首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Propagation of electrical activity between myocytes in the heart requires gap junction channels, which contribute to coordinated conduction of the heartbeat. Some antipsychotic drugs, such as thioridazine and its active metabolite, mesoridazine, have known cardiac conduction side-effects, which have resulted in fatal or nearly fatal clinical consequences in patients. The physiological mechanisms responsible for these cardiac side-effects are unknown. We tested the effect of thioridazine and mesoridazine on gap junction-mediated intercellular communication between cells that express the major cardiac gap junction subtype connexin 43. Micromolar concentrations of thioridazine and mesoridazine inhibited gap junction-mediated intercellular communication between WB-F344 epithelial cells in a dose-dependent manner, as measured by fluorescent dye transfer. Kinetic analyses demonstrated that inhibition by 10 μmol/L thioridazine occurred within 5 min, achieved its maximal effect within 1 h, and was maintained for at least 24 h. Inhibition was reversible within 1 h upon removal of the drug. Western blot analysis of connexin 43 in a membrane-enriched fraction of WB-F344 cells treated with thioridazine revealed decreased amounts of unphosphorylated connexin 43, and appearance of a phosphorylated connexin 43 band that co-migrated with a “hyperphosphorylated” connexin 43 band present in TPA-inhibited cells. When tested for its effects on cardiomyocytes isolated from neonatal rats, thioridazine decreased fluorescent dye transfer between colonies of beating myocytes. Microinjection of individual cells with fluorescent dye also showed inhibition of dye transfer in thioridazine-treated cells compared to vehicle-treated cells. In addition, thioridazine, like TPA, inhibited rhythmic beating of myocytes within 15 min of application. In light of the fact that the thioridazine and mesoridazine concentrations used in these experiments are in the range of those used clinically in patients, our results suggest that inhibition of gap junction intercellular communication may be one factor contributing to the cardiac side-effects observed in some patients taking these medications.  相似文献   

2.
The assembly of gap junctions (GJs) is a process coordinated by growth factors, kinases, and other signaling molecules. GJ assembly can be enhanced via the elevation of cAMP and subsequent stimulation of connexon trafficking to the plasma membrane. To study the positive regulation of GJ assembly, fibroblasts derived from connexin (Cx)43 knockout (KO) and wild-type (WT) mice were transfected with WT Cx43 (WTCx43) or mutant Cx43. GJ assembly between untransfected WT fibroblasts or stably transfected WTCx43/KO fibroblasts was increased two- to fivefold by 8Br-cAMP, and this increase could be blocked by inhibition of cAMP-dependent protein kinase (PKA) or truncation of the Cx43 COOH terminus (CT). Although serine 364 (S364) of the Cx43 CT was determined to be a major site of phosphorylation, the molar ratio of Cx43 phosphorylation was not increased by 8Br-cAMP. Importantly, GJ assembly between either S364ECx43/KO or S364ECx43/WT fibroblasts was stimulated by 8Br-cAMP, but that between S364ACx43/KO or S364PCx43/KO fibroblasts was not stimulated, indicating that phosphorylation or a negative charge at S364 is required for enhancement of GJ assembly by cAMP. Furthermore, GJ assembly between S364ACx43/WT fibroblasts could be stimulated by 8Br-cAMP, but could not be between S364PCx43/WT fibroblasts. Thus, S364PCx43 interferes with enhanced GJ assembly when coexpressed with WTCx43.  相似文献   

3.
Summary Lens epithelial cells are physiologically coupled to each other and to the lens fibers by an extensive network of intercellular gap junctions. In the rat, the epithelial-epithelial junctions appear to contain connexin43, a member of the connexin family of gap junction proteins. Limitations on the use of rodent lenses for the study of gap junction formation and regulation led us to examine the expression of connexin43 in embryonic chick lenses. We report here that chick connexin43 is remarkably similar to its rat counterpart in primary amino acid sequence and in several key structural features as deduced by molecular cDNA cloning. The cross-reactivity of an anti-rat connexin43 serum with chick connexin43 permitted definitive immunocytochemical localization of chick connexin43 to lens epithelial gap junctional plaques and examination of the biosynthesis of connexin43 by metabolic radiolabeling and immunoprecipitation. We show that chick lens cells synthesize connexin43 as a single, 42-kD species that is efficiently posttranslationally converted to a 45-kD form. Metabolic labeling of connexin43 with32P-orthophosphate combined with dephosphorylation experiments reveals that this shift in apparent molecular weight is due solely to phosphorylation. These results indicate that embryonic chick lens is an appropriate system for the study of connexin43 biosynthesis and demonstrate for the first time that connexin43 is a phosphoprotein.  相似文献   

4.
Cells within the vascular wall are coupled by gap junctions, allowing for direct intercellular transfer of low molecular weight molecules. Although gap junctions are believed to be important for vascular development and function, their precise roles are not well understood. Mice lacking either connexin37 (Cx37) or connexin40 (Cx40), the predominant gap junction proteins present in vascular endothelium, are viable and exhibit phenotypes that are largely non-blood vessel related. Since Cx37 and Cx40 are coexpressed in endothelial cells and could overlap functionally, some roles of junctional communication may only be revealed by the elimination of both connexins. In this study, we interbreed Cx37 and Cx40 knockout mice to generate Cx37-/- Cx40-/- animals and show that they display severe vascular abnormalities and die perinatally. Cx37-/- Cx40-/- animals exhibit localized hemorrhages in skin, testis, gastrointestinal tissues, and lungs, with pronounced blood vessel dilatation and congestion occurring in some areas. Vascular anomalies were particularly striking in testis and intestine. In testis, abnormal vascular channels were present, with these channels coalescing into a cavernous, endothelium-lined blood pool resembling a hemangioma. These results provide evidence of a critical role for endothelial gap junction-mediated communication in the development and/or functional maintenance of segments of the mouse vasculature.  相似文献   

5.
Summary Gap junctions contain intercellular channels which are formed by members of a group of related proteins called connexins. Connexins contain conserved transmembrane and extracellular domains, but unique cytoplasmic regions which may provide connexin-specific physiologic properties. We used polymerase chain reaction (PCR) amplification and cDNA library screening to clone DNA encoding a novel member of this gene family, rat connexin40 (Cx40). The derived rat Cx40 polypeptide contains 356 amino acids, with a predicted molecular mass of 40,233 Da. Sequence comparisons suggest that Cx40 is the mammalian homologue of chick connexin42, but it has predicted cytoplasmic regions that differ from previously described mammalian connexins. Southern blots of rat genomic DNA suggest that Cx40 is encoded by a single copy gene containing no introns within its coding region. Northern blots demonstrate that Cx40 is expressed in multiple tissues (including lung, heart, uterus, ovary, and blood vessels) and in primary cultures and established lines of vascular smooth muscle cells. Cx40 is coexpressed with connexin43 in several cell types, including A7r5 cells, which contain two physiologically distinct gap junctional channels. To demonstrate that Cx40 could form functional channels, we stably transfected communication-deficient Neuro2A cells with Cx40 DNA. These Cx40-transfected cells showed intercellular passage of microinjected Lucifer yellow CH. The expression of multiple connexins (such as Cx40 and Cx43) by a single cell may provide a mechanism by which cells regulate intercellular coupling through the formation of multiple channels  相似文献   

6.
There is general agreement that the connexin43 gap junction protein is a substrate for phosphorylation by protein kinase C but there is no similar consensus regarding the action of protein kinase A. Our previous studies demonstrated that channels formed by connexin43 were reversibly gated in response to microinjected protein kinase A and protein kinase C, but we did not determine whether these effects involved direct action on the connexin43 protein. Using a combination of in vivo metabolic labeling and in vitro phosphorylation of recombinant protein and synthetic peptides, we now find that connexin43 is a relatively poor substrate for purified protein kinase A compared to protein kinase C, but that phosphorylation can be accelerated by 8-Br-cAMP (8-bromoadenosine 3,5-cyclic monophosphate) which also enhances connexin43 synthesis but at a much slower rate than phosphorylation. Phosphorylation of a critical amino acid, Ser364, by protein kinase A, appears to be necessary for subsequent multiple phosphorylations by protein kinase C. However, protein kinase C can phosphorylate connexin43 at a reduced level in the absence of prior phosphorylation. The results suggest that the correct regulation of channels formed by connexin43 may require sequential phosphorylations of this protein by protein kinase A and protein kinase C.  相似文献   

7.
The urokinase-type plasminogen activator receptor (uPAR) plays an important role on the cell surface in mediating extracellular degradative processes and formation of active TGF-β, and in nonproteolytic events such as cell adhesion, migration, and transmembrane signaling. We have searched for mechanisms that determine the cellular location of uPAR and may participate in its disposal. When using purified receptor preparations, we find that uPAR binds to the cation-independent, mannose 6-phosphate/insulin-like growth factor–II (IGF-II) receptor (CIMPR) with an affinity in the low micromolar range, but not to the 46-kD, cation-dependent, mannose 6-phosphate receptor (CDMPR). The binding is not perturbed by uPA and appears to involve domains DII + DIII of the uPAR protein moiety, but not the glycosylphosphatidylinositol anchor. The binding occurs at site(s) on the CIMPR different from those engaged in binding of mannose 6-phosphate epitopes or IGF-II. To evaluate the significance of the binding, immunofluorescence and immunoelectron microscopy studies were performed in transfected cells, and the results show that wild-type CIMPR, but not CIMPR lacking an intact sorting signal, modulates the subcellular distribution of uPAR and is capable of directing it to lysosomes. We conclude that a site within CIMPR, distinct from its previously known ligand binding sites, binds uPAR and modulates its subcellular distribution.  相似文献   

8.
Gap junction channels are unique in that they possess multiple mechanisms for channel closure, several of which involve the N terminus as a key component in gating, and possibly assembly. Here, we present electron crystallographic structures of a mutant human connexin26 (Cx26M34A) and an N-terminal deletion of this mutant (Cx26M34Adel2-7) at 6-Å and 10-Å resolutions, respectively. The three-dimensional map of Cx26M34A was improved by data from 60° tilt images and revealed a breakdown of the hexagonal symmetry in a connexin hemichannel, particularly in the cytoplasmic domain regions at the ends of the transmembrane helices. The Cx26M34A structure contained an asymmetric density in the channel vestibule ("plug") that was decreased in the Cx26M34Adel2-7 structure, indicating that the N terminus significantly contributes to form this plug feature. Functional analysis of the Cx26M34A channels revealed that these channels are predominantly closed, with the residual electrical conductance showing normal voltage gating. N-terminal deletion mutants with and without the M34A mutation showed no electrical activity in paired Xenopus oocytes and significantly decreased dye permeability in HeLa cells. Comparing this closed structure with the recently published X-ray structure of wild-type Cx26, which is proposed to be in an open state, revealed a radial outward shift in the transmembrane helices in the closed state, presumably to accommodate the N-terminal plug occluding the pore. Because both Cx26del2-7 and Cx26M34Adel2-7 channels are closed, the N terminus appears to have a prominent role in stabilizing the open configuration.  相似文献   

9.
Summary According to the sequence of connexin 43, a cardiac gap junctional protein, the domain contained within residues 314–322 is located 60 amino acids away from the carboxy-terminus. Antibodies raised to a peptide corresponding to this domain label a unique 43-kD protein on immunoblots of both purified gap junctions and whole extracts from rat heart. Immunofluorescence investigations carried out on mammal heart sections reveal a pattern consistent with the known distribution of intercalated discs. Immunogold labeling performed with ultrathin frozen sections of rat heart or partially purified rat heart gap junctions demonstrate that antigenic determinants are associated exclusively with the cytoplasmic surfaces of gap junctions.The antibodies were shown to cross-react with a 43-kD protein on immunoblots of whole extracts from human, mouse and guinea pig heart. However, no labeling was seen when heart of lower vertebrates such as chicken, frog and trout, was investigated. These results, confirmed by immunofluorescence investigations, were interpreted as a loss of antigenic determinants due to sequence polymorphism of cardiac connexin 43.Proteins ofM r 43 and 41 kD, immunologically related to cardiac connexin 43, were detected in immunoblots of mouse and rat brain whole extracts. mRNAs, homologous to those of cardiac connexin 43 and of the same size (3.0 kb), are also present in brain. Immunofluorescence investigations with primary cultures of unpermeabilized and permeabilized mouse neural cells showed that the antigenic determinants recognized by the antibodies specific for connexin 43 are cytoplasmic and that the labeling observed between clustered flat cells, is punctate, as expected for gap junctions. Double labeling experiments demonstrated that the immunoreactivity is associated with GFAP-positive cells, that is to say, astrocytes.  相似文献   

10.
Renal calculus is a global common urological disease that is closely related to crystal adhesion and renal tubular epithelial cell impairment. Gap junctions (GJs) and their components (connexins and Cxs) are involved in various pathophysiology processes, but their roles in renal calculi progression are not well defined. Our previous RNA microarray analysis suggests that GJs are one of the key predicted pathways involved in the renal calcium oxalate (CaOx) crystal rat model. In the current study, we found that the Cx43 and Cx32 expression and the GJ function decreased significantly after stimulation with CaOx or sodium oxalate (NaOx) in NRK-52E, MDCK, and HK-2 cells, and Cx43 expression also decreased in renal tissues in renal CaOx crystal model rats. Inhibition of Cx43 in NRK-52E cells by small interference RNA significantly increased the CD44 and androgen receptor expression, and the adhesion between CaOx crystals and cells, which were consistent with the function of GJ inhibitors. On the other hand, after GJ function and Cx43 expression were increased by allicin, diallyl disulfide, or diallyl trisulfide, the impairment of NRK-52E cells by NaOx or other GJ inhibitors and the adhesion between CaOx crystals and renal cells decreased significantly. Furthermore, allicin also increased Cx43 expression and inhibited crystal deposition in rat kidneys. Taken together, our results provide a basis that GJs and Cx43 may participate in renal CaOx stone progression and that allicin, together with its analogues, could be potential drugs for renal calculus precaution.  相似文献   

11.
Antibodies to the gap junction protein connexin45 (Cx45) were obtained by immunizing rabbits with fusion protein consisting of glutathione S-transferase and 138 carboxy-terminal amino acids of mouse Cx45. As shown by immunoblotting and immunofluorescence, the affinity-purified antibodies recognized Cx45 protein in transfected human HeLa cells as well as in the kidney-derived human and hamster cell lines 293 and BHK21, respectively. In Cx45-transfected HeLa cells, this protein is phosphorylated as demonstrated by immunoprecipitation after metabolic labeling. The phosphate label could be removed by treatment with alkaline phosphatase. A weak phosphorylation of Cx45 protein was also detected in the cell lines 293 and BHK21. Treatment with dibutyryl cyclic adenosine or guanosine monophosphate (cAMP, cGMP) did not alter the level of Cx45 phosphorylation, in either Cx45 transfectants or in 293 or BHK21 cells. The addition of the tumor-promoting agent phorbol 12-myristate 13-acetate (TPA) led to an increased 32P phosphate incorporation into the Cx45 protein in transfected cells.The Cx45 protein was found in homogenates of embryonic brain, kidney, and skin, as well as of adult lung. In kidney of four-day-old mice, Cx45 was detected in glomeruli and distal tubules, whereas connexin32 and –26 were coexpressed in proximal tubules. No connexin43 protein was detected in renal tubules and glomeruli at this stage of development. Our results suggest that cells in proximal and distal tubules are interconnected by gap junction channels made of different connexin proteins. The Cx45 antibodies characterized in this paper should be useful for investigations of Cx45 in renal gap junctional communication.  相似文献   

12.
Racemization is one of the most abundant modifications in long‐lived proteins. It has been proposed that the accumulation of such modifications over time could lead to changes in tissues and ultimately human age‐related diseases. Serine is one of the main amino acids involved in racemization; however, the site of D‐Ser in any aged protein has yet to be reported. In this study, racemization of two residues, Ser 59 and Ser 62, has been demonstrated in an unstructured region of the small heat shock protein, αA‐crystallin. αA‐crystallin is also the most abundant structural protein in the human lens. D‐Ser increased linearly with age in normal lenses, until it accounted for approximately 35% of the Ser at both sites by the age of 75 years. In agreement with a possible role in human age‐related disease, levels were significantly higher in cataract lenses. It is likely that such prevalent age‐related changes contribute to the denaturation of α‐crystallin, and therefore its ability to act as a chaperone. Racemization of amino acids, such as serine, in flexible regions of long‐lived proteins, could be associated with the development of human age‐related conditions such as cataract.  相似文献   

13.
  1. Download : Download high-res image (300KB)
  2. Download : Download full-size image
  相似文献   

14.
《Free radical research》2013,47(9):1013-1026
Abstract

Oxidized and cross-linked modified proteins are known to accumulate in ageing. Little is known about whether the accumulation of proteins modified by advanced glycation end products (AGEs) is due to an affected intracellular degradation. Therefore, this study was designed to determine whether the intracellular enzymes cathepsin B, cathepsin D and the 20S proteasome are able to degrade AGE-modified proteins in vitro. It shows that AGE-modified albumin is degraded by cathepsin D, while cathepsin B was less effective in the degradation of aldehyde-modified albumin and the 20S proteasome was completely unable to degrade them. Mouse primary embryonic fibroblasts isolated from a cathepsin D knockout animals were found to have an extensive intracellular AGE-accumulation, mainly in lysosomes, and a reduction of AGE-modified protein degradation compared to cells isolated from wild type animals. In summary, it can be assumed that cathepsin D plays a significant role in the removal of AGE-modified proteins.  相似文献   

15.
Gap junction channels formed by connexin50 (Cx50) are critical for maintenance of eye lens transparency. Cleavage of the carboxyl terminus (CT) of Cx50 to produce truncated Cx50 (Cx50trunc) occurred naturally during maturation of lens fiber cells. The mechanism of its altered properties is under confirmation. It has been suggested that calmodulin (CaM) participates in gating some kinds of gap junction. Here, we performed confocal colocalization and co-immunoprecipitation experiments to study the relationships between Cx50 and CaM. Results exhibited that the CaM could colocalize Ca2+ dependently with CT in the linear area of cell-to-cell contact formed by Cx50trunc, while it could not localize in the linear area without expression of CT. Further study indicated that the CT could interact Ca2+ independently with the cytoplasmic loop (CL) of Cx50. These data put forward the importance of Ca2+-independent intramolecular interaction between CT and CL of Cx50, which mediate the Ca2+-dependent binding of CaM to Cx50. These intra- and intermolecular interactions may further improve our understanding of biological significance of the Cx50 in the eye lens.  相似文献   

16.
Degradation of misfolded or unassembled proteins of the secretory pathway is an essential function of the quality control system of the Endoplasmic Reticulum (ER). Using yeast as a model organism we show that a mutated and therefore misfolded soluble lumenal protein carboxypeptidase yscY (CPY*), and a polytopic membrane protein, the ATP-binding cassette transporter Pdr5 (Pdr5*), are retrograde transported out of the ER and degraded via the cytoplasmic ubiquitin-proteasome system. Retrograde transport depends on an intact Sec61 translocon. Complete import of CPY* into the lumen of the ER requests a new targeting mechanism for retrograde transport of the malfolded enzyme through the Sec61 channel to occur. For soluble CPY*, but not for the polytopic membrane protein Pdr5* action of the ER-lumenal Hsp70 chaperone Kar2 is necessary to deliver the protein to the ubiquitin-proteasome machinery. Polyubiquitination of CPY* and Pdr5* by the ubiquitin conjugating enzymes Ubc6 and Ubc7 is crucial for degradation to occur. Also transport of CPY* out of the ER-lumen depends on ubiquitination. Newly discovered proteins of the ER membrane, Der1, Der3/Hrd1, and Hrd3 are specifically involved in the retrograde transport processes.  相似文献   

17.
Peptide segments of multiple glycine and alanine residues prevent the proteolytic degradation of ubiquitinated proteins by the proteasome. The structure of a Gly/Ala-rich insert in IκBα was probed by nuclear magnetic resonance (NMR) spectroscopy, comparing IκBα samples with and without Gly/Ala-rich insert. Narrow 1H-NMR resonances at chemical shifts indicative of random coil conformations were observed in the difference spectrum. circular dichroism (CD) measurements further confirm that the mechanism of protection against proteolytic degradation is not based on structural transition or stabilization caused by the Gly/Ala-rich segment. In addition, most of the N- and C-terminal residues outside the ankyrin repeats in wild-type IκBα were found to be flexibly disordered.  相似文献   

18.
Gap junctions form channels that allow exchange of materials between cells and are composed of transmembrane protein subunits called connexins. While connexins are believed to mediate cellular signaling by permitting intercellular communication to occur, there is also increasing evidence that suggest connexins may mediate growth control via a junction-independent mechanism. Connexin43 (Cx43) is the most abundant gap junction protein found in astrocytes, and gliomas exhibit reduced Cx43 expression. We have previously observed that restoration of Cx43 levels in glioma cells led to increased expression of CCN3 (NOV) proteins. We now report that overexpression of Cx43 in C6-glioma cells (C6-Cx43) also upregulates the expression of CCN1 (Cyr61). Both CCN1 and CCN3 belong to the Cyr61/Connective tissue growth factor/Nephroblastoma-overexpressed (CCN) family of secretory proteins. The CCN proteins are tightly associated with the extracellular matrix and have important roles in cell proliferation and migration. CCN1 promotes growth in glioma cells, as shown by the increased proliferation rate of CCN1-overexpressing C6 cells. In addition to its effect on cell growth, CCN1 also increased the motility of glioma cells in the presence of extracellular substrates such as fibronectin. Gliomas expressing high levels of Cx43 preferentially upregulated CCN3 which resulted in reduced growth rate. CCN3 could also be observed in Cx43 gap junction plaques in confluent C6-Cx43H culture at the stationary phase of their growth. Our results suggest that the dissimilar growth characteristics between high and low Cx43 expressors may be due to differential regulation of CCN3 by varying levels of Cx43.  相似文献   

19.
HYS-32 [4-(3,4-dimethoxyphenyl)-3-(naphthalen-2-yl)-2(5H)-furanone] is a new analogue of the anti-tumor compound combretastatin A-4 containing a cis-stilbene moiety. In this study, we investigated its effects on Cx43 gap junction intercellular communication (GJIC) and the signaling pathway involved in rat primary astrocytes. Western blot analyses showed that HYS-32 dose- and time-dependently upregulated Cx43 expression. A confocal microscopic study and scrape-loading/dye transfer analyses demonstrated that HYS-32 (5 μM) induced microtubule coiling, accumulation of Cx43 in gap junction plaques, and increased GJIC in astrocytes. The HYS-32-induced microtubule coiling and Cx43 accumulation in gap junction plaques was reversed when HYS-32 was removed. Treatment of astrocytes with cycloheximide resulted in time-dependent degradation of by co-treatment with HYS-32 by increasing the half-life of Cx43. Co-treatment with HYS-32 also prevented the LPS-induced downregulation of Cx43 and inhibition of GJIC in astrocytes. HYS-32 induced activation of PKC, ERK, and JNK, and co-treatment with the PKC inhibitor Go6976 or the ERK inhibitor PD98059, but not the JNK inhibitor SP600125, prevented the HYS-32-induced increase in Cx43 expression and GJIC. Go6976 suppressed the HYS-32-induced PKC phosphorylation and increase in phospho-ERK levels, while PD98059 did not prevent the HYS-32-induced increase in phospho-PKC levels, suggesting that PKC is an upstream effector of ERK. In conclusion, our results show that HYS-32 increases the half-life of Cx43 and enhances Cx43 expression and GJIC in astrocytes via a PKC–ERK signaling cascade. These novel biological effects of HYS-32 on astrocyte gap junctions support its potential for therapeutic use as a protective agent for the central nervous system.  相似文献   

20.
Gap junctions are formed by a family of transmembrane proteins, connexins. Connexin43 is a widely studied member of the family, being ubiquitously expressed in a variety of tissues and a target of a large number of disease mutations. The intracellular loop of connexin43 has been shown to include a calmodulin binding domain, but detailed 3-dimensional data on the structure of the complex are not available. In this study, we used a synthetic peptide from this domain to reveal the conformation of the calmodulin-peptide complex by small angle X-ray scattering. Upon peptide binding, calmodulin lost its dumbbell shape, adopting a more globular conformation. We also studied the energetics of the interaction using calorimetry and computational methods. All our data indicate that calmodulin binds to the peptide from cx43 in the classical ‘collapsed’ conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号