首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The energy budget for feeding activity and growth of larval Gynaephora groenlandica was investigated on the tundra and in the laboratory. Larvae fed only in June when the buds and young leaves of Salix arctica, its principal host plant, contained the highest concentrations of macro-nutrients and total nonstructural carbohydrates (TNC). The mid-summer hiatus in larval feeding was coincident with an abrupt decline in the TNC content of leaves and a buildup of plant secondary metabolites in the leaves of S. arctica. Following cessation of feeding, the larvae remained concealed from the sun within crevices and vegetation mats. Growth rates of larvae incubated at 15 and 30°C were similar (4.7–5.0 mg/larva/day), but the assimilation efficiency at 15°C was four times greater (40%) than at 30°C. Growth rates were lowest at 5°C (0.22mg/larva/day) as was the assimilation efficiency (6.6%), because of the extended residence time of food in the gut. The high rate of ingestion and excretion at 30°C was caused by elevated maintenance metabolism. Changes in metabolic state influenced oxygen consumption, which was highest for feeding larvae (0.29 ml/g/h) and significantly lower for each, digesting, moving, starved larvae, and lowest for inactive larvae (0.06 ml/g/h). An influence of temperature and leaf quality on digestion rate and maintenance metabolism is the most likely cause of the feeding behavior pattern in G. groenlandica. The larvae may undergo voluntary hypothermia in order to avoid an energy, deficit resulting from high maintenance metabolism during mid-season when the energy content and food quality declines. The restriction of growth and development to a very short period prior to mid-summer may have contributed, to the extended 14-year life cycle of this species.  相似文献   

2.
Synopsis I tested the effects of different ration sizes on preferred temperatures of yearling lake charr, Salvelinus namaycush, by feeding them for about 2 weeks on one of four rations and then allowing them to thermoregulate in a temporal thermal gradient for 2 to 3 days. Selected temperatures and ration were directly and linearly correlated: the larger the ration, the higher the temperature selected. Mean preferred temperatures at different rations (shown in parentheses as percent of body weight per day) were as follows: 9.2°C (0.3); 10.6°C (0.8); 11.7°C (2.0); and 12.6°C (5.5). While the shift to lower temperature, under restricted ration, would maximize food conversion efficiency, previous growth studies indicate that even lower selected temperature would have been more beneficial.Contribution 620 of the Great Lakes Fishery Laboratory.  相似文献   

3.
The effect of food ration on larval lake whitefish, Coregonus clupeaformis , growth and survival was determined in the laboratory using brine shrimp as the test prey. In replicate experiments, larval whitefish were fed one of seven different rations of brine shrimp over a 25 day period. Statistically significant differences were found between larval growth and survival at each feeding level. Larvae fed to excess were 1.33 times as long and 2.80 times as heavy as those on the 1.8 zooplankton/fish (z/f) ration. No mortality was recorded until after day 15 of the experiment by which time all larvae had resorbed their yolk sac. Total mortality followed within 1 week for all feeding densities with the exception of the three highest (18 z/f, 32 z/f and excess rations) where total mortality equalled 90%, 12% and 0%, respectively.  相似文献   

4.
We have demonstrated that larvae of codling moth, Cydia pomonella (L) can successfully complete their first instar when fed apple leaves instead of fruit. Larvae fed leaves after hatching maximized their feeding intensity (about 320 g/larva/day) on day 2. Weight gain revealed a stereotypic sigmoid pattern that peaked on day 3. Although the maximum body weight of larvae fed leaves was 70–85% less than for larvae maintained on apples or on artificial diet, 100% of larvae fed leaves molted to the second instar 3–5 days after hatching. Our investigation revealed a diurnal pattern of leaf ingestion, and neonates' feeding intensity decreased significantly during the scotophase. We also demonstrated that monosodium glutamate (MSG) increased feeding on leaves by codling moth larvae. Depending on the duration of the bioassay, and larval age at time of initial exposure, 0.05 mg/ml and 0.1 mg/ml MSG increased apple leaf consumption by 25–60% over leaves alone. The effect of monosodium glutamate was best demonstrated during the first day following hatching. Exposure to MSG also accelerated molting to the second instar. Larvae exposed to MSG initiated consumption of leaf tissue significantly earlier than control neonates. The feeding stimulatory effect of MSG was not observed if exposure to this chemical was delayed until 3–4 h after hatch.The addition of feeding stimulants to pesticides that act via the alimentary tract may reduce the amount of active ingredients needed to maintain the efficacy of these formulations. Here, we postulate that first instar codling moth larvae are potential targets for treatment with pesticide formulations enhanced with monosodium glutamate.  相似文献   

5.
Synopsis The relationships between food availability, consumption and growth were analyzed from the onset of feeding to an age of 90 days in three cyprinid species. Fish were held at 20 ± 0.5° C and given two (three) constant rations of approximately 30, (40) or 100% dry body weight (dbw) ind-1 day-1. Food consisted of living zooplankton, the size of which correlated with fish size. At high food densities consumption rates decreased rapidly with fish size in all three species. At reduced rations, fish consumed most of the food offered until they were larger than 10 mg dbw. In all species and at each feeding level daily rations consumed increased allometrically with body size. Respiration rate, expressed as routine metabolic rate differed insignificantly between the three species. At high ration levels, growth rates of small bleak, Alburnus alburnus, were distinctly lower than those of roach, Rutilus rutilus, and blue bream, Abramis ballerus. At low food supply all three species grew at similar rates. Assimilation efficiency at low food conditions was approximately twice that of the well-fed groups. If the caloric equivalents of oxygen consumption as measured in well-fed fish are applied to fish fed at low rations their energy budgets do not balance. This indicates the limitations of fish larvae in the partitioning of energy for growth or activity at such conditions.  相似文献   

6.
H. Dautel  W. Knülle 《Oecologia》1997,113(1):46-52
The occurrence of diapause and quiescence was investigated in Argas reflexus engorged larvae, nymphs I and nymphs II. For diapause experiments, larvae were maintained at five different locations: at constant 20°C long day (LD; 17 h light:7 h dark) or short day (SD; 10 h light:14 h dark), at two locations with natural photoperiod and temperature and at one location with natural photoperiod but constant 15°C. At 20°C, diapause incidence was low in physiologically young larvae, increased with larval age, and then decreased to zero in specimens of increased physiological age. This pattern, observed both at constant LD and SD, suggests that the propensity to diapause changes with the physiological age of the unfed larva. The duration of diapause decreased with increasing larval physiological age at all locations, resulting in a seasonally synchronized moulting pattern. The results suggest that A. reflexus larvae are photoperiodically sensitive both before and after feeding and that decreasing daylengths may be particularly strong inductive stimuli. The developmental zero and thermal constant of the larvae were determined as 13.24°C and 220 degree-days, respectively. Degree-day measurements revealed that larval A. reflexus may enter a diapause of different length when fed between August and December and kept at natural daylength. Development of engorged nymphs I and nymphs II, but not of larvae, was ultimatively restricted at a temperature of 37.5°C, but immediately resumed at 25°C, demonstrating the occurrence of quiescence at high temperatures. Similarly, at a low temperature of 15°C, many nymphs I and II did not develop within 58 months, but did so successfully after transfer to 25°C, without additional food intake. Received: 20 May 1997 / Accepted: 4 August 1997  相似文献   

7.
Synopsis Tahoe sucker, Catostomus tahoensis, were fed at three ration levels (starvation, 50% of repletion, and repletion) at three constant and cyclic temperature regimes (4–12°, 8°, 8–18°, 13°, and 13°–23°, 18° C) to examine growth rate and gross growth efficiencies. Growth rates increased with increasing temperature and ration level. Growth rates were not different between cyclic temperatures and the constant temperature equivalent to the mean of the cycle. Growth efficiencies were similar for cyclic and constant temperature regimes. Maintenance rations increased from 0.9% of the initial wet weight per day at low temperatures to 2.0 and 1.7% at intermediate and high temperatures, respectively. Assimilation efficiencies (not measured at low temperatures) did not differ between constant and cyclic temperatures. Tahoe sucker growth rates and assimilation efficiencies may not be enhanced in small streams because of this species' inability to mediate temperature cycles through behavioral thermoregulation.  相似文献   

8.
To understand the physiological and ecological responses of marine fishes to the change of water temperature, newly-hatched larvae of Yellowtail clownfish Amphiprion clarkii were reared in captivity at water temperatures of 23, 26 and 29 °C till they completed the metamorphosis to juvenile phase, and larval survival, development, growth and feeding were evaluated during the experimental period. The results showed that water temperature influenced the physiological performance of larvae of A. clarkii significantly. The survival and growth rates of larvae of A. clarkii increased significantly with the increase of water temperature from 23 to 29 °C (P < 0.05). Water temperature also influenced larval development of A. clarkii significantly and larvae reared at 23 °C took longer time for post-larval development and metamorphosis compared to 26 and 29 °C (P < 0.05). Total length and body weight for post-larval development and metamorphosis decreased with the increase of water temperature from 23 to 29 °C (P < 0.05). Q10 in developmental rate was higher than in daily growth rate at the same rearing temperature, indicating that at water temperature had greater influence on larval development than on growth. Water temperature also influenced larval feeding of A. clarkii significantly with feed ration (FR) and feed conversion efficiency (FCE) increased with the increase of water temperature from 23 to 29 °C (P < 0.05). There was a positive correlation between FR and specific growth rate (SGR) (P < 0.05) but not between FCE and SGR (P > 0.05), indicating that FR influenced growth rate significantly in larvae of A. clarkii. This study demonstrated that the physiological responses of larvae of A. clarkii to the change of water temperature and confirmed that water temperature influenced larval survival, development, growth and feeding significantly. This study suggests that the decline of larval survival and growth rates, extension of pelagic larval duration and reduction of larval feeding at lower temperature have ecological impacts on larval dispersal and metamorphosis, juvenile settlement and population replenishment in A. clarkii in the wild.  相似文献   

9.
Clava multicornis Forskål (Cnidaria, Hydrozoa) from the North Sea was cultured under a variety of environmental conditions, and quantitative aspects of the following processes examined: food intake, growth, oxygen consumption, losses of material, and food conversion. The experiments were conducted in sea water (salinity 32 ‰) at different constant temperature levels (6°, 11° and 16° C) and different daily food rations. The polyps were fed living larvae of the brine shrimpArtemia salina. Daily rations ranged from 2.3 % (6° C) to 19.0 % (16° C) of the dry weight of the polyp colonies. The food ration essential for minimum growth increased with the test temperature. The calorific value of theArtemia larvae was 5854 cal per g organic dry substance. The calorific values of the colonies ofClava multicornis increased at all 3 test temperatures with ascending daily food rations; they ranged from 5367 to 6003 cal per g organic dry substance. Colony growth was determined in 3 different ways: by measuring the increase in polyp number, the length increase of all polyps of a given colony, and the increase of the dry weight of the organic substance of a given colony. Growth was exponential in all 3 cases. The lowest test temperature, or small daily rations, caused slow growth; the highest temperature, or large daily rations, resulted in rapid growth. Oxygen consumption of individual colonies was measured at 16° C and 3 different daily rations; the colonies showed the same intensity of respiration at all 3 daily rations. A colony of 1.5 mg organic dry substance respired 0.107 ml oxygen per 24 hours, a colony of 5.0 mg, 0.269 ml oxygen. At 11° and 16° C gonophores developed well and were counted; at 6° C no gonophores were observed. The amount of the excrement discharged byC. multicornis at 16° C increased from 26.0 % of the food eaten (minimum daily ration) to 39.3% (maximum daily ration). Gross efficiency increased with falling temperature and rising daily ration. At 16° C, net efficiency increased with rising daily ration. On the basis of the data obtained for gross efficiency, oxygen consumption and excrementation, an energy budget was made up.  相似文献   

10.
The cold-hardening capacity of field-collected larvae from southeast Missouri and laboratory-reared larvae of the southwestern corn borer, Diatraea grandiosella Dyar, was examined. Supercooling points of non-diapause and diapause larvae collected from maize plants grown in Missouri (36°30 N lat.) were ca.-7.0°C. The hemolymph melting points of diapause field larvae (-0.8°C) were significantly lower than those of non-diapause larvae collected in July (-0.5°C). The supercooling points of hemolymph from non-diapause and diapause field larvae ranged randomly from-10° to-18°C. Supercooling points of non-diapause laboratory larvae increased from-13° to-10°C prior to pupation, whereas those of diapause larvae increased similarly before the onset of diapause, but then decreased during diapause to ca.-17°C. No change in supercooling points or capacity to survive in the presence of ice was observed in diapause laboratory larvae acclimated at 4°C for 63 days. Laboratory and field larvae began to freeze at ca.-1.5°C in the presence of ice, but survived to several degrees below their melting points. The high supercooling points of field larvae appeared to be due to the presence of an environmental ice-nucleator. Although data for laboratory larvae indicate sufficiently low supercooling points to permit winter survival in southeastern Missouri, considerable larval mortality occurs in the field due to inoculative freezing and the presence of an ice-nucleator.  相似文献   

11.
To understand the mechanisms underlying plant-insect herbivore interactions, it is necessary to examine the simultaneous effects of temperature, food quality and larval age. We examined the simultaneous effects of three allelochemicals (tomatine, rutin and chlorogenic acid) on the performance of first and second instar Manduca sexta larvae under two representative thermal regimes 21 : 10°C and 26 : 15°C for spring and summer, respectively. Thermal regime and allelochemicals interacted to influence the time from egg hatch to ecdysis to the third instar. On average, it took about half as much time to reach the third instar at 26 : 15°C as it did at 21 : 10°C. Separately, tomatine and rutin had a negative effect on developmental time from egg hatch to the third instar, but their simutaneous effects were not additive. Chlorogenic acid significantly reduced the negative effect of tomatine. The magnitude of the allelochemical effect was larger at the cooler thermal regime compared to the warmer regime. For instance, chlorogenic acid by itself had no effect at the 26 : 15°C regime, but at the 21 : 10°C regime it significantly shortened total developmental time. The effect of chlorogenic acid on stadium duration was distinctly different for the two instars. Chlorogenic acid shortened stadium duration of first instar larvae. However, depending on thermal regime and the presence of tomatine, chlorogenic acid had a negative, positive or neutral effect on stadium duration of second instar larvae. Molting duration of second instar larvae was shortened by a half day at the warmer thermal regime but was not affected by the allelochemicals. Final larval weight was influenced by rutin and chlorogenic acid. Caterpillars fed diets containing 20 moles of rutin were on average 10% lighter than those fed plain diet, whereas those fed diets containing 20 moles of chlorogenic adic were on average 7% heavier. However, the effect of chlorogenic acid depended on thermal regime. Overall, our results indicated that: 1) temperature and food quality can interact to influence insect performance and 2) these effects are influenced by larval age.  相似文献   

12.
J. Mark Scriber 《Oecologia》1977,28(3):269-287
Summary Hyalophora cecropia larvae were reared on leaves of wild cherry,Prunus serotina, which contained variable amounts of leaf water but otherwise did not differ in fiber, total nitrogen, and caloric content. Larvae which were fed leaves low in leaf water grew more slowly and were less efficient at utilizing plant biomass, energy, and nitrogen than those larvae fed leaves which were fully supplemented with water.Experiments were performed using excised leaves under different regimes of relative humidity and leaf water supplementation in climatic control chambers maintained at identical temperatures and photoperiod. Foodplant biomass utilization efficiencies were severely reduced by decreasing amounts of leaf water. Growth rates were halved and the efficiency of conversion of assimilated dry matter into larval biomass was reduced from 82% in the treatment with fully supplemented leaves to 34% in the driest treatment. The nitrogen utilization efficiency (N.U.E.) was reduced from 75–80% to 48%, and the relative accumulation rate of nitrogen (N.A.R.) was suppressed nearly 2-fold for larvae on low-water leaves. Relative maintenance costs (calories expended in respiration/mg tissue/day) of larvae were nearly five times higher on dry leaves than on fully supplemented leaves. Larvae on leaves which were low in water content were themselves more desiccated, and metabolized greater portions of assimilated energy, perhaps in an attempt to supplement body water with metabolic water derived from respiration.The larval rates of consumption of biomass, energy, and nitrogen were the same for all treatments, indicating that leaf water affected larval growth primarily by restricting the efficiency of utilizing these nutrients. Where water was limiting (as in tree leaves), an increased consumption rate did not appear to be a successful means of increasing growth rates. There were daily and seasonal differences in leaf water content between different trees of the same species. Although absolute differences in leaf water exist between different trees and between young and old (fully expanded) leaves of a single tree, these differences are proportional and parallel each other through daily and seasonal cycles.In spite of evolutionary adaptations of herbivores to acquire adequate water and avoid desiccation, the leaf water content naturally encountered by cecropia larvae on cherry leaves may limit their growth, especially if the R.H. is low.  相似文献   

13.
This study was carried out under laboratory conditions at various temperatures to compare food consumption and efficiency of conversion of food to body mass for larvae of two coccinellid predators, Scymnus levaillanti Mulsant (Coleoptera: Coccinellidae) and Cycloneda sanguinea (L.) (Coleoptera: Coccinellidae), which differ in body size and feeding method. The consumption rate of each larval stage of both species increased with increasing temperature. The consumption rate for total development (from egg hatch to pupation) of S. levaillanti was found to be 22.9 aphids per day at 30°C. It was much higher for C. sanguinea (975.1 aphids per day at 25°C and 1066 aphids per day at 30°C). The larger species, C. sanguinea was more voracious at each temperature than the smaller species, S. levaillanti. The larvae of S. levaillanti, employing pre-oral digestion, were more efficient in converting food to body mass than larvae of C. sanguinea, which used chewing and sucking. The fourth instars of both species were less efficient in converting food to body mass than were their first three instars. It was concluded that body size and feeding method of coccinellid predators play an important role in food consumption and efficiency of conversion of food to body mass.  相似文献   

14.
The growth of the skleleton and changes in biochemical constituents (proteins, carbohydrates and lipids) were observed in embryos (days 0 and 1) and larvae (2-8 days) of the sea urchin Paracentrotus lividus that were starved (C 0) or fed low (1,000 cells of Hymenomonas elongata, C 1) or high (5,000 cells, C 5). Different batches of C 1 and C 5 larvae were fed first the 2nd, 3rd, 4th or 5th day after fertilization. Initiation of feeding 24 h after hatching slowed down the rate of increase in length of the larval appendages. A differential growth of skeletic rods (somatic and postoral rods) and variations in proteins weights shows the existence of a mixotrophic phase between endotrophic and planktotrophic phases. Best development occured in larvae which were first fed at the lower food level 24 h after hatching. On the 2nd and the 3rd day the somatic/postoral rod ratio is ≥1. This higher ration can be used to estimate the age of natural populations of larvae.  相似文献   

15.
The effect of ration on the growth of pairs of juvenile sea bass Dicentrarchus labrax fed squid mantle was recorded at four temperatures: 6, 10, 14 and 18) C, covering the range typical of Welsh coastal waters. Initial weight of the fish ranged from 2.8 to 15.9 g. A predictive model for the maximum meal size (Mmax) at temperatures between 10 and 18) C, accounted for 95% of the variance in lnMmax. Even when offered excess food, bass at 6) C had a low rate of food consumption [0.19% body weight (BW) day?1] and lost weight (G=?0.04% day?1). Predictive regression models for specific growth rate (G) accounted for 86% of the variance at reduced rations and 70% at maximum meals. The relationship between G (calculated for total biomass per tank) and ration was a decelerating curve. G at maximum meals increased with temperature, at lower rations G decreased with temperature. For a pair of bass with a combined weight of 15 g, predicted maintenance ration ranged between 0.7 and 2.3% BW day?1 and increased with temperature. Maximum meal size was more sensitive to temperature than maintenance ration. At 18) C optimum ration was 7.4% BW day?1. At lower temperatures, the optimum ration was the maximum meal. The maximum gross growth efficiency was 17.4% at 18) C. Mean absorption efficiency was 94.8%. Ration level had no significant effect on absorption efficiency, which was lowest at 6) C. Condition indices (Fulton condition factor, wet and dry liver—somatic indices and body depth index) increased with meal size at all temperatures except 6) C. An increase in temperature between 10 and 18) C generally resulted in a decrease in condition indices at a given ration. When comparisons were made at a given standard length, gut and carcass weight increased with ration. Visceral fat and gut weight decreased with increased temperature.  相似文献   

16.
The impact of diatom food species (Chaetoceros calcitrans and Skeletonema costatum), temperature and starvation on the larval development of Balanus amphitrite was evaluated. Starvation threshold levels for different ages of larvae (0- to 5-day-old) fed with C. calcitrans and S. costatum and then starved at 5, 15 and 25 °C temperature were estimated as ultimate recovery hour (URH; denoting the starvation point in hours at the end of which larvae can recover and continue development). Effect of temperature on starvation threshold varied significantly with larval age and food species. The URH declined with larval age at 5 °C, but not at 15 and 25 °C. The URH and grazing rates were high for early instars fed on C. calcitrans, and for advanced instars fed on S. costatum. Carbon gain through feeding was maximum for 2-day-old larvae when fed with C. calcitrans and decreased with larval age. However, when fed with S. costatum carbon gain increased with larval age. This confirms that with development the utility of food types changes. The differences in the carbon gain can be attributed to differences in grazing rate due to variations in the size of the diatom cells, larval intersetular distance, diatom sinking rate and the photo-taxic behavior of larvae. Molting was observed at times when larvae were undergoing starvation and this could be viewed as stress-induced molting, and it differed with the larval age and food organisms.  相似文献   

17.
Synopsis Growth and survival of Colorado squawfish, Ptychocheilus lucius, larvae under fluctuating 18, 22, and 26° C (5° C diel fluctuations) and constant 18, 22, 26° C, and 30° C temperature conditions and ration size corresponding to 12.5, 28,64,142, 320 brine shrimp nauplii fish–1 day–1 determined from laboratory experiments. Growth was optimal at 31° C and high at temperatures of 26° C to 30° C, at the highest food abundance. Lowest growth was under lowest food rations and highest temperatures. Growth of Colorado squawfish larvae declined substantially at temperatures < 22° C. Neither growth nor survival was significantly different between fluctuating or constant regimes. Survival of Colorado squawfish larvae was highest (95%) at 26.2° C and 235 nauplii fish–1 day–1 and high at temperatures of 20 to 30° C with food abundance > 180 nauplii fish–1 day–1. Survival was lowest when food abundance was low and temperature was high. Highest mortality occurred more than 20 days after experiments began and mortalities occurred sooner in higher than lower temperatures. Colorado squawfish larvae denied food for 5, 10, or 15 d after first feeding could have begun (6 d), had survival greater than 87 % which was equivalent to continuously fed controls. Survival of fish denied food for 17.5 d after feeding could have begun declined from 84% before feeding to 57% after feeding. Point of no return was estimated between 17.5 and 20 d. Colorado squawfish have relatively high starvation resistance. Low, stable flows that simulate natural hydrographs may enhance growth, survival, and recruitment of early life stages of Colorado squawfish by increasing water temperature and food abundance in regulated rivers of the Colorado River basin.  相似文献   

18.
Experiment was conducted with the aim of determining the effect of varying water temperature and ration size on growth and body composition of fry of the common carp, Cyprinus carpio. Common carp fry with an initial body weight (BW) of 0.86 g were fed a diet (34.9% protein, 18.3 KJ/g diet) at four ration sizes 4%, 5%, 6% and 7% of their body weight per day and reared at two water temperatures 28 and 32 °C for 60 days. Fry fed with 6% ration showed the highest mean final body weight at 28 °C. Final body weight was significantly (P<0.05) affected by ration and temperature. Cyprinus carpio fry raised at 28 °C had higher feed efficiency (FE) (44.36%) than the fry reared at 32 °C (40.98%) with 4% ration. Further, feed efficiency decreased with increase in ration levels in both temperatures. Protein efficiency ratio (PER) was higher (1.26) at 28 °C than at 32 °C (1.17). At 6% ration, common carp fry showed highest specific growth rate (SGR) (3.82%/day) at 28 °C as compared with at 32 °C (3.57%/day). A linear increase in protein and lipid contents was evident with increasing ration levels up to 6% body weight at both temperatures 28 and 32 °C. Second-order polynomial regression analysis of weight gain and SGR indicated the breakpoints at ration level 6.04% and 6.08% body weight per day at 28 and 32 °C. Hepatosomatic index (HSI) not affected by temperature and ration size while, viscerosomatic index (VSI) influenced (P<0.05) by ration size and temperature. Based on the above results, it may be concluded that 6% BW/day ration is optimal for growth of Cyprinus carpio fry at both the temperatures 28 and 32 °C.  相似文献   

19.
The effect of temperature on predation by Ilione albiseta (Diptera: Sciomyzidae) on Lymnaea peregra was investigated at 14°, 17°, 20°, 23° and 26°C. The mean dry weight of snail tissue (Lymnaea peregra) attacked and consumed per day by first and second instar I. albiseta larvae was highest at 20°C while for third instar and total larval duration period it was greatest at 23°C. The mean number of snails killed per day during the third instar was also highest at 23°C. The total amount of snail tissue consumed by I. albiseta larvae increased significantly from first to second instar and from second to third instar at each constant temperature. Mean survival period of unfed first instar larvae decreased from 28.4 days at 14°C to 11 days at 26°C and the mean length of the second instar cephalopharyngeal skeleton decreased with increasing temperatures. As temperature increased the rate of consumption of oxygen (dissolved in water) by first and third instar larvae rose.  相似文献   

20.
Changes in lipid class, fatty acid composition, protein, and dry and wet weights of fertilized eggs and developing larvae of striped bass (Morone saxatilis) fed with the live food, Artemia, were investigated. A decrease of wet and dry weights and moisture was observed at the beginning of the larval stage. Larvae regained the original moisture level, and wet and dry weights increased steadily after feeding. Total lipids decreased from 190 μg/egg in fertilized eggs to 151 μg/egg during hatching and increased after feeding. When total lipid contents were expressed as a percentage of larval dry weight, a decline of lipid did not occur until after feeding. Total protein, on the other hand, increased right after feeding, but there was some variation between days. Polar lipids increased significantly from 20 μg/egg at the egg stage to 199 μg/larva at 26 days post-hatching (DPH), 2 days before the onset of metamorphosis, while neutral lipids declined from 175 μg/egg to 80 μg/larva during the same time period. Wax/steryl esters decreased from 150 μg/egg in fertilized eggs to 32 μg/larva at 26 DPH. Triacylglycerols dropped from 21 μg/egg to 15 μg/larva before feeding and increased gradually after feeding. In contrast, the level of cholesterol increased 2–3-fold. There was a significant increase of phospholipids, particularly phosphatidylcholine in larvae after feeding. The fatty acid composition of fish larvae was significantly influenced by the diet, Artemia. There was an indication of catabolism of endogenous eicosapentaenoic and docosahexaenoic acids during metamorphosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号