首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetic parameters of [8-(14)C]adenosine transport by a general nucleoside uptake system were studied in germinated conidia of the ad 8 strain of Neurospora crassa. The apparent K(m) for adenosine uptake by this system was found to be 6.2 muM. The apparent K(i) values for other nucleosides competing with adenosine for uptake were measured by using Dixon plots. Nucleosides which were efficient competitive inhibitors of adenosine transport were found to inhibit severely the rate of growth of strain ad-8 on adenosine-supplemented medium. Xanthosine and thymidine did not inhibit [8-(14)C]adenosine uptake as severely as other nucleosides, nor did they cause significant inhibition of ad-8 growth rate on adenosine.  相似文献   

2.
1) ADP was a potent inhibitor of the ascorbic-2-sulfate sulfohydrolase activity of Charonia lampas liver. The inhibition was competitive with respect to ascorbate 2-sulfate. The Ki value was 5.9 muM. ADP did not inhibit arylsulfatase (EC 3.1.6.1) of the same organism. 2) Other nucleoside 5'-diphosphates and GTP showed similar inhibition of ascorbate-2-sulfate sulfohydrolase activity. 3) The effects of different nucleosides, nucleotides, and sugar phosphates on ascorbate-2-sulfate sulfohydrolase activity were investigated. Phosphate derivatives other than 3',5'-cyclic AMP were more or less inhibitory.  相似文献   

3.
Nucleoside transport was examined in freshly isolated mouse intestinal epithelial cells. The uptake of formycin B, the C nucleoside analog of inosine, was concentrative and required extracellular sodium. The initial rate of sodium-dependent formycin B transport was saturable with a Km of 45 +/- 3 microM. The purine nucleosides adenosine, inosine, guanosine, and deoxyadenosine were all good inhibitors of sodium-dependent formycin B transport with 50% inhibition (IC50) observed at concentrations less than 30 microM. Of the pyrimidine nucleosides examined, only uridine (IC50, 41 +/- 9 microM) was a good inhibitor. Thymidine and cytidine were poor inhibitors with IC50 values greater than 300 microM. Direct measurements of [3H]thymidine transport revealed, however, that the uptake of this nucleoside was also mediated by a sodium-dependent mechanism. Thymidine transport was inhibited by low concentrations of cytidine, uridine, adenosine, and deoxyadenosine (IC50 values less than 25 microM), but not by formycin B, inosine, or guanosine (IC50 values greater than 600 microM). These data indicate that there are two sodium-dependent mechanisms for nucleoside transport in mouse intestinal epithelial cells, and that formycin B and thymidine may serve as model substrates to distinguish between these transporters. Neither of these sodium-dependent transport mechanisms was inhibited by nitrobenzylmercaptopurine riboside (10 microM), a potent inhibitor of one of the equilibrative (facilitated diffusion) nucleoside transporters found in many cells.  相似文献   

4.
From a mutagenized population of S49 murine T lymphoma cells, a mutant cell line, JPA4, was selected that expressed an altered nucleoside transport capability. JPA4 cells transported low concentrations of purine nucleosides and uridine more rapidly than the parental S49 cell line. The transport of these nucleosides by mutant cells was insensitive to inhibition by either dipyridamole (DPA) or 4-nitrobenzylthioinosine (NBMPR), two potent inhibitors of nucleoside transport in mammalian cells. Kinetic analyses revealed that the apparent Km values for the transport of uridine, adenosine, and inosine were 3-4-fold lower in JPA4 cells compared to wild type cells. In contrast, the transport of both thymidine and cytidine by JPA4 cells was similar to that of parental cells, and transport of these pyrimidine nucleosides remained sensitive to inhibition by both NBMPR and DPA. Furthermore, thymidine was a 10-12-fold weaker inhibitor of inosine transport in JPA4 cells than in wild type cells. Thus, JPA4 cells appeared to express two types of nucleoside transport activities; a novel (mutant) type that was insensitive to inhibition by DPA and NBMPR and transported purine nucleosides and uridine, and a parental type that retained sensitivity to inhibitors and transported cytidine and thymidine. The phenotype of the JPA4 cell line suggests that the sensitivity of mammalian nucleoside transporters to both NBMPR and DPA can be genetically uncoupled from its ability to transport certain nucleoside substrates and that the determinants on the nucleoside transporter that interact with each nucleoside are not necessarily identical.  相似文献   

5.
Human placental adenosine kinase. Kinetic mechanism and inhibition   总被引:4,自引:0,他引:4  
The kinetic properties of human placental adenosine kinase, purified 3600-fold, were studied. The reaction velocity had an absolute requirement for magnesium and varied with the pH. Maximal activity was observed at pH 6.5 with a Mg2+:ATP ranging from 1:1 to 2:1. High concentrations of Mg2+ or free ATP were inhibitory. Double reciprocal plots of initial velocity studies yielded intersecting lines for both adenosine and MgATP2-. The Michaelis constant was 0.4 micro M for adenosine and 75 micro M for MgATP2-. Inhibition by adenosine was observed at concentrations greater than 2.5 micro M. AMP was a competitive inhibitor with respect to adenosine and a noncompetitive inhibitor with respect to ATP. ADP was a noncompetitive inhibitor with respect to adenosine and ATP. Hyperbolic inhibition was observed during noncompetitive inhibition of adenosine kinase by AMP and ADP. Other purine and pyrimidine nucleoside mono-, di-, and triphosphates were poor inhibitors in general. S-Adenosylhomocysteine and 2'-deoxyadenosine inhibited adenosine kinase. The data suggest that (a) MgATP2- is the true substrate of adenosine kinase, and both pH and [Mg2+] may regulate its activity; (b) the kinetic mechanisms of adenosine kinase is Ordered Bi Bi; and (c) adenosine kinase may be regulated by the concentrations of its products, AMP and ADP, but is relatively insensitive to other purine and pyrimidine nucleotides.  相似文献   

6.
Initial velocity studies and product inhibition patterns for purine nucleoside phosphorylase from rabbit liver were examined in order to determine the predominant catalytic mechanism for the synthetic (forward) and phosphorolytic (reverse) reactions of the enzyme. Initial velocity studies in the absence of products gave intersecting or converging linear double reciprocal plots of the kinetic data for both the synthetic and phosphorolytic reactions of the enzyme. The observed kinetic pattern was consistent with a sequential mechanism, requiring that both substrates add to the enzyme before products may be released. The product inhibition patterns showed mutual competitive inhibition between guanine and guanosine as variable substrates and inhibitors. Ribose 1-phosphate and inorganic orthophosphate were also mutually competitive toward each other. Other combinations of substrates and products gave noncompetitive inhibition. Apparent inhibition constants calculated for guanine as competitive inhibitor and for ribose 1-phosphate as noncompetitive inhibitor of the enzyme, with guanosine as variable substrate, did not vary significantly with increasing concentrations of inorganic orthophosphate as fixed substrate. These results suggest that the mechanism was order and that substrates add to the enzyme in an obligatory order. Dead end inhibition studies carried out in the presence of the products guanine and ribose 1-phosphate, respectively, showed that the kinetically significant abortive ternary complexes of enzyme-guanine-inorganic orthophosphate (EQB) and enzyme-guanose-ribose 1-phosphate (EAP) are formed. The results of dead end inhibition studies are consistent with an obligatory order of substrate addition to the enzyme. The nucleoside or purine is probably the first substrate to form a binary complex with the enzyme, and with which inorganic orthophosphate or ribose 1-phosphate may interact as secondary substrates. The evidences presented in this investigation support an Ordered Theorell-Chance mechanism for the enzyme.  相似文献   

7.
Uridine kinase (ATP: uridine 5'-phosphotransferase, EC 2.7.1.48) has been partially purified from ungerminated hybrid corn seed. It is associated with a soluble high molecular weight fraction from which it apparently cannot be dissociated without loss of activity. The stability of the enzyme is enhanced by the addition of dithiothreitol, glycerol and nucleotide substrate. The nucleoside specificity of the enzyme is limited to nucleosides containing pyrimidine and ribose moieties, such as uridine and cytidine. High concentrations of nucleosides cause substrate inhibition, however. The Km values for uridine and cytidine are 53 muM and 125 muM, respectively, and under subsaturating conditions uridine is phosphorylated about five times faster than cytidine. The reaction follows an ordered Bi Bi kinetic pattern, with ATP and ADP in competition for the free form of the enzyme. Purine, but not pyrimidine, nucleoside triphosphates serve as phosphate donors without regard to the sugar moiety. However, all of these triphosphates appear to compete for the same site on the enzyme. (Km ATP equals 590 muM, Km (app) GTP equals 61 muM, and CTP and UTP are linear competitive inhibitors against ATP, with Ki values of 60 muM and 240 muM, respectively.) Therefore, end product control of uridine kinase apparently does not involve allosteric sites, but instead is envisioned as simple competition between relatively effective or ineffective phosphate donors for a position on the enzyme.  相似文献   

8.
We have previously shown that purine riboside, when bound to adenosine deaminase, forms a complex in which C-6 of the purine is tetrahedral [Kurz, L. C., & Frieden, C. (1987) Biochemistry 26, 8450]. We now report the rates of formation of enzyme-inhibitor complexes of two types, those which do and those which do not form such tetrahedral intermediates. In both cases, the rates are encounter-controlled since the progress curves for formation of the complexes are well-described by a simple second-order approach to equilibrium and the rate constants show an inverse solvent viscosity dependence. Assuming that the formation of the intermediate-analogue complex is preceded by an initial ground-state analogue complex, the lifetime of that ground-state complex must be less than approximately 20 microseconds. All of the enzyme-inhibitor complexes studied share three characteristics: (1) the complexes generate large UV-difference spectra; (2) a substantial solvent isotope effect is found on the enzyme's affinity for the inhibitors; and (3) a new signal appears in the CD spectra of the complexes. Two of the nucleosides studied, 1-deazapurine riboside and 1-deaza-adenosine, form complexes which appear to mimic a ground-state rather than a reactive intermediate when bound to adenosine deaminase. We find that the values for the association rate constants for those inhibitors which form intermediate analogues are very similar to that for adenosine. The presence of a significant solvent isotope effect on the affinity of all inhibitors is attributable in part to a large transfer isotope effect on the free ligand and in part to an effect on the bound ligand. This complicates use of the solvent isotope effect in applications of the multiple isotope method for estimating intrinsic isotope effects and commitment factors.  相似文献   

9.
GMP synthetase (xanthosine-5'-phosphate: ammonia ligase (AMP-forming), EC 6.3.4.1) from Ehrlich ascites cells was found to be subject to multiple inhibition by its reaction product, PPi, and some analogs of adenosine. PPi and the nucleoside (N) inhibitors were also capable of individually inhibiting this enzyme. Under no conditions did the inhibition appear to be irreversible or "pseudoinactivating" in nature. The individual inhibition by PPi was competitive with respect to ATP (KI = 0.42 mM). Conversely, in the absence of PPi, the binding of N was noncompetitive with ATP, but shifted to a competitive pattern when PPi was present. Furthermore, with the inhibitors in concert, there was an apparent lowering of the KI values for both inhibitors. This data was consistent with either PPi functioning to tighten the binding of N at a noncatalytic site (positive cooperativity) or with PPi actually opening a second binding site for N in addition to the non-catalytic site. Although this study did not distinguish which of these events was occurring, it did reveal that the intensity of the effect of PPi appeared to be constant. That is, for various N inhibitors with a range of independently determined KI values from 26 to 1650 muM, the ratio of their KI values determined in the absence of PPi to the values determined in the presence of PPi was always 38 +/- 1.  相似文献   

10.
Membranes from guinea-pig lung exhibited high-affinity binding of [3H]dipyridamole, a potent inhibitor of nucleoside transport. Binding (apparent KD 2 nM) was inhibited by the nucleoside-transport inhibitors nitrobenzylthioinosine (NBMPR), dilazep and lidoflazine and by the transported nucleosides uridine and adenosine. In contrast, there was no detectable high-affinity binding of [3H]dipyridamole to lung membranes from the rat, a species whose nucleoside transporters exhibit a low sensitivity to dipyridamole inhibition. Bmax. values for high-affinity binding of [3H]dipyridamole and [3H]NBMPR to guinea-pig membranes were similar, suggesting that these structurally unrelated ligands bind to the NBMPR-sensitive nucleoside transporter with the same stoichiometry.  相似文献   

11.
Crithidia fasciculata cells grown on complex medium with added [8-14C, 5'-3H]inosine or [8-14C,5'-3H]adenosine metabolize greater than 50% of the salvaged nucleosides through a pathway involving N-glycoside bond cleavage. Cell extracts contain a substantial nucleoside hydrolase activity but an insignificant purine nucleoside phosphorylase. The nucleoside hydrolase has been purified 1000-fold to greater than 99% homogeneity from kilogram quantities of C. fasciculata. The enzyme is a tetramer of Mr 34,000 subunits to give an apparent holoenzyme Mr of 143,000 by gel filtration. All of the commonly occurring nucleosides are substrates. The Km values vary from 0.38 to 4.7 mM with purine nucleosides binding more tightly than the pyrimidines. Values of Vmax/Km vary from 3.4 x 10(3) M-1 s-1 to 1.7 x 10(5) M-1 s-1 with the pyrimidine nucleosides giving the larger values. The turnover rate for inosine is 32 s-1 at 30 degrees C. The kinetic mechanism with inosine as substrate is rapid equilibrium with random product release. The hydrolytic reaction can be reversed to give an experimental Keq of 106 M with H2O taken as unity. The product dissociation constants for ribose and hypoxanthine are 0.7 and 6.2 mM, respectively. Deoxynucleosides or 5'-substituted nucleosides are poor substrates or do not react, and are poor inhibitors of the enzyme. The enzyme discriminates against methanol attack from solvent during steady-state catalysis, indicating the participation of an enzyme-directed water nucleophile. The pH profile for inosine hydrolysis gives two apparent pKa values of 6.1 with decreasing Vmax/Km values below the pKa and a plateau at higher pH values. These effects are due to the pH sensitivity of the Vmax values, since Km is independent of pH. The pH profile implicates two negatively charged groups which stabilize a transition state with oxycarbonium character.  相似文献   

12.
The 5'-phosphomonoesterase activity of 5'-nucleotidase (EC 3.1.3.5) and alkaline phosphatase (EC 3.1.3.5) participates in the catabolism of purine ribonucleotides to uric acid in humans. Initial velocity studies of 5'-nucleotidase suggest a sequential mechanism of interaction between AMP nad MgCl2, with a Km of 14 and 3 muM, respectively. With product inhibition studies the apparent Ki's for adenosine, inosine, cytidine, and inorganic phosphate were 0.4, 3.0, 5.0, and 42 mM, respectively. A large number of nucleoside mono-, di-, and tri-phosphate compounds were inhibitors of the enzyme. Allopurinol ribonucleotide, ADP, or ATP were competitive inhititors when AMP was the substrate, with a Ki slope of 120 muM. The phosphomonoesterase activity of human placental microsomal alkaline phosphatase had a pH optimum of 10.0 and had only 18% of maximum activity at pH 7.4. Substrates and inhibitors included almost any phosphorylated compound. The Km for AMP was 0.4 mM and the apparent Ki for Pi was 0.6 mM. Activity was increased only 19% by 5 mM MgCl2. These observations suggest that 5'-nucleotidase and alkaline phosphatase may be inhibited by ATP and Pi, respectively, under normal intracellular conditions, and that AMP may be preferentially hydrolyzed by 5'-nucleotidase.  相似文献   

13.
The interaction of nucleosides with the glucose carrier of human erythrocytes was examined by studying the effect of nucleosides on reversible cytochalasin B-binding activity and glucose transport. Adenosine, inosine and thymidine were more potent inhibitors of cytochalasin B binding to human erythrocyte membranes than was D-glucose [IC50 (concentration causing 50% inhibition) values of 10, 24, 28 and 38 mM respectively]. Moreover, low concentrations of thymidine and adenosine inhibited D-glucose-sensitive cytochalasin B binding in an apparently competitive manner. Thymidine, a nucleoside not metabolized by human erythrocytes, inhibited glucose influx by intact cells with an IC50 value of 9 mM when preincubated with the erythrocytes. In contrast, thymidine was an order of magnitude less potent as an inhibitor of glucose influx when added simultaneously with the radioactive glucose. Consistent with this finding was the demonstration that glucose influx by inside-out vesicles prepared from human erythrocytes was more susceptible to thymidine inhibition than glucose influx by right-side-out vesicles. These data, together with previous suggestions that cytochalasin B binds to the glucose carrier at the inner face of the membrane, indicate that nucleosides are capable of inhibiting glucose-transport activity by interacting at the cytoplasmic surface of the glucose transporter. Nucleosides may also exhibit a low-affinity interaction at the extracellular face of the glucose transporter.  相似文献   

14.
Rabbit brain purine nucleoside phosphorylase used in this study was purified 6000-fold to apparent homogeneity and a specific activity or 50 μmol min?1 mg ?1 protein. A molecular weight of 70.000 daltons was determined for the native enzyme by gel filtration on Sephadex. Electrophoresis on polyacrylamide gel, in presence of sodium dodecyl sulfate, gave a subunit molecular weight of 34,500 daltons, suggesting that the enzyme is dimeric with, probably, identical subunits. The relationship of the structure of certain biologically active substances to their inhibitory action on the enzyme was examined. Folic acid and the compound d,l-6-methyl 5,6,7,8-tetrahydropterine, with similar substituents on their primary ring structure, were competitive inhibitors of the enzyme. The inhibition constants calculated were 3.37 × 10?5M for folic acid and 3.80 × 10?5m for d,l-6-methyl 5,6,7,8-tetrahydropterine. Aminopterin and the purine analog 8-aza-2,6-diaminopurine, with similar substituents on their primary ring structure, were noncompetitive inhibitors of the enzyme. Their respective inhibition constants were 1.50 × 10?4 and 1.95 × 10?4m. Erythro-9-(2-hydroxy-3-nonyl) adenine, an adenosine deaminase inhibitor, was also examined for inhibitory potency with mammalian purine nucleoside phosphorylase, and was observed to be a competitive inhibitor of this enzyme, with an inhibition constant of 1.90 × 10?4m. The Michaelis constant for the substrate guanosine was near 6.0 × 10?5m. Physical probe of the nature of the functional groups which participate in enzymic catalysis implicated both histidine and cysteine as the essential catalytic species. Photooxidation studies suggested a pH-dependent sensitivity of an essential catalytic group, and its probable location at the active site.  相似文献   

15.
J Burton  K Poulsen  E Haber 《Biochemistry》1975,14(17):3892-3898
Previously we reported the development of competitive inhibitors of renin effective at pH 5.5 (Poulsen, K., Burton, J., and Haber, E. (1973), Biochemistry 12, 3877). At physiologic pH (7.5), the inhibitory constants (Ki) increased and solubility decreased to the point that inhibition could not be demonstrated with these peptides. Modification of the octapeptide sequence, His-Pro-Phe-His-Leu-Leu-Val-Tyr, either by addition of serinol to the carboxyl terminus or by replacement of valine-7 with an isosteric threonyl residue failed to yield peptides active at pH 7.5. Attachment of polyproline sequences to the amino terminus increased solubility from threefold to tenfold and decreased Ki so that competitive inhibition was demonstrable at physiologic pH. In addition, if leucine-6 was replaced in these peptides with a phenylalanyl or tyrosyl residue, Ki decreased (3-12 muM) to give effective competitive inhibitors at physiologic pH in both buffer and in plasma.  相似文献   

16.
Organomercurials form stable stoichiometric complexes with thiolated nucleosides. The complexes inhibited uptake of ribonucleosides and cytosine arabinoside (CAR) in various types of normal and transformed cells. The inhibition was competitive and reversible (Ki = 3--6 micrometer). The interaction between complexes and transport system displayed a 1:1 stoichiometry. Chemical factors which contributed to the inhibitory power were evaluated with a series of S-alkylated derivatives and S--Hg--R complexes of mercaptonucleosides. The inhibitory potency was not determined exclusively by the hydrophobic nature of either the S-alkylated or the S--Hg--R moieties. Chemical modification of cells with penetrating and nonpenetrating organomercurials lead to stimulation of nucleoside uptake and to an increase in its susceptibility to inhibition by S--Hg--R complexes or S-aklylated derivatives of mercaptopurine ribosides. The kinetic and chemical data obtained with nucleoside analogs and with chemical modifiers suggested complex features of nucleoside transport systems. Four distinct classes of sites were implied: (i) a substrate binding site susceptible directly to competitive inhibition by organomercurial-mercaptonucleoside complexes, (ii) an additional site susceptible either to S-arylalkylated or S-mercuriated derivatives of 6-mercaptopurine ribosides, (iii) SH-containing modifier sites which stimulate uridine uptake upon binding of organomercurials, and (iv) SH-containing modifier sites which inhibit the function upon binding of organomercurials. From the observation that only SH sites related to stimulation were susceptible to modification by macromolecular-SH modifier probes, some conclusions can be drawn regarding the disposition of the various sites in the cell membrane in general and among membrane components in particular.  相似文献   

17.
Energetics and mechanism of actomyosin adenosine triphosphatase.   总被引:17,自引:0,他引:17  
H D White  E W Taylor 《Biochemistry》1976,15(26):5818-5826
Rate constants were determined for the reaction of actin with subfragment 1 (S1), S1-product complex, heavy meromyosin (HMM), and HMM-products complex for a range of temperatures, pH's, and ionic strengths. For actin concentrations up to 10 muM, the rate of reassociation of the product intermediate was equal to the rate of actomyosin subfragment 1 (acto-S1) or acto-HMM adenosine triphosphatase (ATPase). Therefore, under these conditions, the only important pathway for adenosine triphosphate hydrolysis is through the dissociation and recombination of S1 or HMM. The apparent rate constants for the association of S1 and S1-product with actin showed a similar large ionic strength dependence. The S1-product reaction had a large temperature dependence paralleling the rate of acto-S1 ATPase, while the reaction with S1 had a much smaller variation with temperature. The low value of the rate constant for the S1-product reaction and its relationship to the s1 areaction suggests that the apparent rate constant does not measure a simple second-order reaction. A plausible mechanism is a rapid equilibrium for the binding step, followed by a transition (product release) which increases the association constant. A refractory state could also reduce the apparent rate constant of recombination. An approximate assignment of equilibrium constants for the acto-S1 ATPase reaction was made based on the interpretation of the present evidence and equilibrium constnats for the S1 ATPase.  相似文献   

18.
The transport of nucleosides by LLC-PK1 cells, a continuous epithelial cell line derived from pig kidney, was characterised. Uridine influx was saturable (apparent Km approximately 34 microM at 22 degrees C) and inhibited by greater than 95% by nitrobenzylthioinosine (NBMPR), dilazep and a variety of purine and pyrimidine nucleosides. In contrast to other cultured animal cells, the NBMPR-sensitive nucleoside transporter in LLC-PK1 cells exhibited both a high affinity for cytidine (apparent Ki approximately 65 microM for influx) and differential 'mobility' of the carrier (the kinetic parameters of equilibrium exchange of formycin B are greater than those for formycin B influx). An additional minor component of sodium-dependent uridine influx in LLC-PK1 cells became detectable when the NBMPR-sensitive nucleoside transporter was blocked by the presence of 10 microM NBMPR. This active transport system was inhibited by adenosine, inosine and guanosine but thymidine and cytidine were without effect, inhibition properties identical to the N1 sodium-dependent nucleoside carrier in bovine renal outer cortical brush-border membrane vesicles (Williams and Jarvis (1991) Biochem. J. 274, 27-33). Late proximal tubule brush-border membrane vesicles of porcine kidney were shown to have a much reduced Na(+)-dependent uridine uptake activity compared to early proximal tubule porcine brush-border membrane vesicles. These results, together with the recent suggestion of the late proximal tubular origin of LLC-PK1 cells, suggest that in vivo nucleoside transport across the late proximal tubule cell may proceed mainly via a facilitated-diffusion process.  相似文献   

19.
The characteristics of nucleoside transport were examined in Walker 256 rat carcinosarcoma and S49 mouse lymphoma cells. In Walker 256 cells the initial rates of uridine, thymidine and adenosine uptake were insensitive to the nucleoside transport inhibitor nitrobenzylthioinosine (NBMPR) (1 microM), but were partially inhibited by dipyridamole (10 microM), another inhibitor of nucleoside transport. In contrast, the transport of these nucleosides in S49 cells was completely blocked by both inhibitors. Nucleoside transport in Walker 256 and S49 cells also differed in its sensitivity to the thiol reagent p-chloromercuribenzenesulphonate (pCMBS). Uridine transport in Walker 256 cells was inhibited by pCMBS with an IC50 (concentration producing 50% inhibition) of less than 25 microM, and inhibition was readily reversed by beta-mercaptoethanol. In S49 cells uridine transport was only inhibited at much higher concentrations of pCMBS (IC50 approximately equal to 300 microM). In other respects nucleoside transport in Walker 256 and S49 cells were quite similar. The Km and Vmax. values for uridine transport were nearly identical, and the transporters of both cell lines appeared to accept a broad range of nucleosides as substrates. Uridine transport in Walker 256 cells was non-concentrative and did not require an energy source. These studies demonstrate that nucleoside uptake in Walker 256 cells is mediated by a facilitated-diffusion mechanism which differs markedly from that of S49 cells in its sensitivity to the transport inhibitor NBMPR and the thiol reagent pCMBS.  相似文献   

20.
1. Intact mouse neuroblastoma NS20 cells, in the presence of cyclic adenosine 3':5'-monophosphate (cAMP) phosphodiesterase inhibitor, responded to adenosine (200 muM) and 2-chloroadenosine (200 muM) with a 20-fold increase in intracellular cAMP levels. AMP (200 muM) additions caused only a 3.5-fold cAMP level elevation. ATP, ADP, guanosine, cytidine, uridine, and guanine, all at 200 muM, had no effect on the cAMP level of these cells. 2. Homogenate NS20 adenylate cyclase activity was increased 2.5- to 4-fold by addition of 200 muM adenosine, 2-chloroadenosine, 2-hydroxyadenosine, or 8-methylaminoadenosine. Prostaglandin E1 additions (1.4 muM) produced about an 8-fold stimulation of homogenate cyclase activity. The Km of homogenate cyclase activation by adenosine and 2-chloroadenosine was 67.6 and 6.7 muM, respectively. Addition of 7-deazaadenosine, tolazoline, yohimbine, guanosine, cytosine, guanine, 2-deoxy-AMP, and adenine 9-beta-D-xylopyranoside, all at 200 muM were found to be without effect on homogenate NS20 adenylate cyclase. Two classes of inhibitors of homogenate NS20 adenylate cyclase activity were observed. One class, which included AMP, adenine, and theophylline, blocked 2-chloroadenosine but not prostaglandin E1 stimulation of cyclase. Theophylline was shown to be a competitive inhibitor of 2-chloroadenosine, with a Ki of 35 muM. The second class of inhibitors, which included 2'- and 5'-deoxyadenosine, inhibited unstimulated, 2-chloroadenosine and prostaglandin E1-stimulated homogenate cyclase activity to about the same degree. 3. Activation of NS20 homogenate adenylate cyclase by adenosine appears to be noncooperative. 4. The inhibitory action of putative "purinergic" neurotransmitters is postulated to be due to their effects on adenylate cyclase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号