首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The objectives of the present study were to achieve 1) oocyte maturation, 2) oocyte competence of fertilization, and 3) oocyte competence of embryogenesis with oocytes from primordial follicles obtained from cryopreserved newborn mouse ovaries by using a two-step method. In the first step, frozen-thawed newborn mouse ovaries were transplanted under the kidney capsule of recipients for the initiation of growth from the primordial follicle stage on. In the second step, growing preantral follicles in the ovarian grafts were recovered and cultured. The results demonstrated that primordial follicles were able to be recruited to preantral follicles during the period of transplantation, and preantral follicles could be mechanically isolated from ovarian grafts. Under the present in vitro culture conditions, 85.8% of the isolated follicles (n = 332) from ovarian grafts survived the 12-day in vitro culture process, 84.9% of the recovered oocytes (n = 285) were germinal vesicle breakdown (GVBD)-competent, and 76% of the oocytes that underwent GVBD (n = 242) developed to the metaphase II (MII) stage. In the in vitro fertilization experiments, 75.4% of 142 inseminated MII oocytes underwent fertilization and cleavage to the 2-cell stage. Subsequently, 79.7% of the 2-cell-stage embryos (n = 69) progressed to the late morula-early blastocyst stage. Transfer of late morula-early blastocyst embryos resulted in the production of live offspring. From our experiments, it may be concluded that in vivo maturation by grafting followed by in vitro maturation of frozen-thawed primordial follicles can restore fertility in mice. This model could be useful for a similar application in the human.  相似文献   

3.
Xu B  Hua J  Zhang Y  Jiang X  Zhang H  Ma T  Zheng W  Sun R  Shen W  Sha J  Cooke HJ  Shi Q 《PloS one》2011,6(1):e16046
Primordial follicles, providing all the oocytes available to a female throughout her reproductive life, assemble in perinatal ovaries with individual oocytes surrounded by granulosa cells. In mammals including the mouse, most oocytes die by apoptosis during primordial follicle assembly, but factors that regulate oocyte death remain largely unknown. Proliferating cell nuclear antigen (PCNA), a key regulator in many essential cellular processes, was shown to be differentially expressed during these processes in mouse ovaries using 2D-PAGE and MALDI-TOF/TOF methodology. A V-shaped expression pattern of PCNA in both oocytes and somatic cells was observed during the development of fetal and neonatal mouse ovaries, decreasing from 13.5 to 18.5 dpc and increasing from 18.5 dpc to 5 dpp. This was closely correlated with the meiotic prophase I progression from pre-leptotene to pachytene and from pachytene to diplotene when primordial follicles started to assemble. Inhibition of the increase of PCNA expression by RNA interference in cultured 18.5 dpc mouse ovaries strikingly reduced the apoptosis of oocytes, accompanied by down-regulation of known pro-apoptotic genes, e.g. Bax, caspase-3, and TNFα and TNFR2, and up-regulation of Bcl-2, a known anti-apoptotic gene. Moreover, reduced expression of PCNA was observed to significantly increase primordial follicle assembly, but these primordial follicles contained fewer granulosa cells. Similar results were obtained after down-regulation by RNA interference of Ing1b, a PCNA-binding protein in the UV-induced apoptosis regulation. Thus, our results demonstrate that PCNA regulates primordial follicle assembly by promoting apoptosis of oocytes in fetal and neonatal mouse ovaries.  相似文献   

4.
5.
6.
The objective of this study was to improve the conditions for oocyte development in vitro beginning with the primordial follicles of newborn mice. Previous studies showed that oocytes competent of meiotic maturation, fertilization, and preimplantation could develop in vitro from primordial follicles. However, the success rates were low and only one live offspring was produced (0.5% of embryos transferred). A revised protocol was compared with the original protocol using oocyte maturation and preimplantation development as end points. The percentage of oocytes maturing to metaphase II and developing to the blastocyst stage was significantly improved using the revised protocol. In addition, we compared the production of offspring from two-cell stage embryos derived from in vitro-grown and in vivo-grown oocytes. Of 1160 transferred two-cell stage embryos derived from in vitro-grown oocytes, 66 (5.7%) developed to term and 7 pups (10.6%) died at birth. The remaining 59 pups (27 females, 32 males) survived to adulthood. By comparison, of 437 transferred two-cell stage embryos derived from in vivo-grown oocytes, 76 (17.4%) developed to term and 4 (5.3%) died at birth. The remaining 72 pups (35 females, 37 males) survived to adulthood. These studies provide proof of the principle that fully competent mammalian oocytes can develop in vitro from primordial follicles and present a significant advance in oocyte culture technology.  相似文献   

7.
The localization of galectin-3, a β-galactoside-binding animal lectin, was immunohistochemically studied in the ovaries of pigs to determine its expression in ovarian folliculogenesis. Various stages of ovarian follicles were identified in the ovaries of adult pigs. Galectin-3 was immunostained in the squamous follicular cells surrounding oocytes in primordial follicles and in the unilaminar granulosa cells of primary follicles, but not in oocytes of multilaminar follicles (including primary, secondary, and tertiary Graafian follicles). As in adult ovaries, galectin-3 immunoreactivity was prominent in the unilaminar follicles in neonatal ovaries. Galectin-3 was also immunolocalized in the luteal cells in the corpus luteum and granulosa cells of atretic follicles as well as in interstitial macrophages in porcine ovaries. Collectively, these results suggest that galectin-3 is transiently expressed in follicular cells in the unilaminar ovarian follicles (primordial and primary) but not in multilaminar ovarian follicles (primary to tertiary), implying that galectin-3 is embryologically involved in ovum generation.  相似文献   

8.
The influence of graft site on the survival of canine follicles and oocytes after autografting was investigated. Hemi-ovaries were autografted to three locations (quadriceps femoris muscle fascia, kidney capsule, and gastrosplenic ligament), and grafted ovaries were recovered (under anesthesia) 28 to 31 d after transplantation. The grafted hemi-ovaries were bisected: one-quarter ovary was used for histological assessment and another quarter for evaluation of oocyte viability. As controls, the remaining fresh hemi-ovaries were used to assess the viability of follicles and oocytes in non-transplanted ovaries. Most follicles in the histological sections of the grafts were classified as primordial or primary follicles. Antral follicles were not observed in the grafts, irrespective of the graft site. The percentages of viable follicles in the sections from control ovaries, and the ovaries grafted to the kidney capsule, the quadriceps femoris muscle fascia, and the gastrosplenic ligament were 17.4, 22.9, 18.3, and 32.4%, respectively. A total of 12 oocytes was recovered from the 15 hemi-ovaries grafted in five bitches, of which five (41.7%) oocytes from the ovaries grafted to the quadriceps femoris muscle fascia and the kidney capsule were cultured for assessment of meiotic competence. Three oocytes were viable but remained in the germinal vesicle stage after 72 h of maturation culture. The quadriceps femoris muscle fascia might be useful for grafting like the kidney capsule, but improvement of follicle survival and meiotic competence of oocytes in the grafts is necessary.  相似文献   

9.
In cattle and other species in which the pool of resting, primordial follicles is formed during fetal life, little is known about the regulation of the early stages of ovarian follicular development. We used histological morphometry and a combination of observations in vivo and experiments in vitro to study the timing and regulation of follicle formation and the acquisition of the capacity of primordial follicles to initiate growth in cattle. In vivo, primordial, primary, and secondary follicles were first observed around Days 90, 140, and 210 of gestation, respectively. The long interval between the first appearance of primordial and primary follicles suggests that primordial follicles are not capable of activating when they are first formed, or they are inhibited from activating. This hypothesis was confirmed by the finding that most primordial follicles in pieces of ovarian cortex obtained from fetal ovaries older than 140 days activated (i.e., initiated growth) after 2 days in vitro, whereas follicles in cortical pieces from 90- to 140-day-old fetal ovaries did not. We tested the hypothesis that the oocytes of newly formed primordial follicles are not in meiotic arrest and found that before Day 141, most oocytes ( approximately 73%) were in prediplotene stages of prophase I, whereas after Day 140, the majority of oocytes ( approximately 85%) had arrested at the diplotene stage. This observation was further confirmed by the finding that levels of mRNA for YBX2, a protein associated with meiotic arrest, were 2.3 times higher in ovarian cortical pieces isolated after versus before Day 141. Primordial follicles in cortical pieces from 90- to 140-day-old fetal ovaries did activate during a longer, 10-day culture, but activation could be inhibited by adding estradiol or progesterone, but not dihydrotestosterone (all at 10(-6) M). Fetal ovaries secreted estradiol in vitro, and secretion by ovaries from 83 to 140-day-old fetuses declined precipitously ( approximately 30-fold) with age, consistent with the hypothesis that estradiol inhibits activation of newly formed primordial follicles in vivo. In summary, the results show that newly formed primordial follicles do not activate in vivo or within 2 days in vitro and that capacity to activate is correlated with achievement of meiotic arrest by the oocyte and can be inhibited by estradiol, which fetal ovaries actively produce around the time of follicle formation.  相似文献   

10.
Success of in vitro maturation (IVM) and production of bovine embryos as related to aspects of follicle source and oocyte size were evaluated. First, it was determined that bovine oocytes continue growing in all follicular sizes studied, including >1- to 15-mm follicles. Populations of oocytes were collected from surface visible (peripheral) and cortical follicles from the same ovaries. When the number of oocytes from both peripheral and cortical follicles was combined, the yield of oocytes was approximately double that collected from 1 ovarian site alone. Oocytes from cortical follicles were smaller than those from the surface population, and the smaller cortical oocytes had a lower potential for both meiotic maturation and embryo development Only cortical oocytes with the largest diameters underwent IVM and subsequently developed to blastocysts at rates comparable to oocytes from peripheral follicles. As the diameter of the oocytes recovered from peripheral follicles increased, so did their developmental potential. When the stage of the estrous cycle was observed, it was found to have no effect on developmental potential. Finally, oocytes which extruded polar bodies at an earlier time during maturation were, on average, larger than those which extruded polar bodies later. The results serve a practical purpose in assisting selection of oocytes capable of developing into blastocysts and they give useful correlates of oocyte competencies based on knowledge of follicle source and oocyte stage.  相似文献   

11.
Follicular oocyte growth and acquisition of developmental competence   总被引:7,自引:0,他引:7  
At birth the ovaries of mammalian females contain a finite store of primordial follicle oocytes. Each oocyte and its surrounding follicle cells share a communication system, the gap junction network, which facilitates the transfer of signals as well as nutrients in to and out off the oocyte and between follicle cells. The connexin family of proteins form the building blocks of this communication network, their expression is specific to the differentiated state of the granulose cell and the stage of folliculogenesis. Factors such as the c-kit receptor and its ligand, IGF-I, IGF-I receptors and the IGF binding proteins, members of the transforming growth factor beta (TGFbeta) family, in particular, some of the bone morphogenetic proteins, play prominent roles in oogenesis, primordial follicle activation and subsequent follicle/oocyte development culminating in oocyte ovulation. The oocyte undergoes a progressive series of morphological modifications as it grows and proceeds through the different stages of development. These structural rearrangements facilitate the increasing energy and nucleic acid synthesis requirements of the developing oocyte and are a prerequisite to the oocytes achievement of meiotic and embryo developmental competence. Several factors determine the ultimate competence of the oocyte, these have been investigated and attempts made to mimic these conditions in vitro. The complexity of the orchestration of the events that control oocyte growth and ultimate acquisition of developmental competence is under continuous investigation. The present review describes some of the findings to date.  相似文献   

12.
The mechanism of development of the ovarian follicles has been largely unknown. We performed an immunohistochemical (IHC) study to determine the follicular expressions of c-kit, SCF, and inhibin-alpha at different developmental stages in mouse ovary. Ovaries were obtained from 14 and 16 days post coitum and 2, 7, and 21 days post partum (dpp) mice. IHC for c-kit, SCF, and inhibin-alpha was carried out. c-Kit and SCF were expressed on oogonia regardless of the developmental stage. Immunoreactive c-kit and SCF antigens were expressed on oocytes of primordial and primary follicles of neonate mouse ovaries. In 21 dpp mouse ovary, the expression of c-kit/SCF in oocytes gradually decreased as the follicles developed. c-Kit/SCF was expressed strongly in oocytes of preantral follicles and weakly in granulosa and thecal cells. Inhibin-alpha was mainly expressed on granulosa cells of preantral and early antral follicles of the 21 dpp mouse ovaries. These findings suggest that the IHC expression of c-kit/SCF proteins is specific in all developmental stages of ovarian follicles and is decreased after the follicle starts to grow. The expression of inhibin-alpha is negatively correlated with the expression of c-kit/SCF in the ovarian follicles in mice.  相似文献   

13.
14.
15.
Meiotic competence of prepubertal goat oocytes   总被引:3,自引:0,他引:3  
The object of this work was to evaluate in vitro maturation of follicular oocytes from the ovaries of prepubertal goats obtained from the slaughterhouse. To obtain the oocytes, follicles were dissected and classified according to their diameters. In the first experiment, oocytes were matured in vitro with granulosa cells. No significant differences were detected in the percentages of maturation between adult and prepubertal goat oocytes recovered from follicles of 2.5 to 6.0 mm in diameter (81.82 vs 72.47%, respectively). The percentage of maturation increased to 88.0% in prepubertal goat oocytes from 3.0 to 6.0-mm follicles. In the second experiment, the percentage of maturation of prepubertal goat oocytes was greater after 27 than after 24 h. In the third experiment, the maturational capacity of prepubertal goat oocytes according to follicular diameter was evaluated. The percentages of maturation after 27 h of culture with no granulosa cells were 24.14, 56.60 and 74.78%, respectively, for follicles 1.0 to 1.9 mm, 2.0 to 2.9 mm, and 3.0 to 6.0 mm in diameter. As the follicular diameter increased, growth of the oocyte as well as a greater number of oocytes with more cumulus cell layers were observed. A correlation between the diamter of the oocyte and its competence to complete in vitro maturation was also observed. Oocytes with more cumulus cell layers showed only a slight superiority in their capacity for maturation in large-size follicles (3.0 to 6.0 mm), but the difference was not significant. In conclusion, oocytes from prepubertal goats complete their growth and reach meiotic competence in follicles larger than 3.0 mm. With these oocytes it is possible to obtain in vitro maturation results similar to those from adult goats.  相似文献   

16.
Human follicular fluid from healthy mature Graafian follicles and from pathologic ovarian cyst fluid was found to be inhibitory to progesterone-induced meiotic maturation of oocytes from the South African clawed toad, Xenopus laevis. Human follicular fluid but not human serum, collected from the same individuals, demonstrated a linear dose-response inhibition on the maturation of oocytes in the Xenopus assay system. These findings indicate that the human follicular and cyst fluids contain oocyte maturation inhibitor (OMI). This human OMI was inactivated when subjected to a boiling water bath for 2 min. The OMI action was shown to be reversible in its inhibitory action. The fact that OMI can act directly on the oocyte was demonstrated by its inhibitory action on maturation in defolliculated oocytes. The findings demonstrate that the inhibitory action of human OMI is not species-specific. Xenopus oocytes provide a simple, readily available, year-round bioassay material for testing follicular oocyte maturation inhibitor.  相似文献   

17.
18.
19.
Development of a fertilizable oocyte is a complex process that relies on the precise temporal and spatial expression of specific genes in germ cells and in surrounding somatic cells. Since female mice null for Taf4b, a TBP associated factor, are sterile, we sought to determine when during follicular development this phenotype was first observed. At postnatal day 3, ovaries of Taf4b null females contained fewer (P < 0.01) oocytes than ovaries of wild type and heterozygous Taf4b mice. However, expression of only one somatic cell marker Foxl2 was reduced in ovaries at day 15. Despite the reduced number of follicles, many proceed to the antral stage, multiple genes associated with granulosa cell differentiation and oocyte maturation were expressed in a normal pattern, and immature Taf4b null females could be hormonally primed to ovulate and mate. However, the ovulated cumulus oocyte complexes from the Taf4b null mice had fewer (P < 0.01) cumulus cells, and the oocytes were functionally abnormal. GVBD and polar body extrusion were reduced significantly (P < 0.01). The few oocytes that were fertilized failed to progress beyond the two-cell stage of development. Thus, infertility in Taf4b null female mice is associated with defects in early follicle formation, oocyte maturation, and zygotic cleavage following ovulation and fertilization.  相似文献   

20.
The mammalian ovary is composed of ovarian follicles, each follicle consisting of a single oocyte surrounded by somatic granulosa cells, enclosed together within a basement membrane. A finite pool of follicles is laid down during embryonic development, when oocytes in meiotic arrest form a close association with flattened granulosa cells, forming primordial follicles. By or shortly after birth, mammalian ovaries contain their lifetime’s supply of primordial follicles, from which point onwards there is a steady release of follicles into the growing follicular pool.The ovary is particularly amenable to development in vitro, with follicles growing in a highly physiological manner in culture. This work describes the culture of whole neonatal ovaries containing primordial follicles, and the culture of individual ovarian follicles, a method which can support the development of follicles from an immature through to the preovulatory stage, after which their oocytes are able to undergo fertilization in vitro. The work outlined here uses culture systems to determine how the ovary is affected by exposure to external compounds. We also describe a co-culture system, which allows investigation of the interactions that occur between growing follicles and the non-growing pool of primordial follicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号