首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: Nitric oxide (NO) is a candidate treatment for acute ischaemic stroke, however published studies in experimental stroke have given conflicting results. METHODS: We performed a systematic review of published controlled studies of L-arginine (the precursor for NO) and NO donors in experimental stroke. Data were analysed using the Cochrane Collaboration Review Manager software. Standardised mean difference (SMD) and 95% confidence intervals (95% CI) were calculated. RESULTS: Altogether, 25 studies(s) were identified. L-Arginine and NO donors reduced total cerebral infarct volume in permanent (SMD -1.21, 95% CI -1.69 to -0.73, p < 0.01, s = 10) and transient models of ischaemia (SMD -0.78, 95% CI -1.21 to -0.35, p < 0.01, s = 7). Drug administration increased cortical CBF in permanent (SMD +0.86, 95% CI 0.52-1.21, p < 0.01, s = 8) but not transient models (SMD +0.34, 95% CI -0.02 to 0.70, p = 0.07, s = 4). CONCLUSIONS: Administration of NO in experimental stroke reduces stroke lesion volume in permanent and transient models. This may be mediated, in part, by increased cerebral perfusion in permanent models. These data support clinical trials in stroke patients, although the presence of a narrow therapeutic time window may be a limiting factor.  相似文献   

2.
Four optically pure conformationally restricted L-arginine analogues syn- 1 and anti- 2 trans-3,4-cyclopropyl L-arginine, and syn- 3 and anti-trans-3,4-cyclopropyl N-(1-iminoethyl) L-ornithine 4 were synthesized. These compounds were tested as potential inhibitors against the three isoforms of nitric oxide synthase (NOS). Compound 1 was determined to be a poor substrate of NOS, while compound 2 was determined to be a poor mixed type inhibitor and did not exhibit any isoform selectivity. Syn- 3 and anti-trans-3,4-cyclopropyl N-(1-iminoethyl) L-ornithine 4 were found to be competitive inhibitors of NOS. These compounds were time dependent inhibitors of inducible NOS (iNOS), but not of neuronal NOS (nNOS) or endothelial NOS (eNOS). Compound 3 was 10- to 100-fold more potent an inhibitor than 4, exhibited a 5-fold increase in nNOS/iNOS and eNOS/iNOS selectivity over 4, and displayed tight binding characteristics against iNOS. These results indicate that the relative configuration of the cyclopropyl ring in the L-arginine analogues significantly affects their inhibitory potential and NOS isoform selectivity.  相似文献   

3.
Nitric oxide (NO) and NO synthase (NOS) play controversial roles in pancreatic secretion. NOS inhibition reduces CCK-stimulated in vivo pancreatic secretion, but it is unclear which NOS isoform is responsible, because NOS inhibitors lack specificity and three NOS isoforms exist: neuronal (nNOS), endothelial (eNOS), and inducible (iNOS). Mice having individual NOS gene deletions were used to clarify the NOS species and cellular interactions influencing pancreatic secretion. In vivo secretion was performed in anesthetized mice by collecting extraduodenal pancreatic duct juice and measuring protein output. Nonselective NOS blockade was induced with N(omega)-nitro-L-arginine (L-NNA; 10 mg/kg). In vivo pancreatic secretion was maximal at 160 pmol.kg(-1).h(-1) CCK octapeptide (CCK-8) and was reduced by NOS blockade (45%) and eNOS deletion (44%). Secretion was unaffected by iNOS deletion but was increased by nNOS deletion (91%). To determine whether the influence of NOS on secretion involved nonacinar events, in vitro CCK-8-stimulated secretion of amylase from isolated acini was studied and found to be unaltered by NOS blockade and eNOS deletion. Influence of NOS on in vivo secretion was further examined with carbachol. Protein secretion, which was maximal at 100 nmol.kg(-1).h(-1) carbachol, was reduced by NOS blockade and eNOS deletion but unaffected by nNOS deletion. NOS blockade by L-NNA had no effect on carbachol-stimulated amylase secretion in vitro. Thus constitutive NOS isoforms can exert opposite effects on in vivo pancreatic secretion. eNOS likely plays a dominant role, because eNOS deletion mimics NOS blockade by inhibiting CCK-8 and carbachol-stimulated secretion, whereas nNOS deletion augments CCK-8 but not carbachol-stimulated secretion.  相似文献   

4.
Abstract : The precise role that nitric oxide (NO) plays in the mechanisms of ischemic brain damage remains to be established. The expression of the inducible isoform (iNOS) of NO synthase (NOS) has been demonstrated not only in blood and glial cells using in vivo models of brain ischemia-reperfusion but also in neurons in rat forebrain slices exposed to oxygen-glucose deprivation (OGD). We have used this experimental model to study the effect of OGD on the neuronal isoform of NOS (nNOS) and iNOS. In OGD-exposed rat forebrain slices, a decrease in the calcium-dependent NOS activity was found 180 min after the OGD period, which was parallel to the increase during this period in calcium-independent NOS activity. Both dexamethasone and cycloheximide, which completely inhibited the induction of the calcium-independent NOS activity, caused a 40-70% recovery in calcium-dependent NOS activity when compared with slices collected immediately after OGD. The NO scavenger oxyhemoglobin produced complete recovery of calcium-dependent NOS activity, suggesting that NO formed after OGD is responsible for this down-regulation. Consistently, exposure to the NO donor ( Z )-1-[(2-aminoethyl)- N -(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (DETA-NONOate) for 180 min caused a decrease in the calcium-dependent NOS activity present in control rat forebrain slices. Furthermore, OGD and DETA-NONOate caused a decrease in level of both nNOS mRNA and protein. In summary, our results indicate that iNOS expression down-regulates nNOS activity in rat brain slices exposed to OGD. These studies suggest important and complex interactions between NOS isoforms, the elucidation of which may provide further insights into the physiological and pathophysiological events that occur during and after cerebral ischemia.  相似文献   

5.
Chronic pain is associated with N-methyl-D-aspartate (NMDA) receptor activation and downstream production of nitric oxide, which has a pivotal role in multisynaptic local circuit nociceptive processing in the spinal cord. The formation of nitric oxide is catalyzed by three major nitric oxide synthase (NOS) isoforms (neuronal, nNOS; inducible, iNOS; endothelial, eNOS), which are increased in the spinal cord of rodents subjected to some tonic and chronic forms of experimental pain. Despite the important role of NOS in spinal cord nociceptive transmission, there have been no studies exploring the effect of NMDA receptor blockade on NOS expression in the dorsal horn during chronic pain. Furthermore, NOS isoforms have not been fully characterized in the dorsal horn of animals subjected to arthritic pain. The aim of this work was therefore to study the expression of nNOS, iNOS and eNOS in the dorsal horns of monoarthritic rats, and the modifications in NOS expression induced by pharmacological blockade of spinal cord NMDA receptors. Monoarthritis was produced by intra-articular injection of complete Freund's adjuvant into the right tibio-tarsal joint. At week 4, monoarthritic rats were given either the competitive NMDA antagonist (±)-3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP) or the uncompetitive NMDA antagonist ketamine. After 6 and 24 hours, animals were killed and posterior quadrants of the lumbar spinal cord were dissected. Sample tissues were homogenized and subjected to immunoblotting with anti-nNOS, anti-iNOS or anti-eNOS monoclonal antibodies. The nNOS isoform, but not the iNOS and eNOS isoforms, were detected in the dorsal horns of control rats. Monoarthritis increased the expression of nNOS, iNOS and eNOS in the dorsal horns ipsilateral and contralateral to the inflamed hindpaw. Intrathecal administration of CPP and ketamine reduced nNOS expression in monoarthritic rats but increased the expression of iNOS and eNOS. Results suggest that blockade of spinal cord NMDA receptors produces complex regulatory changes in the expression of NOS isoforms in monoarthritic rats that may be relevant for nitridergic neuronal/glial mechanisms involved in the pathophysiology of monoarthritis and in the pharmacological response to drugs interacting with NMDA receptors.  相似文献   

6.
Thalidomide shows moderate inhibitory activity toward neuronal nitric oxide synthase (nNOS) and inducible NOS (iNOS), but not toward endothelial NOS (eNOS). Structural development studies of thalidomide yielded novel phenylhomophthalimide-type NOS inhibitors with enhanced activity and different subtype selectivity.  相似文献   

7.
Excessive production of nitric oxide (NO) as result of inducible nitric oxide synthase (iNOS) induction has been implicated in the pathophysiology of hemorrhagic shock. Our aim was to study the effects of NOS inhibitors, aminoguanidine (AG) and NG-nitro-L-arginine methyl ester (L-NAME), on survival rate, mean arterial blood pressure (MABP), temporal evolution of infarct volume, nitric oxide (NO) production and neurological deficit in a model of delayed hemorrhagic shock (DHS) in conscious rats. Our results showed that the NOS inhibitors significantly improved survival rate, MABP, and attenuated brain NO overproduction 24, 48 h and 72 h after DHS. AG reduced brain infarct volume and improved the neurological performance evaluated by the rotameric and grip strength tests while L-NAME did not show protective effect in rats following DHS. These findings suggest that NO formation via iNOS activation may contribute to organ damage and that the selective iNOS inhibitor, AG, may be of interest as a therapeutic agent for neurological recovery following DHS.  相似文献   

8.
Connexin 43 (Cx43), which is highly expressed in the heart and especially in cardiomyocytes, interferes with the expression of nitric oxide synthase (NOS) isoforms. Conversely, Cx43 gene expression is down‐regulated by nitric oxide derived from the inducible NOS. Thus, a complex interplay between Cx43 and NOS expression appears to exist. As cardiac mitochondria are supposed to contain a NOS, we now investigated the expression of NOS isoforms and the nitric oxide production rate in isolated mitochondria of wild‐type and Cx43‐deficient (Cx43Cre‐ER(T)/fl) mice hearts. Mitochondria were isolated from hearts using differential centrifugation and purified via Percoll gradient ultracentrifugation. Isolated mitochondria were stained with an antibody against the mitochondrial marker protein adenine‐nucleotide‐translocator (ANT) in combination with either a neuronal NOS (nNOS) or an inducible NOS (iNOS) antibody and analysed using confocal laser scanning microscopy. The nitric oxide formation was quantified in purified mitochondria using the oxyhaemoglobin assay. Co‐localization of predominantly nNOS (nNOS: 93 ± 4.1%; iNOS: 24.6 ± 7.5%) with ANT was detected in isolated mitochondria of wild‐type mice. In contrast, iNOS expression was increased in Cx43Cre‐ER(T)/fl mitochondria (iNOS: 90.7 ± 3.2%; nNOS: 53.8 ± 17.5%). The mitochondrial nitric oxide formation was reduced in Cx43Cre‐ER(T)/fl mitochondria (0.14 ± 0.02 nmol/min./mg protein) in comparison to wild‐type mitochondria (0.24 ± 0.02 nmol/min./mg). These are the first data demonstrating, that a reduced mitochondrial Cx43 content is associated with a switch of the mitochondrial NOS isoform and the respective mitochondrial rate of nitric oxide formation.  相似文献   

9.
We determined the effects of cyclooxygenase-1 (COX-1; SC-560), COX-2 (SC-58125), and inducible nitric oxide synthase (iNOS; 1400W) inhibitors on atorvastatin (ATV)-induced myocardial protection and whether iNOS mediates the ATV-induced increases in COX-2. Sprague-Dawley rats received 10 mg ATV.kg(-1).day(-1) added to drinking water or water alone for 3 days and received intravenous SC-58125, SC-560, 1400W, or vehicle alone. Anesthesia was induced with ketamine and xylazine and maintained with isoflurane. Fifteen minutes after intravenous injection rats underwent 30-min myocardial ischemia followed by 4-h reperfusion [infarct size (IS) protocol], or the hearts were explanted for biochemical analysis and immunoblotting. Left ventricular weight and area at risk (AR) were comparable among groups. ATV reduced IS to 12.7% (SD 3.1) of AR, a reduction of 64% vs. 35.1% (SD 7.6) in the sham-treated group (P < 0.001). SC-58125 and 1400W attenuated the protective effect without affecting IS in the non-ATV-treated rats. ATV increased calcium-independent NOS (iNOS) [11.9 (SD 0.8) vs. 3.9 (SD 0.1) x 1,000 counts/min; P < 0.001] and COX-2 [46.7 (SD 1.1) vs. 6.5 (SD 1.4) pg/ml of 6-keto-PGF(1alpha); P < 0.001] activity. Both SC-58125 and 1400W attenuated this increase. SC-58125 did not affect iNOS activity, whereas 1400W blocked iNOS activity. COX-2 was S-nitrosylated in ATV-treated but not sham-treated rats or rats pretreated with 1400W. COX-2 immunoprecipitated with iNOS but not with endothelial nitric oxide synthase. We conclude that ATV reduced IS by increasing the activity of iNOS and COX-2, iNOS is upstream to COX-2, and iNOS activates COX-2 by S-nitrosylation. These results are consistent with the hypothesis that preconditioning effects are mediated via PG.  相似文献   

10.
In a continuing effort to unravel the structural basis for isoform-selective inhibition of nitric oxide synthase (NOS) by various inhibitors, we have determined the crystal structures of the nNOS and eNOS heme domain bound with two D-nitroarginine-containing dipeptide inhibitors, D-Lys-D-Arg(NO)2-NH(2) and D-Phe-D-Arg(NO)2-NH(2). These two dipeptide inhibitors exhibit similar binding modes in the two constitutive NOS isozymes, which is consistent with the similar binding affinities for the two isoforms as determined by K(i) measurements. The D-nitroarginine-containing dipeptide inhibitors are not distinguished by the amino acid difference between nNOS and eNOS (Asp 597 and Asn 368, respectively) which is key in controlling isoform selection for nNOS over eNOS observed for the L-nitroarginine-containing dipeptide inhibitors reported previously [Flinspach, M., et al. (2004) Nat. Struct. Mol. Biol. 11, 54-59]. The lack of a free alpha-amino group on the D-nitroarginine moiety makes the dipeptide inhibitor steer away from the amino acid binding pocket near the active site. This allows the inhibitor to extend into the solvent-accessible channel farther away from the active site, which enables the inhibitors to explore new isoform-specific enzyme-inhibitor interactions. This might be the structural basis for why these D-nitroarginine-containing inhibitors are selective for nNOS (or eNOS) over iNOS.  相似文献   

11.
Like that of the neuronal nitric oxide synthase (nNOS), the binding of Ca(2+)-bound calmodulin (CaM) also regulates the activity of the inducible isoform (iNOS). However, the role of each of the four Ca(2+)-binding sites of CaM in the activity of iNOS is unclear. Using a series of single-point mutants of Drosophila melanogaster CaM, the effect that mutating each of the Ca(2+)-binding sites plays in the transfer of electrons within iNOS has been examined. The same Glu (E) to Gln (Q) mutant series of CaM used previously [Stevens-Truss, R., Beckingham, K., and Marletta, M. A. (1997) Biochemistry 36, 12337-12345] to study the role of the Ca(2+)-binding sites in the activity of nNOS was used for these studies. We demonstrate here that activity of iNOS is dependent on Ca(2+) being bound to sites II (B2Q) and III (B3Q) of CaM. Nitric oxide ((*)NO) producing activity (as measured using the hemoglobin assay) of iNOS bound to the B2Q and B3Q CaMs was found to be 41 and 43% of the wild-type activity, respectively. The site I (B1Q) and site IV (B4Q) CaM mutants only minimally affected (*)NO production (95 and 90% of wild-type activity, respectively). These results suggest that NOS isoforms, although all possessing a prototypical CaM binding sequence and requiring CaM for activity, interact with CaM differently. Moreover, iNOS activation by CaM, like nNOS, is not dependent on Ca(2+) being bound to all four Ca(2+)-binding sites, but has specific and distinct requirements. This novel information, in addition to helping us understand NOS, should aid in our understanding of CaM target activation.  相似文献   

12.
Nitric oxide synthases (NOS) are enzymes that catalyze the generation of nitric oxide (NO) from L-arginine and require nicotinamide adenine dinucleotide phosphate (NADPH) as a cofactor. At least three isoforms of NOS have been identified: neuronal NOS (nNOS or NOS I), inducible NOS (iNOS or NOS II), and endothelial NOS (eNOS or NOS II). Recent studies implicate NO in the regulation of gastric acid secretion. The aim of the present study was to localize the cellular distribution and characterize the isoform of NOS present in oxyntic mucosa. Oxyntic mucosal segments from rat stomach were stained by the NADPH-diaphorase reaction and with isoform-specific NOS antibodies. The expression of NOS in isolated, highly enriched (>98%) rat parietal cells was examined by immunohistochemistry, Western blot analysis, and RT-PCR. In oxyntic mucosa, histochemical staining revealed NADPH-diaphorase and nNOS immunoreactivity in cells in the midportion of the glands, which were identified as parietal cells in hematoxylin and eosin-stained step sections. In isolated parietal cells, decisive evidence for nNOS expression was obtained by specific immunohistochemistry, Western blotting, and RT-PCR. Cloning and sequence analysis of the PCR product confirmed it to be nNOS (100% identity). Expression of nNOS in parietal cells suggests that endogenous NO, acting as an intracellular signaling molecule, may participate in the regulation of gastric acid secretion.  相似文献   

13.
Isoform-specific nitric-oxide synthase (NOS) inhibitors may prove clinically useful in reducing the pathophysiological effects associated with increased neuronal NOS (nNOS) or inducible NOS (iNOS) activity in a variety of neurological and inflammatory disorders. Analogs of the NOS substrate L-arginine are pharmacologically attractive inhibitors because of their stability, reliable cell uptake, and good selectivity for NOS over other heme proteins. Some inhibitory arginine analogs show significant isoform selectivity although the structural or mechanistic basis of such selectivity is generally poorly understood. In the present studies, we determined by x-ray crystallography the binding interactions between rat nNOS and N5-(1-imino-3-butenyl)-L-ornithine (L-VNIO), a previously identified mechanism-based, irreversible inactivator with moderate nNOS selectivity. We have also synthesized and mechanistically characterized several L-VNIO analogs and find, surprisingly, that even relatively minor structural changes produce inhibitors that are either iNOS-selective or non-selective. Furthermore, derivatives having a methyl group added to the butenyl moiety of L-VNIO and L-VNIO derivatives that are analogs of homoarginine rather than arginine display slow-on, slow-off kinetics rather than irreversible inactivation. These results elucidate some of the structural requirements for isoform-selective inhibition by L-VNIO and its related alkyl- and alkenyl-imino ornithine and lysine derivatives and may provide information useful in the ongoing rational design of isoform-selective inhibitors.  相似文献   

14.
The effect of inhibiting nitric oxide (NO) synthase (NOS) or enhancing NO on the course of acute pancreatitis (AP) is controversial, in part because three NOS isoforms exist: neuronal (nNOS), endothelial (eNOS), and inducible (iNOS). We investigated whether inhibition or selective gene deletion of NOS isoforms modified the initiation phase of caerulein-induced AP in mice and explored whether this affected pancreatic microvascular blood flow (PMBF). We investigated the effects of nonspecific NOS inhibition with N(omega)-nitro-l-arginine (l-NNA; 10 mg/kg ip) or targeted deletion of eNOS, nNOS, or iNOS genes on the initiation phase of caerulein-induced AP in mice using in vivo and in vitro models. Western blot analysis was performed to assess eNOS phosphorylation status, an indicator of enzyme activity, and microsphere studies were used to measure PMBF. l-NNA and eNOS deletion, but not nNOS or iNOS deletion, increased pancreatic trypsin activity and serum lipase during the initiation phase of in vivo caerulein-induced AP. l-NNA and eNOS did not affect trypsin activity in caerulein-hyperstimulated isolated acini, suggesting that nonacinar events mediate the effect of NOS blockade in vivo. The initiation phase of AP in wild-type mice was associated with eNOS Thr(495) residue dephosphorylation, which accompanies eNOS activation, and a 178% increase in PMBF; these effects were absent in eNOS-deleted mice. Thus eNOS is the main isoform influencing the initiation of caerulein-induced AP. eNOS-derived NO exerts a protective effect through actions on nonacinar cell types, most likely endothelial cells, to produce greater PMBF.  相似文献   

15.
Uncoupling of nitric oxide synthase (NOS) has been implicated in left ventricular (LV) remodeling and dysfunction after myocardial infarction (MI). We hypothesized that inducible NOS (iNOS) plays a crucial role in LV remodeling after MI, depending on its coupling status. MI was created in wild-type, iNOS-knockout (iNOS(-/-)), endothelial NOS-knockout (eNOS(-/-)), and neuronal NOS-knockout (nNOS(-/-)) mice. iNOS and nNOS expressions were increased after MI associated with an increase in nitrotyrosine formation. The area of myocardial fibrosis and LV end-diastolic volume and ejection fraction were more deteriorated in eNOS(-/-) mice compared with other genotypes of mice 4 wk after MI. The expression of GTP cyclohydrolase was reduced, and tetrahydrobiopterin (BH(4)) was depleted in the heart after MI. Oral administration of sepiapterin after MI increased dihydrobiopterin (BH(2)), BH(4), and BH(4)-to-BH(2) ratio in the infarcted but not sham-operated heart. The increase in BH(4)-to-BH(2) ratio was associated with inhibition of nitrotyrosine formation and an increase in nitrite plus nitrate. However, this inhibition of NOS uncoupling was blunted in iNOS(-/-) mice. Sepiapterin increased capillary density and prevented LV remodeling and dysfunction after MI in wild-type, eNOS(-/-), and nNOS(-/-) but not iNOS(-/-) mice. N(ω)-nitro-L-arginine methyl ester abrogated sepiapterin-induced increase in nitrite plus nitrate and angiogenesis and blocked the beneficial effects of sepiapterin on LV remodeling and function. These results suggest that sepiapterin enhances angiogenesis and functional recovery after MI by activating the salvage pathway for BH(4) synthesis and increasing bioavailable nitric oxide predominantly derived from iNOS.  相似文献   

16.
Nitric oxide (NO) has been shown to be an important mediator of febrile response to lipopolisaccharide (LPS). To clarify the role of different isoforms of NO synthase (NOS) in febrile response to immune challenge, effects of selective iNOS and nNOS inhibitors on fever to LPS were examined in freely moving biotelemetered rats. Vinyl-L-NIO (N(5) - (1-Imino-3-butenyl) - ornithine (vL-NIO), a neuronal nitric oxide synthase (nNOS) inhibitor, and aminoguanidine hydrochloride, an inducible nitric oxide synthase (iNOS) inhibitor, were injected intracerebroventricularly at a dose of 10 microg/rat just before intraperitoneal injection of LPS at a dose of 50 microg/kg. Both inhibitors injected at a selected doses had no effect on normal day-time body temperature (T(b)) and normal night-time T(b). vinyl-L-NIO and aminoguanidine injected intracerebroventricularly at a dose of 10 microg/animal suppressed the LPS-induced fever in rats. The fever index calculated for rats pretreated with v-LNIO or with aminoguanidine and injected with LPS was reduced by 43% and 72%, respectively, compared to that calculated for water-pretreated and LPS-injected rats. Whereas vL-NIO partly attenuated both phases of febrile rise in T(b), administration of aminoguanidine into the brain completely prevented fever induced by LPS. These data indicate that activation of iNOS inside the brain is not only responsible for triggering but also for maintaining of LPS-induced fever in rats. It is, therefore, reasonable to hypothesize that, activation of iNOS inside the brain is more important in fever development than activation of nNOS.  相似文献   

17.
18.
In this work we have examined the appearance and distribution of nitric oxide synthase (NOS), with histochemical, immunohistochemical and biochemical methods, during development of the sea bass (Dicentrarchus labrax) gut. The data showed that both the calcium-calmodulin dependent neuronal isoform (nNOS) and calcium-independent inducible isoform (iNOS) are present in the larval gut of sea bass. The nNOS-immunoreactivity was present in the epithelial cells and enteric nerve cells of gut both in the 8-day-old specimens and in the 24-day-old-larvae. In the adult nNOS-immunoreactivity disappeared from epithelial cells, remaining in the wall intramural neurons and fibers. The iNOS-immunoreactivity was present in the epithelial cells of 24-day-old-larvae and was not detectable in the adult gut. Western blot analysis and determination of NOS activity also demonstrated the presence of the two NOS isoforms, nNOS and iNOS, in the gut of 24-day-old specimens. The presumably different roles played by the two isoforms of enzyme are discussed. The presence of nNOS isoform in the gut enteric neurons of the same larval stages of D. labrax in which we previously demonstrated the presence of substance P and Vasoactive Intestinal Polypeptide (VIP), may suggest that all these three components of the motility control system are already present in the larval phase. Nitric oxide (NO) may be also involved in the early immune response. The present results on the occurrence of iNOS isoform in epithelial gut cells of the same regions in which the gut-associated lymphoid tissue (GALT) will differentiate, may suggest for NO a role in early defence mechanisms, before the establishment of immune responses in GALT. Finally, the developmental and regional differences in nNOS and iNOS expression also suggest a regulatory role in development and differentiation of the sea bass gut.  相似文献   

19.
Acrylamide (ACR) is a known industrial neurotoxic chemical. Evidence suggests that ACR neurotoxic effect is related to brain neurotransmission disturbances. Since nitric oxide (NO) acts as a neurotransmission modulator and is produced by nitric oxide synthase (NOS), the neuronal NOS (nNOS) and inducible NOS (iNOS) expression pattern were determined in rat cerebral cortex and striatum after subchronic exposure to ACR. Using immunocytochemistry, the neuronal count of nNOS or optical density of iNOS from sections at three coronal levels, bregma 1.0, -0.4, and -2.3 mm, were compared between ACR-treated and control rats. At all three levels, nNOS expressions were uniformly decreased in most of the neocortical subregions following the treatment of ACR. At bregma level 1.0 mm, total numbers of nNOS expressing neurons were significantly decreased to 58.7% and 64.7% of the control in the cortex and striatum of ACR-treated rats, respectively. However, at the bregma level -2.3 mm, ACR treatment did not produce a significant difference in the numbers of nNOS expressing neurons both in the cortex and striatum. Contrary to nNOS, iNOS expressions were consistently increased to approximately 32% in the neocortex and 25% in the striatum, following the subchronic ACR treatment. These data suggest that subchronic ACR exposure involves compensatory mechanism on nNOS and iNOS expression to maintain the homeostasis of NO at the rostral part of the neocortex and the striatum. However, in the caudal brain, increased iNOS expression did not suppress nNOS expression. Therefore, the present study is consistent with the hypothesis that ACR toxicity is mediated through the disturbance to the NO signaling pathway and exhibits a rostrocaudal difference through the differential expressions of nNOS and iNOS in the neocortex and the striatum.  相似文献   

20.
Both brain and peripheral nitric oxide (NO) play a role in the control of blood pressure and circulatory homeostasis. Central NO production seems to counteract angiotensin II-induced enhancement of sympathetic tone. The aim of our study was to evaluate NO synthase (NOS) activity and protein expression of its three isoforms--neuronal (nNOS), endothelial NOS (eNOS) and inducible (iNOS)--in two brain regions involved in blood pressure control (diencephalon and brainstem) as well as in the kidney of young adult rats with either genetic (12-week-old SHR) or salt-induced hypertension (8-week-old Dahl rats). We have demonstrated reduced nNOS and iNOS expression in brainstem of both hypertensive models. In SHR this abnormality was accompanied by attenuated NOS activity and was corrected by chronic captopril treatment which prevented the development of genetic hypertension. In salt hypertensive Dahl rats nNOS and iNOS expression was also decreased in the diencephalon where neural structures important for salt hypertension development are located. As far as peripheral NOS activity and expression is concerned, renal eNOS expression was considerably reduced in both genetic and salt-induced hypertension. In conclusions, we disclosed similar changes of NO system in the brainstem (but not in the diencephalon) of rats with genetic and salt-induced hypertension. Decreased nNOS expression was associated with increased blood pressure due to enhanced sympathetic tone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号