首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
In rheumatoid arthritis, a significant proportion of cytokine and chemokine synthesis is attributed to innate immune mechanisms. TLR4 is a prominent innate receptor since several endogenous ligands known to activate the innate immune system bind to it and may thereby promote joint inflammation. We generated TLR4 deficient DBA1J mice by backcrossing the TLR4 mutation present in C3H/HeJ strain onto the DBA1J strain and investigated the course of collagen-induced arthritis in TLR4 deficient mice in comparison to wild type littermates. The incidence of collagen- induced arthritis was significantly lower in TLR4 deficient compared to wild type mice (59 percent vs. 100 percent). The severity of arthritis was reduced in the TLR4 deficient mice compared to wild type littermates (mean maximum score 2,54 vs. 6,25). Mice deficient for TLR4 were virtually protected from cartilage destruction, and infiltration of inflammatory cells was reduced compared to wt mice. In parallel to the decreased clinical severity, lower anti-CCP antibody concentrations and lower IL-17 concentrations were found in the TLR4 deficient mice. The study further supports the role of TLR4 in the propagation of joint inflammation and destruction. Moreover, since deficiency in TLR4 led to decreased IL-17 and anti-CCP antibody production, the results indicate a link between TLR4 stimulation and the adaptive autoimmune response. This mechanism might be relevant in human rheumatoid arthritis, possibly in response to activating endogenous ligands in the affected joints.  相似文献   

4.
Brain inflammation has a critical role in the pathophysiology of brain diseases. Microglia, the resident immune cells in the brain, play an important role in brain inflammation, while brain mast cells are the “first responder” in the injury rather than microglia. Functional aspects of mast cell-microglia interactions remain poorly understood. Our results demonstrated that site-directed injection of the “mast cell degranulator” compound 48/80 (C48/80) in the hypothalamus induced mast cell degranulation, microglial activation, and inflammatory factor production, which initiated the acute brain inflammatory response. “Mast cell stabilizer” disodium cromoglycate (cromolyn) inhibited this effect, including decrease of inflammatory cytokines, reduced microglial activation, inhibition of MAPK and AKT pathways, and repression of protein expression of histamine receptor 1 (H1R), histamine receptor 4 (H4R), protease-activated receptor 2 (PAR2), and toll-like receptor 4 (TLR4) in microglia. We also demonstrated that C48/80 had no effect on microglial activation in mast cell-deficient KitW-sh/W-sh mice. These results implicate that activated brain mast cells trigger microglial activation and stabilization of mast cell inhibits microglial activation-induced central nervous system (CNS) inflammation. Interactions between mast cells and microglia could constitute a new and unique therapeutic target for CNS immune inflammation-related diseases.  相似文献   

5.
The IL-1R/Toll-like receptor (TLR) superfamily of receptors has a key role in innate immunity and inflammation. In this study, we report that streptococcal cell wall (SCW)-induced joint inflammation is predominantly dependent on TLR-2 signaling, since TLR-2-deficient mice were unable to develop either joint swelling or inhibition of cartilage matrix synthesis. Myeloid differentiation factor 88 (MyD88) is a Toll/IL-1R domain containing adaptor molecule known to have a central role in both IL-1R/IL-18R and TLR signaling. Mice deficient for MyD88 did not develop SCW-induced arthritis; both joint swelling and disturbance of cartilage chondrocyte anabolic function was completely abolished. Local levels of proinflammatory cytokines and chemokines in synovial tissue washouts were strongly reduced in MyD88-deficient mice. Histology confirmed the pivotal role of MyD88 in acute joint inflammation. TLR-2-deficient mice still allow influx of inflammatory cells into the joint cavity, although the number of cells was markedly reduced. No influx of inflammatory cells was seen in joints of MyD88-deficient mice. In addition, cartilage matrix proteoglycan loss was completely absent in MyD88 knockout mice. These findings clearly demonstrated that MyD88 is a key component in SCW-induced joint inflammation. Since agonists of the Toll-like pathway are abundantly involved in both septic and rheumatoid arthritis, targeting of MyD88 may be a novel therapy in inflammatory joint diseases.  相似文献   

6.
Macrophage foam cells formation is the most important process in atherosclerotic plaque formation and development. Toll-like receptor 4 (TLR4) is one of the important innate immune sensors of endogenous damage signals and crucial for regulating inflammation. Growing evidence indicates that TLR4 plays a very important role in macrophage foam cells formation. However, the underlying mechanisms regulating TLR4 expression in macrophage are not fully understood. In this study, we induced THP-1 macrophage foam cells formation with oxidative modified low-density lipoprotein (ox-LDL). We observed that TLR4 mRNA and protein expression were markedly up-regulated, and the phosphorylation of mammalian target of rapamycin (mTOR) and its downstream target p70S6K were promoted during foam cells formation. The mTOR inhibitor rapamycin blocked mTOR phosphorylation and inhibited TLR4 expression induced by ox-LDL. Silencing mTOR, rictor or raptor protein expression by small interfering RNA, also inhibited the up-regulation of TLR4 expression, respectively. Inhibition of mTOR with rapamycin reversed the down-regulation of cellular lipid efflux mediator ABCA1, which resulted from the activation of TLR4 by ligands. These data suggested that TRL4 expression was up-regulated by a mechanism dependent on mTOR signal pathway activation during THP-1 macrophage foam cells formation. Inhibition of ox-LDL induced mTOR activation reduced TLR4 expression, and improved the impaired lipid efflux.  相似文献   

7.
Programmed cell death protein 1 (PD-1) is expressed on T cells upon T cell receptor (TCR) stimulation. PD-1 ligand 1 (PD-L1) is expressed in most tumor environments, and its binding to PD-1 on T cells drives them to apoptosis or into a regulatory phenotype. The fact that PD-L1 itself is also expressed on T cells upon activation has been largely neglected. Here, we demonstrate that PD-L1 ligation on human CD25-depleted CD4+ T cells, combined with CD3/TCR stimulation, induces their conversion into highly suppressive T cells. Furthermore, this effect was most prominent in memory (CD45RACD45RO+) T cells. PD-L1 engagement on T cells resulted in reduced ERK phosphorylation and decreased AKT/mTOR/S6 signaling. Importantly, T cells from rheumatoid arthritis patients exhibited high basal levels of phosphorylated ERK and following PD-L1 cross-linking both ERK signaling and the AKT/mTOR/S6 pathway failed to be down modulated, making them refractory to the acquisition of a regulatory phenotype. Altogether, our results suggest that PD-L1 signaling on memory T cells could play an important role in resolving inflammatory responses; maintaining a tolerogenic environment and its failure could contribute to ongoing autoimmunity.

This study shows that programmed death cell receptor ligand 1 (PD-L1) signaling in memory CD4+ T cells from healthy individuals induces a regulatory phenotype; this mechanism seems to be defective in equivalent T cells from rheumatoid arthritis patients and could be in part responsible for the pathology.  相似文献   

8.
Cardiac c-kit positive cells are cardiac-derived cells that exist within the heart and have a great many protective effects. The senescence of cardiac c-kit positive cells probably leads to cell dysfunction. Bradykinin plays a key role in cell protection. However, whether bradykinin prevents cardiac c-kit positive cells from high-glucose-induced senescence is unknown. Here, we found that glucose treatment causes the premature senescence of cardiac c-kit positive cells. Bradykinin B2 receptor (B2R) expression was declined by glucose-induced senescence. Bradykinin treatment inhibited senescence and reduced intracellular oxygen radicals according to senescence-associated β-galactosidase staining and 2′,7′-dichlorodihydrofluorescein diacetate staining. Moreover, the mitochondrial membrane potential was damaged, as measured by JC-1 staining. The mitochondrial membrane potential was preserved under bradykinin treatment. The concentration of superoxide was decreased, and the concentration of intracellular adenosine triphosphate was increased after bradykinin treatment. Western blot showed that bradykinin leads to AKT and mammalian target of rapamycin (mTOR) phosphorylation and decreased levels of P53 and P16 when compared with glucose treatment alone. Antagonists of B2R, phosphoinositide 3-kinase (PI3K), mTOR, and B2R small interfering RNA prevented the protective effect of bradykinin. P53 antagonist also inhibited the glucose-induced senescence of cardiac c-kit positive cells. In conclusion, bradykinin prevents the glucose-induced premature senescence of cardiac c-kit positive cells through the B2R/PI3K/AKT/mTOR/P53 signal pathways.  相似文献   

9.
The phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB/AKT)/mammalian target of rapamycin (mTOR) pathway conveys signals from receptor tyrosine kinases (RTKs) to regulate cell metabolism, proliferation, survival, and motility. Previously we found that prolylcarboxypeptidase (PRCP) regulate proliferation and survival in breast cancer cells. In this study, we found that PRCP and the related family member prolylendopeptidase (PREP) are essential for proliferation and survival of pancreatic cancer cells. Depletion/inhibition of PRCP and PREP-induced serine phosphorylation and degradation of IRS-1, leading to inactivation of the cellular PI3K and AKT. Notably, depletion/inhibition of PRCP/PREP destabilized IRS-1 in the cells treated with rapamycin, blocking the feedback activation PI3K/AKT. Consequently, inhibition of PRCP/PREP enhanced rapamycin-induced cytotoxicity. Thus, we have identified PRCP and PREP as a stabilizer of IRS-1 which is critical for PI3K/AKT/mTOR signaling in pancreatic cancer cells.  相似文献   

10.
Mast cells may have either antitumor or tumor-promoting potential. Nevertheless, mast cells in tumor microenvironment have been found to promote tumor growth. So far the mechanisms underlying the modulation of mast cell function in tumor microenvironment remains to be fully elucidated. Here, we report that tumor-promoting potential of mast cells could be augmented by molecules released from damaged tumor cells through cooperative stimulation of stem cell factor (SCF) and ligand for Toll-like receptor 4 (TLR4). Co-simulation with SCF and TLR4 ligand inhibited mast cell degranulation, but efficiently induced the production and secretion of VEGF, PDGF, and IL-10. Although TLR4 ligand alone may induce IL-12 expression in mast cells, co-stimulation with SCF and TLR4 ligand induced the expression of IL-10, but not IL-12, in mast cells. The phosphorylation of GSK3β was crucial for the effect of SCF and TLR4 ligand. In addition to inducing phosphorylation of GSK3β at Ser9 through PI3K pathway, SCF and TLR4 ligand cooperated to induce phosphorylation of GSK3β at Tyr216 by simultaneous activation of ERK and p38MAPK pathways. Both phospho-Ser9 and phospho-Tyr216 of GSK3β were required for IL-10 expression induced by SCF/TLR4 ligand, whereas suppressive effect of SCF/TLR4 ligand on mast cell degranulation was related to phospho-Tyr216. Importantly, the effect of SCF and TLR4 ligand on mast cells could be abrogated by inhibiting phosphorylation of GSK3β at Tyr216. These findings disclose the mechanisms underlying the modulation of mast cell function in tumor microenvironment, and suggest that inhibiting GSK3β in mast cells will be beneficial to the treatment of cancer.  相似文献   

11.
Cryptotanshinone (CPT) has been demonstrated to inhibit proliferation and mammalian target of rapamycin (mTOR) pathway in MCF‐7 breast cancer cells. However, the same results are unable to be repeated in MDA‐MB‐231 cells. Given the main difference of oestrogen receptor α (ERα) between two types of breast cancer cells, It is possibly suggested that CPT inhibits mTOR pathway dependent on ERα in breast cancer. CPT could significantly inhibit cell proliferation of ERα‐positive cancer cells, whereas ERα‐negative cancer cells are insensitive to CPT. The molecular docking results indicated that CPT has a high affinity with ERα, and the oestrogen receptor element luciferase reporter verified CPT distinct anti‐oestrogen effect. Furthermore, CPT inhibits mTOR signalling in MCF‐7 cells, but not in MDA‐MB‐231 cells, which is independent on binding to the FKBP12 and disrupting the mTOR complex. Meanwhile, increased expression of phosphorylation AKT and insulin receptor substrate (IRS1) induced by insulin‐like growth factor 1 (IGF‐1) was antagonized by CPT, but other molecules of IGF‐1/AKT/mTOR signalling pathway such as phosphatase and tensin homolog (PTEN) and phosphatidylinositol‐4,5‐bisphosphate 3‐kinase (PI3K) were negatively affected. Finally, the MCF‐7 cells transfected with shERα for silencing ERα show resistant to CPT, and p‐AKT, phosphorylation of p70 S6 kinase 1 (p‐S6K1) and eukaryotic initiation factor 4E binding protein 1 (4E‐BP1) were partially recovered, suggesting ERα is required for CPT inhibition of mTOR signalling. Overall, CPT inhibition of mTOR is dependent on ERα in breast cancer and should be a potential anti‐oestrogen agent and a natural adjuvant for application in endocrine resistance therapy.  相似文献   

12.
The Fc receptor (FcγRIIb) inhibits B cell responses when coengaged with B cell receptor (BCR), and has become a target for new autoimmune disease therapeutics. For example, BCR and FcγRIIb coengagement via the Fc-engineered anti-CD19 XmAb5871 suppresses humoral immune responses. We now assess effects of XmAb5871 on other activation pathways, including the pathogen-associated molecular pattern receptor, TLR9. Since TLR9 signaling is implicated in autoimmune diseases, we asked if XmAb5871 could inhibit TLR9 costimulation. We show that XmAb5871 decreases ERK and AKT activation, cell proliferation, cytokine, and IgG production induced by BCR and/or TLR9 signals. XmAb5871 also inhibited differentiation of citrullinated peptide-specific plasma cells from rheumatoid arthritis patients. XmAb5871 may therefore have potential to suppress pathogenic B cells in autoimmune diseases.  相似文献   

13.
The innate immune kinase TBK1 initiates inflammatory responses to combat infectious pathogens by driving production of type I interferons. TBK1 also controls metabolic processes and promotes oncogene‐induced cell proliferation and survival. Here, we demonstrate that TBK1 activates mTOR complex 1 (mTORC1) directly. In cultured cells, TBK1 associates with and activates mTORC1 through site‐specific mTOR phosphorylation (on S2159) in response to certain growth factor receptors (i.e., EGF‐receptor but not insulin receptor) and pathogen recognition receptors (PRRs) (i.e., TLR3; TLR4), revealing a stimulus‐selective role for TBK1 in mTORC1 regulation. By studying cultured macrophages and those isolated from genome edited mTOR S2159A knock‐in mice, we show that mTOR S2159 phosphorylation promotes mTORC1 signaling, IRF3 nuclear translocation, and IFN‐β production. These data demonstrate a direct mechanistic link between TBK1 and mTORC1 function as well as physiologic significance of the TBK1‐mTORC1 axis in control of innate immune function. These data unveil TBK1 as a direct mTORC1 activator and suggest unanticipated roles for mTORC1 downstream of TBK1 in control of innate immunity, tumorigenesis, and disorders linked to chronic inflammation.  相似文献   

14.

Background

Bone marrow-derived mesenchymal stem cells (MSC) improve myocardial recovery after ischemia/reperfusion (I/R) injury. These effects are mediated in part by the paracrine secretion of angiogenic and tissue growth-promoting factors. Toll-like receptor 4 (TLR4) is expressed by MSC and induces apoptosis and inhibits proliferation in neuronal progenitors as well as many other cell types. It is unknown whether knock-out (KO) of TLR4 will change the paracrine properties of MSC and in turn improve MSC-associated myocardial protection.

Methodology/Principal Findings

This study explored the effect of MSC TLR4 on the secretion of angiogenic factors and chemokines in vitro by using ELISA and cytokine array assays and investigated the role of TLR4 on MSC-mediated myocardial recovery after I/R injury in an isolated rat heart model. We observed that MSC isolated from TLR4 KO mice exhibited a greater degree of cardioprotection in a rat model of myocardial I/R injury. This enhanced protection was associated with increased angiogenic factor production, proliferation and differentiation. TLR4-dificiency was also associated with decreased phosphorylation of PI-3K and AKT, but increased activation of STAT3. siRNA targeting of STAT3 resulted in attenuation of the enhanced cardioprotection of TLR4-deficient MSC.

Conclusions/Significance

This study indicates that TLR4 exerts deleterious effects on MSC-derived cardioprotection following I/R by a STAT3 inhibitory mechanism.  相似文献   

15.
The adenosine 2A receptor (A2AR) is greatly involved in inflammation pathologies such as rheumatoid arthritis. By interacting with A2AR, the purine nucleoside adenosine acts as a potent endogenous inhibitor of the inflammatory process in a variety of tissues. Hyaluronan (HA) fragments act to prime inflammation via CD44 and the toll-like receptor 4 (TLR-4). The aim of this study was to investigate whether the inhibition/stimulation of A2AR modulates the inflammation cascade primed by small HA fragments in mouse articular chondrocytes.6-mer HA treatment induced up-regulation of CD44, TLR4 and A2AR mRNA expression and the related protein levels, and NF-kB activation, that in turn increased TNF-α, IL-1β, and IL-6 and production. Treatment with a selective 2A adenosine receptor agonist (2-phenylaminoadenosine) enhanced A2AR increase, as well as the inhibition of CD44 and TLR4 activity using two specific antibodies abolished up-regulation of CD44 and TLR4, and significantly reduced, especially by antibody inhibition, NF-kB activation and pro-inflammatory cytokine production. Furthermore, the exposure of chondrocytes to A2AR specific interference mRNA (A2AR siRNA) enhanced HA 6-mer induced NF-kB activation and inflammatory cytokine increase. Finally, the use of an exchange protein activated by cAMP (EPAC) siRNA and a specific PKA inhibitor showed a predominant EPAC involvement in the mediation of the anti-inflammatory activity exerted by A2AR stimulation.These data suggest that HA depolymerization occurring during inflammation contributes to priming of the inflammatory cascade, while endogenous adenosine, by exerting anti-inflammatory response via A2AR, could be a modulatory mechanism that attempts to attenuate the inflammation process.  相似文献   

16.
17.
IL-17 is a proinflammatory cytokine suspected to be involved in inflammatory and autoimmune diseases such as rheumatoid arthritis. In the present study, we report that IL-17R signaling is required in radiation-resistant cells in the joint for full progression of chronic synovitis and bone erosion. Repeated injections of Gram-positive bacterial cell wall fragments (streptococcal cell wall) directly into the knee joint of naive IL-17R-deficient (IL-17R-/-) mice had no effect on the acute phase of arthritis but prevented progression to chronic destructive synovitis as was noted in wild-type (wt) mice. Microarray analysis revealed significant down-regulation of leukocyte-specific chemokines, selectins, cytokines, and collagenase-3 in the synovium of IL-17R-/- mice. Bone marrow (BM) chimeric mice revealed the need for IL-17R expression on radiation-resistant joint cells for destructive inflammation. Chimeric mice of host wt and donor IL-17R-/- BM cells developed destructive synovitis in this chronic reactivated streptococcal cell wall arthritis model similar to wt-->wt chimeras. In contrast, chimeric mice of host IL-17R-/- and donor wt BM cells were protected from chronic destructive arthritis similar as IL-17R-/- -->IL-17R-/- chimeras. These data strongly indicate that IL-17R signaling in radiation-resistant cells in the joint is required for turning an acute macrophage-mediated inflammation into a chronic destructive synovitis.  相似文献   

18.
Cutting edge: TLR2 is a functional receptor for acute-phase serum amyloid A   总被引:2,自引:0,他引:2  
Induced secretion of acute-phase serum amyloid A (SAA) is a host response to danger signals and a clinical indication of inflammation. The biological functions of SAA in inflammation have not been fully defined, although recent reports indicate that SAA induces proinflammatory cytokine expression. We now show that TLR2 is a functional receptor for SAA. HeLa cells expressing TLR2 responded to SAA with potent activation of NF-kappaB, which was enhanced by TLR1 expression and blocked by the Toll/IL-1 receptor/resistance (TIR) deletion mutants of TLR1, TLR2, and TLR6. SAA stimulation led to increased phosphorylation of MAPKs and accelerated IkappaBalpha degradation in TLR2-HeLa cells, and results from a solid-phase binding assay showed SAA interaction with the ectodomain of TLR2. Selective reduction of SAA-induced gene expression was observed in tlr2-/- mouse macrophages compared with wild-type cells. These results suggest a potential role for SAA in inflammatory diseases through activation of TLR2.  相似文献   

19.
Simultaneous activation of murine mast cells by monomeric IgE and toll-like receptor (TLR) ligands was examined. Inflammatory cytokine production elicited by the binding of IgE in the absence of antigen, was further enhanced by the addition of lipopolysaccharide (LPS) or peptidoglycan (PGN). Enhancement by LPS or PGN on cytokine production was mediated by TLR4 and TLR2, respectively, since TLR4- and TLR2-deficient mast cells did not show synergistic activation by monomeric IgE and LPS/PGN. Synergistic activation of mast cells was obtained via phosphorylation of several mitogen-activated protein kinases (MAPK). Furthermore, MAPK inhibitors, significantly attenuated the augmentation of inflammatory cytokine production by monomeric IgE and LPS or PGN. Altogether, these results suggest that simultaneous TLR activation of mast cells with IgE molecules, particularly highly cytokinergic (HC) IgE, might contribute to the exacerbation of allergic diseases associated with infection even in the absence of a specific antigen.  相似文献   

20.
Toll-like receptors (TLRs) are mammalian homologues of the Drosophila Toll receptors and are thought to have roles in innate recognition of bacteria. We demonstrated that TLR 2, 4, 6, and 8 but not TLR5 were expressed on mouse bone marrow-derived mast cells (BMMCs). Using BMMCs from the genetically TLR4-mutated strain C3H/HeJ, we demonstrated that functional TLR4 was required for a full responsiveness of BMMCs to produce inflammatory cytokines (IL-1beta, TNF-alpha, IL-6, and IL-13) by LPS stimulation. TLR4-mediated stimulation of mast cells by LPS was followed by activation of NF-kappaB but not by stress-activated protein kinase/c-Jun NH2-terminal kinase signaling. In addition, in the cecal ligation and puncture-induced acute septic peritonitis model, we demonstrated that genetically mast cell-deficient W/W(v) mice that were reconstituted with TLR4-mutated BMMCs had significantly higher mortality than W/W(v) mice reconstituted with TLR4-intact BMMCs. Higher mortality of TLR4-mutated BMMC-reconstituted W/W(v) mice was well correlated with defective neutrophil recruitment and production of proinflammatory cytokines in the peritoneal cavity. Taken together, these observations provide definitive evidence that mast cells play important roles in exerting the innate immunity by releasing inflammatory cytokines and recruitment of neutrophils after recognition of enterobacteria through TLR4 on mast cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号