首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SYNOPSIS. Mitochondrial and supernatant fractions were isolated from Crithidia fasciculata by grinding with neutral alumina and differential centrifugation. Supernatant fractions contained at least 2 NAD-linked enzymes: an α-glycerophosphate dehydrogenase and a malate dehydrogenase. The properties of these enzymes were investigated polarographically with phenazine ethosulfate acting as electron acceptor. Agaricic acid, cinnamic acid and p-NO2-cinnamic acid were specific inhibitors of the α-glycerophosphate dehydrogenase. Succinate, malate, DL-α-glycerophosphate and NADH stimulated respiration of mitochondrial preparations; O2 uptake was greatest with succinate. KCN and antimycin A inhibited succinate respiration more than α-glycerophosphate respiration. Amytal did not affect succinate, α-glycerophosphate or NADH oxidation. The trypanocide suramin inhibited mitochondrial respiration at least 77% with each substrate. The relevance of these results to other members of the Trypanosomatidae is discussed.  相似文献   

2.
Characterization of Starch-Debranching Enzymes in Pea Embryos   总被引:5,自引:0,他引:5       下载免费PDF全文
Two distinct types of debranching enzymes have been identified in developing pea (Pisum sativum L.) embryos using native gel analysis and tests of substrate preference on purified or partially purified activities. An isoamylase-like activity capable of hydrolyzing amylopectin and glycogen but not pullulan is present throughout development and is largely or entirely confined to the plastid. Activities capable of hydrolyzing pullulan are present both inside and outside of the plastid, and extraplastidial activity increases relative to the plastidial activity during development. Both types of debranching enzyme are also present in germinating embryos. We argue that debranching enzymes are likely to have a role in starch metabolism in the plastid of the developing embryo and in starch degradation during germination.  相似文献   

3.
Enzymes     
  相似文献   

4.
5.
Enzymes     
《Protoplasma》1931,12(1):312-312
  相似文献   

6.
7.
 <正> 葡萄糖异构酶(GI)将糖化酶(GA)的水解淀粉产物葡萄糖转化为果糖。这二种酶是生产高果糖浆(HFCS)不可缺少的酶。我们根据离子型载体可以改变固定化酶最适PH的道理,将GA固定在磺酸型聚苯乙烯载体上,其最适pH由4.6移到了6.8。将GI固定在季胺多羟基聚苯乙烯载体上,其PH-活力曲线变宽,在pH7.0的活力由48%提高到66%。本文首次创建了使两种酶的最适PH相向移动的双酶共反应体系。其意义在于更加广泛地利用固定化多酶体系的动力学优势。  相似文献   

8.
9.
10.
11.
The biological importance of tungsten has been fully proved in the last decade due to isolation of a number of tungsten-containing enzymes (W-enzymes) from hyperthermophilic archaea. Tungsten was previously considered only as an antagonist of molybdenum, because the replacement of molybdenum by tungsten (due to their chemical similarity) leads to inactivation of molybdenum containing enzymes (Mo-enzymes). In addition to the true W-enzymes in which tungsten cannot be replaced by molybdenum, recently some enzymes have been isolated which can use either molybdenum or tungsten in the catalytic process. This review briefly summarizes data on the participation of tungsten in catalysis by some enzymes and the structure of the active sites of W-enzymes.  相似文献   

12.
13.
Carotenoid degradation products, known as norisoprenoids, are aroma‐impact compounds in several plants. Pandan wangi is a common name of the shrub Pandanus amaryllifolius. The genus name ‘Pandanus’ is derived from the Indonesian name of the tree, pandan. In Indonesia, the leaves from the plant are used for several purposes, e.g., as natural colorants and flavor, and as traditional treatments. The aim of this study was to determine the cleavage of β‐carotene and β‐apo‐8′‐carotenal by carotenoid‐cleavage enzymes isolated from pandan leaves, to investigate dependencies of the enzymatic activities on temperature and pH, to determine the enzymatic reaction products by using Headspace Solid Phase Microextraction Gas Chromatography/Mass Spectrophotometry (HS‐SPME GC/MS), and to investigate the influence of heat treatment and addition of crude enzyme on formation of norisoprenoids. Crude enzymes from pandan leaves showed higher activity against β‐carotene than β‐apo‐8′‐carotenal. The optimum temperature of crude enzymes was 70°, while the optimum pH value was 6. We identified β‐ionone as the major volatile reaction product from the incubations of two different carotenoid substrates, β‐carotene and β‐apo‐8′‐carotenal. Several treatments, e.g., heat treatment and addition of crude enzymes in pandan leaves contributed to the norisoprenoid content. Our findings revealed that the crude enzymes from pandan leaves with carotenoid‐cleavage activity might provide a potential application, especially for biocatalysis, in natural‐flavor industry.  相似文献   

14.
Target spot, caused by the fungus Corynespora cassiicola, has become a serious foliar disease in soybean production in the Brazilian Cerrado. Information in the literature regarding the biochemical defence responses of soybean to C. cassiicola infection is rare. Therefore, the objective of this study was to determine the biochemical features associated with soybean resistance to target spot. The activities of chitinases (CHI), β‐1‐3‐glucanases (GLU), phenylalanine ammonia‐lyases (PAL), peroxidases (POX), polyphenol oxidases (PPO) and lipoxygenases (LOX), as well as the concentrations of total soluble phenolics (TSP) and lignin‐thioglycolic acid (LTGA) derivatives, were determined in soybean leaves from both a resistant (FUNDACEP 59) and a susceptible (TMG 132) cultivar. The target spot severity, number of lesions per cm2 of leaflet and area under the disease progress curve were significantly lower for plants from cv. FUNDACEP 59 compared to plants from cv. TMG 132. The GLU, CHI, PAL, POX and PPO activities and the concentration of LTGA derivatives increased significantly, whereas LOX activity decreased significantly on the leaves infected by C. cassiicola. Inoculated plants from cv. FUNDACEP 59 showed a higher PPO activity and concentrations of TSP and LTGA derivatives at 4 and 6 days after inoculation compared to plants from cv. TMG 132. In conclusion, the results of this study demonstrated that the defence‐related enzyme activities increased upon C. cassiicola infection, regardless of the basal level of resistance of the cultivar studied. The increases in PPO activity and concentrations of TSP and LTGA derivatives, but lower LOX activity, at early stages of C. cassiicola infection were highly associated with soybean resistance to target spot.  相似文献   

15.
The endosomal deubiquitylase USP8 has profound effects on endosomal morphology and organisation. Previous reports have proposed both positive (EGFR, MET) and negative roles in the down‐regulation of receptors (Frizzled, Smoothened). Here we report an additional influence of USP8 on the retromer‐dependent shuttling of ci‐M6PR between the sorting endosome and biosynthetic pathway. Depletion of USP8 leads to a steady state redistribution of ci‐M6PR from the Trans‐Golgi Network (TGN) to endosomal compartments. Consequently we observe a defect in sorting of lysosomal enzymes, evidenced by increased levels of unprocessed Cathepsin D, which is secreted into the medium. The normal distribution of receptor can be restored by expression of siRNA‐resistant USP8 but not by a catalytically inactive mutant or a truncated form, lacking a MIT domain required for endosomal localisation. We suggest that effects of USP8 depletion may reflect the loss of ESCRT‐0 components which associate with retromer components Vps35 and SNX1, whilst failure to efficiently deliver lysosomal enzymes may also contribute to the observed block in receptor tyrosine kinase degradation.   相似文献   

16.
Embryonic stem (ES) cells are derived from the inner cell mass of the blastocyst and can give rise to all cell types in the body. The fate of ES cells depends on the signals they receive from their surrounding environment, which either promote self-renewal or initiate differentiation. Heparan sulfate proteoglycans are macromolecules found on the cell surface and in the extracellular matrix. Acting as low-affinity receptors on the cell surface, heparan sulfate (HS) side chains modulate the functions of numerous growth factors and morphogens, having wide impact on the extracellular information received by cells. ES cells lacking HS fail to differentiate but can be induced to do so by adding heparin. ES cells defective in various components of the HS biosynthesis machinery, thus expressing differently flawed HS, exhibit lineage-specific effects. Here we discuss recent studies on the biological functions of HS in ES cell developmental processes. Since ES cells have significant potential applications in tissue/cell engineering for cell replacement therapies, understanding the functional mechanisms of HS in manipulating ES cell growth in vitro is of utmost importance, if the stem cell regenerative medicine from scientific fiction ever will be made real.  相似文献   

17.
Enzymes of Fatty Acid β-Oxidation in Developing Brain   总被引:1,自引:1,他引:0  
Developmental profiles were determined for the activities of eight enzymes involved in fatty acid beta-oxidation in rat brain. The enzymes studied were the palmitoyl-CoA, octanoyl-CoA, butyryl-CoA, glutaryl-CoA, and 3-hydroxyacyl-CoA dehydrogenases, the enoyl-CoA hydratase (crotonase), and the C4- and C10-thiolases. With the exception of the thiolases, all of the activities (expressed on the basis of brain weight) increased during the postnatal period of brain maturation. The activity of octanoyl-CoA dehydrogenase was elevated markedly compared to that of palmitoyl-CoA dehydrogenase at all developmental stages and in all brain regions in the rat. A similar relationship between these enzymes was observed in various regions of adult human brain. Comparisons of the activities of the beta-oxidation enzymes in human brain versus human skeletal muscle and in cultured neural cell lines (neuroblastoma and glioma) versus cultured skin fibroblasts revealed that the elevated activity of octanoyl-CoA dehydrogenase relative to palmitoyl-CoA dehydrogenase was specific to the neural tissues. This relationship was particularly evident when the enzyme activities were normalized to the activity of crotonase. The data support previous findings with radiochemical tracers, indicating that the brain is capable of utilizing fatty acids as substrates for oxidative energy metabolism. The relatively high activity of the medium-chain fatty acyl-CoA dehydrogenase in neural tissue may represent an adaptive mechanism to protect the brain from the known encephalopathic effects of octanoate and other medium-chain fatty acids that readily cross the blood-brain barrier.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号