首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plants are sensitive to D-serine, but functional expression of the dsdA gene, encoding D-serine ammonia lyase, from Escherichia coli can alleviate this toxicity. Plants, in contrast to many other organisms, lack the common pathway for oxidative deamination of D-amino acids. This difference in metabolism has major consequences for plant responses to D-amino acids, since several D-amino acids are toxic to plants even at relatively low concentrations. Therefore, introducing an enzyme specific for a phytotoxic D-amino acid should generate a selectable characteristic that can be screened. Here we present the use of the dsdA gene as a selectable marker for transformation of Arabidopsis. D-serine ammonia lyase catalyses the deamination of D-serine into pyruvate, water and ammonium. dsdA transgenic seedlings can be clearly distinguished from wild type, having an unambiguous phenotype immediately following germination when selected on D-serine containing medium. The dsdA marker allows flexibility in application of the selective agent: it can be applied in sterile plates, in foliar sprays or in liquid culture. Selection with D-serine resistance was compared with selection based on kanamycin resistance, and was found to generate similar transformation frequencies but also to be more unambiguous, more rapid and more versatile with respect to the way the selective agent can be supplied.  相似文献   

2.
从荧光假单胞菌TM5-2中得到一个含丙氨酸消旋酶基因的DNA片段(8.8kb),相邻的一个开读框(ORF)与甘氨酸/D-型氨基酸氧化酶基因相似。该ORF经过克隆、表达,并没有检测到甘氨酸/D-型氨基酸氧化酶的活性,推导而得的氨基酸序列与D-型氨基酸脱氢酶序列比较发现,ORF含有D-型氨基酸脱氢酶的所有重要的保守序列。经TTC培养基鉴定,其具有D-型氨基酸脱氢酶的活性,并对一系列D-型氨基酸有作用,最佳作用底物是D-组氨酸。  相似文献   

3.
Reduced function of the N -methyl- d -aspartate receptor (NMDAR) has been implicated in the pathophysiology of schizophrenia. The NMDAR contains a glycine binding site in its NR1 subunit that may be a useful target for the treatment of schizophrenia. In this study, we assessed the therapeutic potential of long-term increases in the brain levels of the endogenous NMDAR glycine site agonist D-serine, through the genetic inactivation of its catabolic enzyme D-amino acid oxidase (DAO) in mice. The effects of eliminating DAO function were investigated in mice that display schizophrenia-related behavioral deficits due to a mutation ( Grin 1 D481N ) in the NR1 subunit that results in a reduction in NMDAR glycine affinity. Grin 1 D481N mice show deficits in sociability, prolonged latent inhibition, enhanced startle reactivity and impaired spatial memory. The hypofunctional Dao 1 G181R mutation elevated brain levels of D-serine, but alone it did not affect performance in the behavioral measures. Compared to animals with only the Grin 1 D481N mutation, mice with both the Dao1 G181R and Grin 1 D481N mutations displayed an improvement in social approach and spatial memory retention, as well as a reversal of abnormally persistent latent inhibition and a partial normalization of startle responses. Thus, an increased level of D-serine resulting from decreased catalysis corrected the performance of mice with deficient NMDAR glycine site activation in behavioral tasks relevant to the negative and cognitive symptoms of schizophrenia. Diminished DAO activity and elevations in D-serine may serve as an effective therapeutic intervention for the treatment of psychiatric symptoms.  相似文献   

4.
Amino acids are available to plants in some soils in significant amounts, and plants frequently make use of these nitrogen sources. The goal of this study was to identify transporters involved in the uptake of amino acids into root cells. Based on the fact that high concentrations of amino acids inhibit plant growth, we hypothesized that mutants tolerating toxic levels of amino acids might be deficient in the uptake of amino acids from the environment. To test this hypothesis, we employed a forward genetic screen for Arabidopsis thaliana mutants tolerating toxic concentrations of amino acids in the media. We identified an Arabidopsis mutant that is deficient in the amino acid permease 1 (AAP1, At1g58360) and resistant to 10 mm phenylalanine and a range of other amino acids. The transporter was localized to the plasma membrane of root epidermal cells, root hairs, and throughout the root tip of Arabidopsis. Feeding experiments with [(14)C]-labeled neutral, acidic and basic amino acids showed significantly reduced uptake of amino acids in the mutant, underscoring that increased tolerance of aap1 to high levels of amino acids is coupled with reduced uptake by the root. The growth and uptake studies identified glutamate, histidine and neutral amino acids, including phenylalanine, as physiological substrates for AAP1, whereas aspartate, lysine and arginine are not. We also demonstrate that AAP1 imports amino acids into root cells when these are supplied at ecologically relevant concentrations. Together, our data indicate an important role of AAP1 for efficient use of nitrogen sources present in the rhizosphere.  相似文献   

5.
D-Amino acids play a key role in regulation of many processes in living cells. FAD-dependent D-amino acid oxidase (DAAO) is one of the most important enzymes responsible for maintenance proper level of D-amino acids. The most interesting and important data for regulation of the nervous system, hormone secretion, and other processes by D-amino acids as well as development of different diseases under changed DAAO activity are presented. The mechanism of regulation is complex and multi-parametric because the same enzyme simultaneously influences the level of different D-amino acids, which can result in opposing effects. Use of DAAO for diagnostic and therapeutic purposes is also considered.  相似文献   

6.
The study reports on the development of a bioreactor for the production of alpha-keto acids from D,L- or D-amino acids using Rhodotorula gracilis D-amino acid oxidase. D-Amino acid oxidase was co-immobilized with catalase on Affi-Gel 10 matrix, and the reactor was operated as a continuous-stirred tank reactor (CSTR) or stirred tank with medium recycling conditions. The optimum substrate concentration and quantity of biocatalyst were determined (5 mM and 1.2 mg/L, respectively). Under optimum operating conditions, product formation was linearly related to both substrate and enzyme concentration, showing the system to be highly flexible. Under these conditions, in a stirred tank, over 90% conversion was achieved in 30 min with a maximum production of 0.23 g of pyruvic acid/day/enzyme units. Product was recovered by ion exchange chromatography. The operational stability of the reactor was high (up to 9.5 h of operation without loss of activity) and the inactivation half-life was not reached even after 18 h or 36 bioconversion cycles. This represents the first case of a reactor developed successfully with a D-amino acid oxidase. (c) 1994 John Wiley & Sons, Inc.  相似文献   

7.
To evaluate the quantitative and qualitative changes in amino acids related to internal nitrogen content and growth rate of Ulva ohnoi, the supply of nitrogen to outdoor cultures of the seaweed was manipulated by simultaneously varying water nitrogen concentrations and renewal rate. Both internal nitrogen content and growth rate varied substantially, and the quantitative and qualitative changes in amino acids were described in the context of three internal nitrogen states: nitrogen‐limited, metabolic, and luxury. The nitrogen limited state was defined by increases in all amino acids with increasing nitrogen content and growth up until 1.2% internal nitrogen. The metabolic nitrogen state was defined by increases in all amino acids with increasing internal nitrogen content up to 2.6%, with no increases in growth rate. Luxury state was defined by internal nitrogen content above 2.6%, which occurred only when nitrogen availability was high but growth rates were reduced. In this luxury circumstance, excess nitrogen was accumulated as free amino acids, in two phases. The first phase was distinguished by a small increase in the majority of amino acids up to ≈3.3% internal nitrogen, and the second by a large increase in glutamic acid, glutamine, and arginine up to 4.2% internal nitrogen. These results demonstrate that the relationship between internal nitrogen content and amino acid quality is dynamic but predictable, and could be used for the selective culture of seaweeds.  相似文献   

8.
用分子克隆手段获得D-氨基酸氧化酶基因后,对其在不同表达系统如大肠杆菌系统、酿酒酵母和克鲁维乳酸酵母、博伊丁假丝酵母、巴斯德毕赤氏酵母系统及动物细胞内的表达作了介绍。  相似文献   

9.
We here investigated whether an acute bout of endurance exercise would induce the expression of amino acid transporters that regulate leucine transport across plasma and lysosomal membranes in rat skeletal muscle. Rats ran on a motor-driven treadmill at a speed of 28 m/min for 90 min. Immediately after the exercise, we observed that expression of mRNAs encoding l-type amino acid transporter 1 (LAT1) and CD98 was induced in the gastrocnemius, soleus, and extensor digitorum longus (EDL) muscles. Sodium-coupled neutral amino acid transporter 2 (SNAT2) mRNA was also induced by the exercise in those three muscles. Expression of proton-assisted amino acid transporter 1 (PAT1) mRNA was slightly but not significantly induced by a single bout of exercise in soleus and EDL muscles. Exercise-induced mRNA expression of these amino acid transporters appeared to be attenuated by repeated bouts of the exercise. These results suggested that the expression of amino acid transporters for leucine may be induced in response to an increase in the requirement for this amino acid in the cells of working skeletal muscles.  相似文献   

10.
For both nitrogen and carbon metabolism there exist specific regulatory mechanisms to enable cells to assimilate a wide variety of nitrogen and carbon sources. Superimposed are regulatory circuits, the so called nitrogen and carbon catabolite regulation, to allow for selective use of “rich” sources first and “poor” sources later. Evidence points to the importance of specific regulatory mechanisms for short term adaptations, while generalized control circuits are used for long term modulation of nitrogen and carbon metabolism. Similarly a variety of regulatory mechanisms operate in amino acid metabolism. Modulation of enzyme activity and modulation of enzyme levels are the outstanding regulatory mechanisms. In prokaryotes, attenuation and repressor/operator control are predominant, besides a so called “metabolic control” which integrates amino acid metabolism into the overall nutritional status of the cells. In eukaryotic cells compartmentation of amino acid metabolites as well as of part of the pathways becomes an additional regulatory factor; pathway specific controls seem to be rare, but a complex regulatory network, the “general control of amino acid biosynthesis”, coordinates the synthesis of enzymes of a number of amino acid biosynthetic pathways.  相似文献   

11.
Resonance Raman (RR) spectra were measured for the purple intermediates of D-amino acid oxidase reconstituted with isotopically labelled FAD's, i.e., [4a-13C]-, [4,10a-13C2]-, [2-13C]-, [5-15N]-, and [1,3-15N2]flavin adenine dinucleotides, and compared with those with the native enzyme. The RR lines around 1605 cm-1 with D-alanine or D-proline as a substrate and at 1548 cm-1 with D-alanine undergo isotopic shifts upon [4a-13C]- and [4,10a-13C2]-labelling. These lines are assigned to the vibrational modes associated with C(10a) = C(4a) - C(4) = O moiety of reduced flavin, providing the first assignment of RR lines of reduced flavin and conclusive evidence that reduced flavin is involved in this intermediate.  相似文献   

12.
Soluble free amino acids, ammonium and nitrate ions as sources of nitrogen for plant growth were measured in soils of a coastal marsh grazed by snow geese in Manitoba, Canada. Amounts of nitrogen, primarily ammonium ions, increased in the latter half of the growing season and over winter, but fell to low values early in the growing season. Free amino acid concentrations relative to ammonium concentrations were highest during the period of rapid plant growth in early summer, especially in soils in the intertidal zone, where the median ratio of amino acid nitrogen to ammonium nitrogen was 0·36 and amino acid concentrations exceeded those of ammonium ions in 24% of samples. Amino acid profiles, which were dominated by alanine, proline and glutamic acid, were similar to goose faecal profiles. In a continuous flow hydroponic experiment conducted in the field, growth of the salt‐marsh grass, Puccinellia phryganodes, on glycine was similar to growth on ammonium ions at an equivalent concentration of nitrogen. When supplies of soil inorganic nitrogen are low, amino acids represent a potentially important source of nitrogen for the re‐growth of plants grazed by geese and amino acid uptake may be as high as 57% that of ammonium ions.  相似文献   

13.
Amino acid transporters in plants are crucial for distributing amino acids between plant organs and cellular compartments. The H+‐coupled plasma membrane transporter CAT1 (cationic amino acid transporter 1) facilitates the high‐affinity uptake of basic amino acids. The uptake of lysine (Lys) via the roots was not altered in loss‐of‐function mutants, in accordance with the minor expression of CAT1 in roots, but plants ectopically overexpressing CAT1 incorporated Lys at higher rates. Exogenous Lys inhibited the primary root of Arabidopsis, whereas lateral roots were stimulated. These effects were augmented by the presence or absence of CAT1. Furthermore, the total biomass of soil‐grown plants ectopically overexpressing CAT1 was reduced and the time to flowering was accelerated. These effects were accompanied by only minor changes in the overall amino acid profile. Interestingly, CAT1 belongs to a specific small cluster of nitrogen‐containing metabolite transporter genes that are rapidly up‐regulated upon infection with Pseudomonas syringae and that may participate in the systemic response of plants to pathogen attack. The overexpression of CAT1 indeed enhanced the resistance to the hemibiotrophic bacterial pathogen P. syringae via a constitutively activated salicylic acid (SA) pathway, which is consistent with the developmental defects and the resistance phenotype.  相似文献   

14.
The embryo of Arabidopsis seeds is symplasmically isolated from the surrounding seed coat and endosperm, and uptake of nutrients from the seed apoplast is required for embryo growth and storage reserve accumulation. With the aim of understanding the importance of nitrogen (N) uptake into developing embryos, we analysed two mutants of AAP1 (At1g58360), an amino acid transporter that was localized to Arabidopsis embryos. In mature and desiccated aap1 seeds the total N and carbon content was reduced while the total free amino acid levels were strongly increased. Separately analysed embryos and seed coats/endosperm of mature seeds showed that the elevated amounts in amino acids were caused by an accumulation in the seed coat/endosperm, demonstrating that a decrease in uptake of amino acids by the aap1 embryo affects the N pool in the seed coat/endosperm. Also, the number of protein bodies was increased in the aap1 endosperm, suggesting that the accumulation of free amino acids triggered protein synthesis. Analysis of seed storage compounds revealed that the total fatty acid content was unchanged in aap1 seeds, but storage protein levels were decreased. Expression analysis of genes of seed N transport, metabolism and storage was in agreement with the biochemical data. In addition, seed weight, as well as total silique and seed number, was reduced in the mutants. Together, these results demonstrate that seed protein synthesis and seed weight is dependent on N availability and that AAP1-mediated uptake of amino acids by the embryo is important for storage protein synthesis and seed yield.  相似文献   

15.
16.
17.
Long-chain polyunsaturated (n-3) fatty acids have been reported to influence the efficiency of membrane receptors, transporters and enzymes. Because the brain is particularly rich in docosahexaenoic acid (DHA, 22:6 n-3), the present study addresses the question of whether the 22:6 n-3 fatty acid deficiency induces disorder in regulation of energy metabolism in the CNS. Three brain regions that share a high rate of energy metabolism were studied: fronto-parietal cortex, hippocampus and suprachiasmatic nucleus. The effect of the diet deficient in n-3 fatty acids resulted in a 30-50% decrease in DHA in membrane phospholipids. Moreover, a 30% decrease in glucose uptake and a 20-40% decrease in cytochrome oxidase activity were observed in the three brain regions. The n-3 deficient diet also altered the immunoreactivity of glucose transporters, namely GLUT1 in endothelial cells and GLUT3 in neurones. In n-3 fatty acid deficient rats, GLUT1-immunoreactivity readily detectable in microvessels became sparse, whereas the number of GLUT3 immunoreactive neurones was increased. However, western blot analysis showed no significant difference in GLUT1 and GLUT3 protein levels between rats deficient in n-3 fatty acids and control rats. The present results suggest that changes in energy metabolism induced by n-3 deficiency could result from functional alteration in glucose transporters.  相似文献   

18.
D-Aspartate oxidase and D-amino acid oxidase were found in high activity in the tissues of representative species of terrestrial gastropods. Analytical subcellular fractionation demonstrated that both of these oxidases co-localised with the peroxisome markers, acyl-CoA oxidase and catalase, in the digestive gland homogenate. Electron microscopy of peak peroxisome fractions showed particles of uniform size with generally well preserved variably electron-dense matrices bounded by an apparently single limiting membrane. Many of the particles exhibited a core region of enhanced electron density. Catalase cytochemistry of peak fractions confirmed the peroxisome identity of the organelles. Peroxisome-enriched subcellular fractions were used to investigate the properties of gastropod D-aspartate oxidase and D-amino acid oxidase activities. The substrate and inhibitor specificities of the two activities demonstrated that two distinct enzymes were present analogous to, but not identical to, the equivalent mammalian peroxisomal enzymes.  相似文献   

19.
The absorption of lysine, arginine, phenylalanine and methionine by Taenia crassiceps larvae is linear with respect to time for at least 2 min. Arginine uptake occurs by a mediated system and diffusion, and arginine, lysine and ornithine (in order of decreasing affinity) are completely competitive inhibitors of arginine uptake. The basic amino acid transport system has a higher affinity for l-amino acids than d-amino acids, and blocking the α-amino group of an amino acid destroys its inhibitory action. Phenylalanine uptake by T. crassiceps larvae is inhibited in a completely competitive fashion by serine, leucine, alanine, methionine, histidine, phenylalanine, tyrosine and tryptophan (in order of increasing affinity). Methionine apparently binds non-productively to the phenylalanine (aromatic amino acid-preferring) transport system. l-methionine uptake by larvae is inhibited more by d-alanine and d-valine than by their respective l-isomers, while d- and l-methionine inhibit l-methionine uptake equally well. The presence of an unsubstituted α-amino group is essential for an inhibitor to have a high affinity for the methionine transport system. Uptake of arginine, phenylalanine and methionine is Na+-insensitive, and both phenylalanine and methionine are accumulated by larvae against a concentration difference in the presence or absence of Na+. Arginine accumulation is precluded by its rapid metabolism to proline, ornithine and an unidentified compound.  相似文献   

20.
The thermal stability of a highly purified preparation of D-amino acid oxidase from Trigonopsis variabilis (TvDAO), which does not show microheterogeneity due to the partial oxidation of Cys-108, was studied based on dependence of temperature (20-60°C) and protein concentration (5-100 µmol L-1). The time courses of loss of enzyme activity in 100 mmol L-1 potassium phosphate buffer, pH 8.0, are well described by a formal kinetic mechanism in which two parallel denaturation processes, partial thermal unfolding and dissociation of the FAD cofactor, combine to yield the overall inactivation rate. Estimates from global fitting of the data revealed that the first-order rate constant of the unfolding reaction (k a) increased 104-fold in response to an increase in temperature from 20 to 60°C. The rate constants of FAD release (k b) and binding (k -b) as well as the irreversible aggregation of the apo-enzyme (k agg) were less sensitive to changes in temperature, their activation energy (E a) being about 52 kJ mol-1 in comparison with an E a value of 185 kJ mol-1 for k a. The rate-determining step of TvDAO inactivation switched from FAD dissociation to unfolding at high temperatures. The model adequately described the effect of protein concentration on inactivation kinetics. Its predictions regarding the extent of FAD release and aggregation during thermal denaturation were confirmed by experiments. TvDAO is shown to contain two highly reactive cysteines per protein subunit whose modification with 5,5'-dithio-bis (2-nitrobenzoic acid) was accompanied by inactivation. Dithiothreitol (1 mmol L-1) enhanced up to 10-fold the recovery of enzyme activity during ion exchange chromatography of technical-grade TvDAO. However, it did not stabilize TvDAO at all temperatures and protein concentrations, suggesting that deactivation of cysteines was not responsible for thermal denaturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号