共查询到20条相似文献,搜索用时 0 毫秒
1.
A V Bogatski? T O Filippova I E Kovalev S A Andronati N Ia Golovenko 《Biulleten' eksperimental'no? biologii i meditsiny》1983,96(7):23-24
A study was made of aryl hydrocarbon hydroxylase activity in immunocompetent cells of varying origin and in hepatocytes from CBA mice. The cells from intact animals may be arranged in the following way with regard to the activity of the enzyme: macrophages greater than hepatocytes much greater than thymocytes greater than splenocytes. The immunostimulants (tilorone and its analogs) altered benzo(a)pyrene hydroxylase activity depending on the cell type. 相似文献
2.
3.
V V Alenin K V Ostanin T R Kostikova V D Domkin V A Zubova M N Smirnov 《Biokhimii?a (Moscow, Russia)》1992,57(6):845-855
The substrate specificity of phosphoribosyl-aminoimidazole-succinocarboxamide-synthetase (SAICAR-synthetase, EC 6.3.2.6) of the yeast Saccharomyces cerevisiae towards a set of carboxyaminoimidazole ribotide (CAIR) analogs with modifications in the imidazole ring, ribose and phosphate moieties, as well as aspartic acid analogs has been studied. It was found, in particular, that: i) the presence of double charged phosphate group, 2'- and 3'-hydroxyl groups in the ribose fragment and of an amino group in the imidazole ring of the CAIR molecule is not the absolute requirement for the enzymatic reaction; ii) 3'-carboxy-1.2.4-triazole analog of CAIR is a competitive inhibitor of the enzyme; iii) 2'-deoxy-CAIR is a substrate for both yeast SAICAR-synthetase and its avian liver and human erythrocyte counterparts. A new method designed to determine the SAICAR-synthetase activity with the help of bifunctional enzymes possessing, in addition to the SAICAR-synthetase activity, also a phosphoribosyl-aminoimidazole-carboxylase activity, is proposed; this method is based on the use of 2'-deoxy-CAIR. Some aspartic acid analogs (L-malic acid, beta-threo-oxy-, and beta-threo-fluoro-aspartic acids and alanosine) are substrates for yeast SAICAR-synthetase. The possible involvement of malate as an alternative substrate for the SAICAR-synthetase reaction in vivo is discussed. The results of a comparative analysis of already established primary structures of yeast, bacterial, human, and chicken SAICAR-synthetases are presented. 相似文献
4.
The C? methyl group of methionine-29 of RNAase was enriched with 13C. The synthesis involved the reaction of RNAase with 13CH3I at pH 4. S-Methylmethionine-29 RNAase was recovered in 80% yield. This sulfonium derivative was subsequently demethylated with 0.1 M mercaptoethanol at pH 8.5, 25°C for 4 days. These conditions allowed the demethylation reaction to successfully compete with the reaction of the thiol with the four disulfide bridges in RNAase. After dialysis, concentration and chromatography, native RNAase with approx. 50% of its Met29 methyl groups enriched in 13C was recovered as was unreversed S-Methylmethionine-29 RNAase. Both proteins showed full enzymatic activity toward cytidine 2′:3′-cyclic monophosphate. 13C-methyl signals from enriched RNAase and the sulfonium derivative were observed at 13.8 and 26.7 ppm from TMS respectively. Preliminary denaturation studies with the methylated protein suggest that 13C enrichment of methionine methyl groups in RNAase will be a useful technique for following the unfolding transition at these sites of the protein. 相似文献
5.
6.
Ornithine carbamoyltransferase of Saccharomyces cerevisiae is subjected to an enzymatic regulation of its anabolic activity when it is bound to the inducible catabolic arginase as described earlier. This regulatory ornithine carbamoyltransferase essentially catalyzes the synthesis of citrulline, but the reverse reaction could be demonstrated using arsenate instead of phosphate. Steady-state initial velocity studies of the reverse reaction indicate that the mechanism is consistent with a rapid-equilibrium random model (in which all steps are in equilibrium, except that concerned with the interconversion of the central ternary complexes) involving the formation of enzyme - ornithine - arsenate and enzyme - citrulline - phosphate dead-end complexes. In the forward direction, although the mechanism also appears to be random, the results are in better agreement with a preferred ordered binding of substrates, with carbamoylphosphate adding first. This degenerate form of the random mechanism is discussed. 相似文献
7.
G Belendiuk D Mangnall B Tung J Westley G S Getz 《The Journal of biological chemistry》1978,253(13):4555-4565
CTP-phosphatidic acid cytidyltransferase catalyzes the formation of CDP-diglyceride from CTP and phosphatidic acid. The enzyme was solubilized from crude mitochondrial membrane by treatment with digitonin and was further purified by chromatography on DEAE-Sephadex, quaternary aminoethyl (QAE) Sephadex, and Sepharose 6B columns. At this stage the enzyme, enriched 550-fold over crude cell homogenate, still remains associated with phospholipid and has an estimated approximate molecular weight of 400,000 on the basis of gel filtration chromatography. Sodium dodecyl sulfate polyacrylamide gel electrophoresis of the 550-fold enriched enzyme yielded two major protein bands having molecular weights of 45,000 and 19,000. The enzyme exhibits an absolute dependence on Triton X-100, a sharp Mg2+ dependence with an optimum at 20 mM, and a pH optimum of 6.5 for activity. The product of the CTP-phosphatidic acid cytidyl-transferase reaction has been isolated and identified as CDP-diglyceride, both for the crude enzyme preparation as well as for the 550-fold enriched enzyme. CTP-phosphatidic acid cytidyltransferase is capable of catalyzing the reverse reaction in the presence of pyrophosphate, utilizing CDP-diglyceride as substrate. The product of the reverse reaction was identified as CTP. Kinetic analysis of the behavior of CTP-phosphatidic acid cytidyltransferase was performed at three different stages of its purification. Initial analysis of the data yielded biphasic behavior in double reciprocal plots with respect to both substrates. Hill plots of the data indicated the presence of negative cooperativity. A detailed analysis of the kinetic behavior was performed on the enzyme purified 550-fold. The data suggest a mechanism involving two distinct cycles of catalysis, responsive to homotropic modification, with different affinities for both substrates. Further analysis of the kinetic behavior in the presence of inhibitors (dCTP and PPi) yielded a reaction order for the entrance of substrates and departure of products from the reaction cycles. The high affinity site catalyzes the reaction via a double displacement mechanism and is the predominant form at low concentrations of substrates. At high concentrations of substrates the low affinity site starts contributing significantly to the reaction velocity with an ordered single displacement mechanism. In each case CTP is the first substrate to attach and PPi is the first product released. 相似文献
8.
Roberta Pastorelli Marco Guanci Annalisa Cerri Claudio Minoia Paolo Carrer Eva Negri Roberto Fanelli Luisa Airoldi 《Biomarkers》2000,5(4):245-251
A biomonitoring study was conducted to simultaneously measure individual benzo(a)pyrene (BaP) exposure in 50 office employees, not occupationally exposed to polycyclic aromatic hydrocarbons (PAH), using personal samplers and the formation of (+) r-7, t-8-dihyroxy-t-9,t-10-epoxy-7,8,9,10-tetrahydrobenzo(a)pyrene (BPDE) adducts to haemoglobin (BPDE-Hb) and serum albumin (BPDE-SA). The population enrolled was exposed to an average of 0.58 ± 0.46 ng BaP m-3 (mean ± SD). The concentration of BaP collected from smokers' samples was double that from non-smokers (P = 0.007). BPDE adducts to Hb and SA were quantified as BaP tetrols released from hydrolysis of macromolecules and measured by high-resolution gas chromatography-negative ion chemical ionization-mass spectrometry. BPDE-Hb adducts were detected in 16% of the population and BPDE-SA adducts in 28%. Smoking did not affect adduct formation. When BaP personal monitoring data were used as the criterion of exposure, no correlation was found with the presence and the levels of BPDE-Hb and BPDE-SA adducts. Undetected sources of PAH, such as the diet, might markedly alter the exposure profile depicted by individual air sampling and affect the frequency and levels of protein biomarkers. This is the first comparative analysis of BPDE-Hb and BPDE-SA adducts, providing reference values for these biomarkers in a general urban population. However it is difficult to establish which biomarkers would be the more relevant in assessing low BaP exposure, due to undetectable factors such as dietary PAHs, that might have influenced the results to some degree. 相似文献
9.
Structural and kinetic isotope effect studies of nicotinamidase (Pnc1) from Saccharomyces cerevisiae
Nicotinamidases catalyze the hydrolysis of nicotinamide to nicotinic acid and ammonia. Nicotinamidases are absent in mammals but function in NAD(+) salvage in many bacteria, yeast, plants, protozoa, and metazoans. We have performed structural and kinetic investigations of the nicotinamidase from Saccharomyces cerevisiae (Pnc1). Steady-state product inhibitor analysis revealed an irreversible reaction in which ammonia is the first product released, followed by nicotinic acid. A series of nicotinamide analogues acting as inhibitors or substrates were examined, revealing that the nicotinamide carbonyl oxygen and ring nitrogen are critical for binding and reactivity. X-ray structural analysis revealed a covalent adduct between nicotinaldehyde and Cys167 of Pnc1 and coordination of the nicotinamide ring nitrogen to the active-site zinc ion. Using this structure as a guide, the function of several residues was probed via mutagenesis and primary (15)N and (13)C kinetic isotope effects (KIEs) on V/K for amide bond hydrolysis. The KIE values of almost all variants were increased, indicating that C-N bond cleavage is at least partially rate limiting; however, a decreased KIE for D51N was indicative of a stronger commitment to catalysis. In addition, KIE values using slower alternate substrates indicated that C-N bond cleavage is at least partially rate limiting with nicotinamide to highly rate limiting with thionicotinamide. A detailed mechanism involving nucleophilic attack of Cys167, followed by elimination of ammonia and then hydrolysis to liberate nicotinic acid, is discussed. These results will aid in the design of mechanism-based inhibitors to target pathogens that rely on nicotinamidase activity. 相似文献
10.
Hepatic microsomal metabolism of benzo(a)pyrene, a representative carcinogenic polycyclic hydrocarbon and an ubiquitous environmental pollutant was studied in control and vitamin A deprived (10–12 weeks) male rats. Hydroxylation of benzo(a)pyrene to fluorescent phenols was found to be significantly depressed in the deficient animals. The decreased hepatic metabolism may lead to delayed clearance of the carcinogenic chemicals in this condition and thus may explain at least in part the enhanced susceptibility to carcinogenesis in hypovitaminosis A. 相似文献
11.
12.
Exposure to polycyclic aromatic hydrocarbons (PAHs) in soil is a major health concern because of their mutagenic and carcinogenic properties. The aim of this research was to determine the dermal bioavailability of benzo(a)pyrene (BaP) aged in either a sandy or a clay soil in order to assess the health risks and remediation goals for the chemical. In vitro flow-through diffusion cell studies were conducted utilizing dermatomed male pig skin. The amount of radioactive chemical was measured that penetrated skin into receptor fluid and which was bound to skin following soap and water decontamination. BaP bioavailability was decreased by 95 to 98% after 3 months of aging in soil relative to the pure compound. Less than 0.3% of the dose was detected in receptor fluid for all treatments. While most of the dose was bound to skin after administering the pure compound, the majority of the radioactivity was found in the soil and decontaminate after aging. The results indicate that the health risk from exposure to BaP is significantly reduced as the compound ages in soil and that less soil cleanup would be needed at sites contaminated with aged BaP. 相似文献
13.
A 55-kDa form of membrane-associated phosphatidylinositol 4-kinase (ATP:phosphatidylinositol 4-phosphotransferase, EC 2.7.1.67) was purified 10,166-fold from Saccharomyces cerevisiae. The purification procedure included solubilization of microsome membranes with 1% Triton X-100 followed by chromatography with DE52, hydroxylapatite I, Q-Sepharose, Mono Q, and hydroxylapatite II. The procedure resulted in a nearly homogeneous 55-kDa phosphatidylinositol 4-kinase preparation. The 55-kDa phosphatidylinositol 4-kinase and the previously purified 45-kDa phosphatidylinositol 4-kinase differed with respect to their amino acid composition, isoelectric points, and peptide maps. Furthermore, the two forms of phosphatidylinositol 4-kinase did not show an immunological relationship. Maximum 55-kDa phosphatidylinositol 4-kinase activity was dependent on magnesium (10 mM) or manganese (0.5 mM) ions and Triton X-100 at the pH optimum of 7.0. The activation energy for the reaction was 12 kcal/mol, and the enzyme was labile above 30 degrees C. The enzyme was inhibited by thioreactive agents, MgADP, and calcium ions. A detailed kinetic analysis of the purified enzyme was performed using Triton X-100/phosphatidylinositol-mixed micelles. 55-kDa phosphatidylinositol 4-kinase activity followed saturation kinetics with respect to the bulk and surface concentrations of phosphatidylinositol and followed surface dilution kinetics. The interfacial Michaelis constant (Km) and the dissociation constant (Ks) for phosphatidylinositol in the Triton X-100 micelle surface were 1.3 mol % and 0.035 mM, respectively. The Km for MgATP was 0.36 mM. 55-kDa phosphatidylinositol 4-kinase catalyzed a sequential reaction mechanism as indicated by the results of kinetic and isotopic exchange reactions. The enzyme bound to phosphatidylinositol before ATP and released phosphatidylinositol 4-phosphate before ADP. The enzymological and kinetic properties of the 55-kDa phosphatidylinositol 4-kinase differed significantly from those of the 45-kDa phosphatidylinositol 4-kinase. This may suggest that the two forms of phosphatidylinositol 4-kinase from S. cerevisiae are regulated differentially in vivo. 相似文献
14.
In the yeast Saccharomyces cerevisiae, two membrane-associated enzymes catalyze the three-step methylation of phosphatidylethanolamine (PE) to phosphatidylcholine (PC). Phosphatidylethanolamine methyltransferase (PEMT) catalyzes the first methylation reactions (PE----phosphatidylmonomethylethanolamine (PMME] and phospholipid methyltransferase (PLMT) catalyzes the second two methylation reactions (PMME----phosphatidyldimethylethanolamine (PDME)----PC). Using gene disruption mutants of the S. cerevisiae OP13 and CHO2 genes, we independently studied the enzymological properties of microsome-associated PEMT and PLMT, respectively. The enzymological properties of the enzymes differed with respect to their pH optima, cofactor requirements and thermal lability. For the PEMT reactions, the apparent Km values for PE and S-Adenosylmethionine (AdoMet) were 57 microM and 110 microM, respectively. For the PLMT reactions, the apparent Km values for PMME and PDME were 380 microM and 180 microM, respectively. The apparent Km values for AdoMet were 54 microM and 59 microM with PMME and PDME as substrates, respectively. S-Adenosylhomocysteine (AdoHcy) was a competitive inhibitor of PEMT (Ki = 12 microM) and PLMT (Ki = 57 microM and Ki = 54 microM for PMME and PDME, respectively) with respect to AdoMet. AdoHcy was a noncompetitive inhibitor of PEMT (Ki = 160 microM) and PLMT (Ki = 120 microM) with respect to PE and PMME and PDME, respectively. 相似文献
15.
Glucose oxidase from Aspergillus niger. Cloning, gene sequence, secretion from Saccharomyces cerevisiae and kinetic analysis of a yeast-derived enzyme 总被引:10,自引:0,他引:10
K R Frederick J Tung R S Emerick F R Masiarz S H Chamberlain A Vasavada S Rosenberg S Chakraborty L M Schopfer L M Schopter 《The Journal of biological chemistry》1990,265(7):3793-3802
The gene for Aspergillus niger glucose oxidase (EC 1.1.3.4) has been cloned from both cDNA and genomic libraries using oligonucleotide probes derived from the amino acid sequences of peptide fragments of the enzyme. The mature enzyme consists of 583 amino acids and is preceded by a 22-amino acid presequence. No intervening sequences are found within the coding region. The enzyme contains 3 cysteine residues and 8 potential sites for N-linked glycosylation. The protein shows 26% identity with alcohol oxidase of Hansenuela polymorpha, and the N terminus has a sequence homologous with the AMP-binding region of other flavoenzymes such as p-hydroxybenzoate hydroxylase and glutathione reductase. Recombinant yeast expression plasmids have been constructed containing a hybrid yeast alcohol dehydrogenase II-glyceraldehyde-3-phosphate dehydrogenase promoter, either the yeast alpha-factor pheromone leader or the glucose oxidase presequence, and the mature glucose oxidase coding sequence. When transformed into yeast, these plasmids direct the synthesis and secretion of between 75 and 400 micrograms/ml of active glucose oxidase. Analysis of the yeast-derived enzymes shows that they are of comparable specific activity and have more extensive N-linked glycosylation than the A. niger protein. 相似文献
16.
Nika J Yang W Pavitt GD Hinnebusch AG Hannig EM 《The Journal of biological chemistry》2000,275(34):26011-26017
Eukaryotic translation initiation factor 2B (eIF2B) is the heteropentameric guanine nucleotide exchange factor for translation initiation factor 2 (eIF2). Recent studies in the yeast Saccharomyces cerevisiae have served to characterize genetically the exchange factor. However, enzyme kinetic studies of the yeast enzyme have been hindered by the lack of sufficient quantities of protein suitable for biochemical analysis. We have purified yeast eIF2B and characterized its catalytic properties in vitro. Values for K(m) and V(max) were determined to be 12.2 nm and 250.7 fmol/min, respectively, at 0 degrees C. The calculated turnover number (K(cat)) of 43.2 pmol of GDP released per min/pmol of eIF2B at 30 degrees C is approximately 1 order of magnitude lower than values previously reported for the mammalian factor. Reciprocal plots at varying fixed concentrations of the second substrate were linear and intersected to the left of the y axis. This is consistent with a sequential catalytic mechanism and argues against a ping-pong mechanism similar to that proposed for EF-Tu/EF-Ts. In support of this model, our yeast eIF2B preparations bind guanine nucleotides, with an apparent dissociation constant for GTP in the low micromolar range. 相似文献
17.
用7-乙氧基异叻唑酮-脱乙基酶(EROD)检测的方法,研究了苯并芘和六氯苯对日本青鳉肝脏EROD酶的比活力的影响。结果表明,苯并芘和六氯苯对EROD酶的比活力均有激活作用,在实验浓度范围内,EROD酶的比活力与两者浓度之间存在剂量-效应关系。苯并芘和六氯苯表现为一定的协同作用。实验同时发现日本青鳉在六氯苯和苯并芘中暴露后,EROD酶的比活力开始有一个短暂的降低,然后持续升高。对六氯苯和苯并芘暴露的最佳时间进行了探讨。 相似文献
18.
This report describes structural and kinetic properties of the purified α-galactosidase from Saccharomyces carlsbergensis. This galactosidase has many similar properties to other exocellular enzymes in yeast which have been reported. Its molecular weight of 300,000 is comparable; it has similar carbohydrate content (57%) and amino acid and carbohydrate composition. That is, 35% of its amino acid residues can be accounted for by threonine, serine, and aspartic acid. Its carbohydrate composition is primarily mannose (90–95%) with approximately 7% glucose and 1% glucosamine. The enzyme is very stable to both acidic and alkaline conditions as well as to heating to 50 °C. α-Galactosidase remains active after incubation with as much as 1% sodium dodecyl sulfate at 30 °C. However, the enzyme is denatured with urea and guanidine hydrochloride. The loss of activity is proportional to the urea concentration, the nondenatured enzyme being responsible for the remaining activity. Inactivation by urea is partially reversible. With urea or 60 °C heat denaturation, the enzyme dissociates into two types of subunits as revealed by polyacrylamide gel electrophoresis with sodium dodecyl sulfate. Thus, α-galactosidase is the first external enzyme from yeast in which an oligomeric structure is reported. The enzyme catalyzes the hydrolysis of p-nitrophenyl-α-d-galactoside, melibiose, and raffinose with similar pH optima and Vmax. However, the affinity is 20-fold lower for raffinose than for the other two substrates. Sugars having the same configuration in carbons 2, 3, and 4 as galactose competitively inhibit the enzyme. 相似文献
19.
DeLuna A Avendano A Riego L Gonzalez A 《The Journal of biological chemistry》2001,276(47):43775-43783
In the yeast Saccharomyces cerevisiae, two NADP(+)-dependent glutamate dehydrogenases (NADP-GDHs) encoded by GDH1 and GDH3 catalyze the synthesis of glutamate from ammonium and alpha-ketoglutarate. The GDH2-encoded NAD(+)-dependent glutamate dehydrogenase degrades glutamate producing ammonium and alpha-ketoglutarate. Until very recently, it was considered that only one biosynthetic NADP-GDH was present in S. cerevisiae. This fact hindered understanding the physiological role of each isoenzyme and the mechanisms involved in alpha-ketoglutarate channeling for glutamate biosynthesis. In this study, we purified and characterized the GDH1- and GDH3-encoded NADP-GDHs; they showed different allosteric properties and rates of alpha-ketoglutarate utilization. Analysis of the relative levels of these proteins revealed that the expression of GDH1 and GDH3 is differentially regulated and depends on the nature of the carbon source. Moreover, the physiological study of mutants lacking or overexpressing GDH1 or GDH3 suggested that these genes play nonredundant physiological roles. Our results indicate that the coordinated regulation of GDH1-, GDH3-, and GDH2-encoded enzymes results in glutamate biosynthesis and balanced utilization of alpha-ketoglutarate under fermentative and respiratory conditions. The possible relevance of the duplicated NADP-GDH pathway in the adaptation to facultative metabolism is discussed. 相似文献
20.
Xuan Li Xiyi Li Zhiliang Zhu Peiwu Huang Zhixiong Zhuang Jianjun Liu Wei Gao Yinpin Liu Haiyan Huang 《PloS one》2016,11(3)
Benzo(a)pyrene (BaP) is a ubiquitously distributed environmental pollutant and known carcinogen, which can induce malignant transformation in rodent and human cells. Poly(ADP-ribose) glycohydrolase (PARG), the primary enzyme that catalyzes the degradation of poly(ADP-ribose) (PAR), has been known to play an important role in regulating DNA damage repair and maintaining genomic stability. Although PARG has been shown to be a downstream effector of BaP, the role of PARG in BaP induced carcinogenesis remains unclear. In this study, we used the PARG-deficient human bronchial epithelial cell line (shPARG) as a model to examine how PARG contributed to the carcinogenesis induced by chronic BaP exposure under various concentrations (0, 10, 20 and 40 μM). Our results showed that PARG silencing dramatically reduced DNA damages, chromosome abnormalities, and micronuclei formations in the PARG-deficient human bronchial epithelial cells compared to the control cells (16HBE cells). Meanwhile, the wound healing assay showed that PARG silencing significantly inhibited BaP-induced cell migration. Furthermore, silencing of PARG significantly reduced the volume and weight of tumors in Balb/c nude mice injected with BaP induced transformed human bronchial epithelial cells. This was the first study that reported evidences to support an oncogenic role of PARG in BaP induced carcinogenesis, which provided a new perspective for our understanding in BaP exposure induced cancer. 相似文献