyl-2-deoxy-D-glucopyranosides, and from the 3,4-di-O-benzyl or 3,6-di-O-benzyl analogs, respectively, both the α and β anomer being used in each case. The preparation of allyl 2-acetamido-3,4,6-tri-O-benzyl- and 3,6-di-O-benzyl-2-deoxy-β-D-glucopyranoside is also described. Treatment of the tri-O-benzyl oxazoline with dibenzyl phosphate gave a pentabenzylglycosyl phosphate, from which all the benzyl groups were removed by catalytic hydrogenation, giving 2-acetamido-2-deoxy-α-D-glucopyranosyl phosphate. The corresponding β anomer was not detectable. Treatment of the 3,4-, or 3,6-, di-O-benzyl oxazoline with allyl 2-acetamido-3,4-di-O-benzyl-α-D-glucopyranoside readily gave disaccharide products from which the protecting groups were removed, to give the (1→6)-linked isomer of di-N-acetylchitobiose. Under both acidic and basic conditions, this isomer was less stable than the (1→4)-linked compound.Attempts to employ the 3,6-di-O-benzyl oxazoline for the formation of (1→4)-linked disaccharides, by treatment with either anomer of allyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-D-glucopyranoside, were not very successful, presumably owing to hindrance by the bulky benzyl groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号