首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The activation mechanism of Na,K-ATPase in nerve fibres after rhythmic excitation was studied. 3H-ouabain binding to a nerve was found to depend on the frequency of rhythmic excitation. The maximum of 3H-ouabain binding to a nerve crab was at 10 imp/sec. Rhythmic excitation was found not to change Na,K-ATPase affinity to ouabain, but appeared to increase the concentration of ouabain-sensitive sites in the nerve membrane. Transformation of inactive forms of the enzyme into active ones was supposed to be a possible cause of greater 3H-ouabain binding to the nerve during rhythmic exitation.  相似文献   

2.
Norepinephrine stimulates Na, K-ATPase from rat brain homogenates at concentrations of 10(-4)--10(-5) and 10(-7)--10(-8) M. A low concentration maximum is observed after 48 hrs of incubation at -20 degrees C and is not changed by the addition of alpha-tocopherol, glycerol and MAO inhibitor ipraside. The maximum observed at the mediator concentration equal to 10(-4)--10(-5) M is eliminated after treatment with EGTA. At all concentrations of norepinephrine the enzyme stimulation is removed by the alpha-adrenoblocker phentolamine. The activated enzyme reveals lower sensitivity to Ca2+ induced inhibition. The role of Ca2+ and conformational state of the membranes in the realization of the remote effect on the adrenoreceptor-Na, K-ATPase system is discussed.  相似文献   

3.
The Mg2+ dependence of the kinetics of the phosphorylation and conformational changes of Na+,K+-ATPase was investigated via the stopped-flow technique using the fluorescent label RH421. The enzyme was preequilibrated in buffer containing 130 mM NaCl to stabilize the E1(Na+)3 state. On mixing with ATP, a fluorescence increase was observed. Two exponential functions were necessary to fit the data. Both phases displayed an increase in their observed rate constants with increasing Mg2+ to saturating values of 195 (± 6) s−1 and 54 (± 8) s−1 for the fast and slow phases, respectively. The fast phase was attributed to enzyme conversion into the E2MgP state. The slow phase was attributed to relaxation of the dephosphorylation/rephosphorylation (by ATP) equilibrium and the buildup of some enzyme in the E2Mg state. Taking into account competition from free ATP, the dissociation constant (Kd) of Mg2+ interaction with the E1ATP(Na+)3 state was estimated as 0.069 (± 0.010) mM. This is virtually identical to the estimated value of the Kd of Mg2+-ATP interaction in solution. Within the enzyme-ATP-Mg2+ complex, the actual Kd for Mg2+ binding can be attributed primarily to complexation by ATP itself, with no apparent contribution from coordination by residues of the enzyme environment in the E1 conformation.  相似文献   

4.
The goldfish optic nerve can regenerate after injury. To understand the molecular mechanism of optic nerve regrowth, we identified genes whose expression is specifically up-regulated during the early stage of optic nerve regeneration. A cDNA library constructed from goldfish retina 5 days after transection was screened by differential hybridization with cDNA probes derived from axotomized or normal retina. Of six cDNA clones isolated, one clone was identified as the Na,K-ATPase catalytic subunit alpha3 isoform by high- sequence homology. In northern hybridization, the expression level of the mRNA was significantly increased at 2 days and peaked at 5-10 days, and then gradually decreased and returned to control level by 45 days after optic nerve transection. Both in situ hybridization and immunohistochemical staining have revealed the location of this transient retinal change after optic nerve transection. The increased expression was observed only in the ganglion cell layer and optic nerve fiber layer at 5-20 days after optic nerve transection. In an explant culture system, neurite outgrowth from the retina 7 days after optic nerve transection was spontaneously promoted. A low concentration of ouabain (50-100 nm ) completely blocked the spontaneous neurite outgrowth from the lesioned retina. Together, these data indicate that up-regulation of the Na,K-ATPase alpha3 subunit is involved in the regrowth of ganglion cell axons after axotomy.  相似文献   

5.
The previously reported class of potent inorganic inhibitors of Na,K-ATPase, named MCS factors, was shown to inhibit not only Na,K-ATPase but several P-type ATPases with high potency in the sub-micromolar range. These MCS factors were found to bind to the intracellular side of the Na, K-ATPase. The inhibition is not competitive with ouabain binding, thus excluding its role as cardiac-steroid-like inhibitor of the Na,K-ATPase. The mechanism of inhibition of Na,K-ATPase was investigated with the fluorescent styryl dye RH421, a dye known to report changes of local electric fields in the membrane dielectric. MCS factors interact with the Na,K-ATPase in the E1 conformation of the ion pump and induce a conformational rearrangement that causes a change of the equilibrium dissociation constant for one of the first two intracellular cation binding sites. The MCS-inhibited state was found to have bound one cation (H+, Na+ or K+) in one of the two unspecific binding sites, and at high Na+ concentrations another Na+ ion was bound to the highly Na+-selective ion-binding site.  相似文献   

6.
A hallmark of acute lung injury is the accumulation of a protein rich edema which impairs gas exchange and leads to hypoxemia. The resolution of lung edema is effected by active sodium transport, mostly contributed by apical Na+ channels and the basolateral located Na,K-ATPase. It has been reported that the decrease of Na,K-ATPase function seen during lung injury is due to its endocytosis from the cell plasma membrane into intracellular pools. In alveolar epithelial cells exposed to severe hypoxia, we have reported that increased production of mitochondrial reactive oxygen species leads to Na,K-ATPase endocytosis and degradation. We found that this regulated process follows what is referred as the Phosphorylation–Ubiquitination–Recognition–Endocytosis–Degradation (PURED) pathway. Cells exposed to hypoxia generate reactive oxygen species which activate PKCζ which in turn phosphorylates the Na,K-ATPase at the Ser18 residue in the N-terminus of the α1-subunit leading the ubiquitination of any of the four lysines (K16, K17, K19, K20) adjacent to the Ser18 residue. This process promotes the α1-subunit recognition by the μ2 subunit of the adaptor protein-2 and its endocytosis trough a clathrin dependent mechanism. Finally, the ubiquitinated Na,K-ATPase undergoes degradation via a lysosome/proteasome dependent mechanism.  相似文献   

7.
The Na,K-ATPase   总被引:15,自引:0,他引:15  
The energy dependent exchange of cytoplasmic Na+ for extracellular K+ in mammalian cells is due to a membrane bound enzyme system, the Na,K-ATPase. The exchange sustains a gradient for Na+ into and for K+ out of the cell, and this is used as an energy source for creation of the membrane potential, for its de- and repolarisation, for regulation of cytoplasmic ionic composition and for transepithelial transport. The Na,K-ATPase consists of two membrane spanning polypeptides, an -subunit of 112-kD and a -subunit, which is a glycoprotein of 35-kD. The catalytic properties are associated with the -subunit, which has the binding domain for ATP and the cations. In the review, attention will be given to the biochemical characterization of the reaction mechanism underlying the coupling between hydrolysis of the substate ATP and transport of Na+ and K+.  相似文献   

8.
A Iu Kabakov 《Biofizika》1988,33(2):297-302
The relationship equation between the resting potential and potassium and sodium active currents is deduced in terms of a generally accepted model of electrogenesis. It is demonstrated that an increase of Na,K-ATPase activity to the estimated magnitude results in hyperpolarization of the cell membrane (CM), but the subsequent increase of the activity led to CM depolarisation. CM depolarisation results in an increase of the cell volume.  相似文献   

9.
10.
Phosphorylation is a widely used, reversible means of regulating enzymatic activity. Among the important phosphorylation targets are the Na+,K+- and H+,K+-ATPases that pump ions against their chemical gradients to uphold ionic concentration differences over the plasma membrane. The two pumps are very homologous, and at least one of the phosphorylation sites is conserved, namely a cAMP activated protein kinase (PKA) site, which is important for regulating pumping activity, either by changing the cellular distribution of the ATPases or by directly altering the kinetic properties as supported by electrophysiological results presented here. We further review the other proposed pump phosphorylations.  相似文献   

11.
Axon excitation increases the number of acetylcholine receptors (ACR) of the Schwann cell (SC) depending on the frequency of rhythmic excitation (RE) and on intercellular concentrations of K+, Ca2+, and acetylcholine. During RE, activity of axonal acetylcholine esterase is decreased, thus providing for high intercellular acetylcholine concentration. Increased intercellular concentration of acetylcholine activates phosphoinositide-specific phospholipase C (PIPLC) of the myelin nerve fiber. During RE, K+ depolarization and acetylcholine exocytosis can activate Ca2+ entry via Ca2+ channels, thus inducing SC ACR phosphorylation mediated by PIPLC stimulation.  相似文献   

12.
Microsomal Na, K-ATPase is activated by acetylcholine (5 x 10(-6)--10(-5) M) in a cell-free system including neuronal nuclei and the microsomal--cytoplasmic fraction. No enzyme activation by acetylcholine occurs in the presence of puromycin, actinomycin D and ribonuclease or upon removal of the nuclear or microsomal--cytoplasmic fraction from the system. After preincubation with acetylcholine the membranes reveal a better capacity for phosphorylation by [gamma-32P]ATP and dephosphorylation in the presence of ADP and Na+. The ATP binding by the membranes preincubated in a system with acetylcholine is also increased thereby. It was assumed that acetylcholine induces the synthesis of Na, K-ATPase or its protein activator.  相似文献   

13.
Sodium, potassium adenosine triphosphatase (Na,K-ATPase) is a membrane-bound enzyme that maintains the Na(+) and K(+) gradients used in the nervous system for generation and transmission of bioelectricity. Recently, its activity has also been demonstrated during nerve regeneration. The present study was undertaken to investigate the ultrastructural localization and distribution of Na,K-ATPase in peripheral nerve fibers. Small blocks of the sciatic nerves of male Wistar rats weighing 250-300g were excised, divided into two groups, and incubated with and without substrate, the para-nitrophenyl phosphate (pNPP). The material was processed for transmission electron microscopy, and the ultra-thin sections were examined in a Philips CM 100 electron microscope. The deposits of reaction product were localized mainly on the axolemma, on axoplasmic profiles, and irregularly dispersed on the myelin sheath, but not in the unmyelinated axons. In the axonal membrane, the precipitates were regularly distributed on the cytoplasmic side. These results together with published data warrant further studies for the diagnosis and treatment of neuropathies with compromised Na,K-ATPase activity.  相似文献   

14.
The activity of Na,K-ATPase of the rat brain and kidney is 1.5--2-fold as increased during intermittent and prolonged (16 weeks) adaptation to cold, without changes in the enzyme affinity to ATP. It is suggested that adaptive increase in the power of the Na pump, triidothyronine-dependent in the kidneys and triiodothyronine-independent in the brain, ensures elevation in thermal production to body cooling.  相似文献   

15.
The effects of heavy charged particles--alpha-particles and deuterons accelerated by cyclotron to the energies of 30.3 and 15.4 MeV accordingly--on nerve's excitability (amplitude of an action potential (AP) and speed of AP propogation has been studied. The local irradiation of a little segments of nerve by particles having high LET has been used. The differences in dose curves of AP parameters were detected both during the influence of particles, and during the influence of particles on a nerve treated with isopropyl alcohol. The results showed the AP amplitude reducing that was more expressed in case of alpha-particles, and the AP speed decreasing that was more expressed in case of deuterons. During irradiation, the AP blocked by isopropyl alcohol was rehabilitated, and then was disappeared irreversible. The injury of nerve during irradiation had local character and did not influence on neighbor non-irradiated regions.  相似文献   

16.
17.
Molecular Biology - Na,K-ATPase maintains sodium and potassium homeostasis. It is the only known receptor for cardiotonic steroids such as ouabain. Binding of ouabain to Na,K-ATPase leads to the...  相似文献   

18.
《The Journal of cell biology》1987,105(6):2613-2619
The protease sensitivity of the catalytic alpha-subunit of Na,K-ATPase during intracellular transport along the exocytic pathway has been investigated in two amphibian epithelial cell lines. Controlled trypsinolysis followed by immunoprecipitation of cell homogenates or microsomal fractions from [35S]methionine pulse-chased A6 kidney cells revealed distinct cleavage patterns by SDS-PAGE. Shortly after synthesis (7-min pulse), the 98-kD alpha-subunit is fully sensitive to trypsin digestion and is cleaved into a 35-kD membrane-bound and a 27.5- kD soluble peptide. With a 15-min pulse, 10% of the newly synthesized polypeptide becomes resistant to trypsin digestion. With longer chase time, the proportion of protease-resistant alpha-subunit further increases. Concomitantly, the alpha-subunit acquires the ability to undergo cation-dependent conformational transitions, as reflected by distinct tryptic digest patterns in the presence of Na+ or K+. Similar results were obtained in TBM cells, a toad bladder cell line. Our data indicate that the catalytic subunit of Na,K-ATPase is structurally rearranged during intracellular transport from its site of synthesis to its site of action at the cell surface, a modification which might mark the functional maturation of the enzyme.  相似文献   

19.
20.
The accessibility of the tryptophans in dog kidney Na,K-ATPase was studied with the technique of quenching by acrylamide. By use of a modified Stern-Volmer equation, fa, the effective fraction of tryptophans most exposed to quencher, and Ka, the effective quenching constant, were calculated. The direct Stern-Volmer plots are nonlinear under nondenaturing conditions, indicating that the tryptophan residues are unequally accessible to quencher. Modified Stern-Volmer plots revealed marked differences in the exposure of tryptophans in the E1 and E2 states. In the presence of Na or ADP, ligands that stabilize E1, these plots curve downward, indicating that the in addition to buried (unquenched) tryptophans, there is a heterogeneous class of tryptophans. In the presence of K or ouabain, conditions that favor E2, the modified Stern-Volmer plots are linear, consistent with a homogeneous population of tryptophans. Treatment with chymotrypsin to block the E1 to E2 transition results in a new set of quenching parameters which are unchanged with Na or K. Even after detergent denaturation (1% sodium dodecyl sulfate for 30 min), Stern-Volmer plots are nonlinear, and a significant fraction of tryptophan residues remain inaccessible to quencher. Denaturation with urea or guanidine HCl plus dithiothreitol increases the fraction of quenchable fluorescence even more, but still a small fraction, about 7-13%, is buried. The observed changes in exposure of the tryptophan residues would seem to account for the differences in intrinsic fluorescence seen on adding K and Na to Na,K-ATPase. The present results provide new evidence that a significant rearrangement of amino acid residues results from the E1 to E2 transition. Furthermore, a region of the molecule is inaccessible even after denaturation; this may correspond to highly hydrophobic stretches that are normally buried in the membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号