共查询到20条相似文献,搜索用时 10 毫秒
1.
Drosophila melanogaster gamma-TuRC is dispensable for targeting gamma-tubulin to the centrosome and microtubule nucleation 下载免费PDF全文
Vérollet C Colombié N Daubon T Bourbon HM Wright M Raynaud-Messina B 《The Journal of cell biology》2006,172(4):517-528
In metazoans, gamma-tubulin acts within two main complexes, gamma-tubulin small complexes (gamma-TuSCs) and gamma-tubulin ring complexes (gamma-TuRCs). In higher eukaryotes, it is assumed that microtubule nucleation at the centrosome depends on gamma-TuRCs, but the role of gamma-TuRC components remains undefined.For the first time, we analyzed the function of all four gamma-TuRC-specific subunits in Drosophila melanogaster: Dgrip75, Dgrip128, Dgrip163, and Dgp71WD. Grip-motif proteins, but not Dgp71WD, appear to be required for gamma-TuRC assembly. Individual depletion of gamma-TuRC components, in cultured cells and in vivo, induces mitotic delay and abnormal spindles. Surprisingly, gamma-TuSCs are recruited to the centrosomes. These defects are less severe than those resulting from the inhibition of gamma-TuSC components and do not appear critical for viability. Simultaneous cosilencing of all gamma-TuRC proteins leads to stronger phenotypes and partial recruitment of gamma-TuSC. In conclusion, gamma-TuRCs are required for assembly of fully functional spindles, but we suggest that gamma-TuSC could be targeted to the centrosomes, which is where basic microtubule assembly activities are maintained. 相似文献
2.
Axin is known to have an important role in the degradation of β‐catenin in the Wnt pathway. Here, we reveal a new function of Axin at the centrosome. Axin was localized to the centrosome in various cell lines and formed a complex with γ‐tubulin. Knockdown of Axin reduced the localization of γ‐tubulin and γ‐tubulin complex protein 2—components of the γ‐tubulin ring complex—to the centrosome and the centrosomal microtubule nucleation activity after treatment with nocodazole. These phenotypes could not be rescued by the reduction in the levels of β‐catenin. Although the expression of Axin rescued these phenotypes in Axin‐knockdown cells, overexpression of Axin2, which is highly homologous to Axin, could not. Axin2 was also localized to the centrosome, but it did not form a complex with γ‐tubulin. These results suggest that Axin, but not Axin2, is involved in microtubule nucleation by forming a complex with γ‐tubulin at the centrosome. 相似文献
3.
The gamma-tubulin ring complex (gammaTuRC) is a protein complex of relative molecular mass approximately 2.2 x 10(6) that nucleates microtubules at the centrosome. Here we use electron-microscopic tomography and metal shadowing to examine the structure of isolated Drosophila gammaTuRCs and the ends of microtubules nucleated by gammaTuRCs and by centrosomes. We show that the gammaTuRC is a lockwasher-like structure made up of repeating subunits, topped asymmetrically with a cap. A similar capped ring is also visible at one end of microtubules grown from isolated gammaTuRCs and from centrosomes. Antibodies against gamma-tubulin label microtubule ends, but not walls, in centrosomes. These data are consistent with a template-mediated mechanism for microtubule nucleation by the gammaTuRC. 相似文献
4.
Microtubules are dynamic cytoskeletal polymers that assemble from alpha/beta-tubulin and are vital for the establishment of cell polarity, vesicle trafficking and formation of the mitotic/meiotic spindle. gamma-Tubulin, a protein related to alpha/beta-tubulin, is required for initiating the polymerization of microtubules in vivo. gamma-Tubulin has been found in two main protein complexes: the gamma-tubulin ring complex and its subunit, the gamma-tubulin small complex. The latter is analogous to the yeast Tub4 complex. In the past year, important advances have been made in understanding the structure and function of the gamma-tubulin ring complex and how it interacts with microtubules. 相似文献
5.
《The Journal of cell biology》1995,131(1):207-214
The role of microtubules in mediating chromosome segregation during mitosis is well-recognized. In addition, interphase cells depend upon a radial and uniform orientation of microtubules, which are intrinsically asymmetric polymers, for the directional transport of many cytoplasmic components and for the maintenance of the structural integrity of certain organelles. The slow growing minus ends of microtubules are linked to the centrosome ensuring extension of the fast growing plus ends toward the cell periphery. However, the molecular mechanism of this linkage is not clear. One hypothesis is that gamma-tubulin, located at the centrosome, binds to the minus ends of microtubules. To test this model, we synthesized radiolabeled gamma-tubulin in vitro. We demonstrate here biochemically a specific, saturable, and tight (Kd = 10(-10) M) interaction of gamma-tubulin and microtubule ends with a stoichiometry of 12.6 +/- 4.9 molecules of gamma-tubulin per microtubule. In addition, we designed an in vitro assay to visualize gamma-tubulin at the minus ends of axonemal microtubules. These data show that gamma-tubulin represents the first protein to bind microtubule minus ends and might be responsible for mediating the link between microtubules and the centrosome. 相似文献
6.
CDK5RAP2 is a human microcephaly protein that contains a γ-tubulin complex (γ-TuC)-binding domain conserved in Drosophila melanogaster centrosomin and Schizosaccharomyces pombe Mto1p and Pcp1p, which are γ-TuC-tethering proteins. In this study, we show that this domain within CDK5RAP2 associates with the γ-tubulin ring complex (γ-TuRC) to stimulate its microtubule-nucleating activity and is therefore referred to as the γ-TuRC-mediated nucleation activator (γ-TuNA). γ-TuNA but not its γ-TuC-binding-deficient mutant stimulates microtubule nucleation by purified γ-TuRC in vitro and induces extensive, γ-TuRC-dependent nucleation of microtubules in a microtubule regrowth assay. γ-TuRC bound to γ-TuNA contains NME7, FAM128A/B, and actin in addition to γ-tubulin and GCP2-6. RNA interference-mediated depletion of CDK5RAP2 impairs both centrosomal and acentrosomal microtubule nucleation, although γ-TuRC assembly is unaffected. Collectively, these results suggest that the γ-TuNA found in CDK5RAP2 has regulatory functions in γ-TuRC-mediated microtubule nucleation. 相似文献
7.
Macurek L Dráberová E Richterová V Sulimenko V Sulimenko T Dráberová L Marková V Dráber P 《The Biochemical journal》2008,416(3):421-430
The molecular mechanisms controlling microtubule formation in cells with non-centrosomal microtubular arrays are not yet fully understood. The key component of microtubule nucleation is gamma-tubulin. Although previous results suggested that tyrosine kinases might serve as regulators of gamma-tubulin function, their exact roles remain enigmatic. In the present study, we show that a pool of gamma-tubulin associates with detergent-resistant membranes in differentiating P19 embryonal carcinoma cells, which exhibit elevated expression of the Src family kinase Fyn (protein tyrosine kinase p59(Fyn)). Microtubule-assembly assays demonstrated that membrane-associated gamma-tubulin complexes are capable of initiating the formation of microtubules. Pretreatment of the cells with Src family kinase inhibitors or wortmannin blocked the nucleation activity of the gamma-tubulin complexes. Immunoprecipitation experiments revealed that membrane-associated gamma-tubulin forms complexes with Fyn and PI3K (phosphoinositide 3-kinase). Furthermore, in vitro kinase assays showed that p85alpha (regulatory p85alpha subunit of PI3K) serves as a Fyn substrate. Direct interaction of gamma-tubulin with the C-terminal Src homology 2 domain of p85alpha was determined by pull-down experiments and immunoprecipitation experiments with cells expressing truncated forms of p85alpha. The combined results suggest that Fyn and PI3K might take part in the modulation of membrane-associated gamma-tubulin activities. 相似文献
8.
Murata T Sonobe S Baskin TI Hyodo S Hasezawa S Nagata T Horio T Hasebe M 《Nature cell biology》2005,7(10):961-968
Despite the absence of a conspicuous microtubule-organizing centre, microtubules in plant cells at interphase are present in the cell cortex as a well oriented array. A recent report suggests that microtubule nucleation sites for the array are capable of associating with and dissociating from the cortex. Here, we show that nucleation requires extant cortical microtubules, onto which cytosolic gamma-tubulin is recruited. In both living cells and the cell-free system, microtubules are nucleated as branches on the extant cortical microtubules. The branch points contain gamma-tubulin, which is abundant in the cytoplasm, and microtubule nucleation in the cell-free system is prevented by inhibiting gamma-tubulin function with a specific antibody. When isolated plasma membrane with microtubules is exposed to purified neuro-tubulin, no microtubules are nucleated. However, when the membrane is exposed to a cytosolic extract, gamma-tubulin binds microtubules on the membrane, and after a subsequent incubation in neuro-tubulin, microtubules are nucleated on the pre-existing microtubules. We propose that a cytoplasmic gamma-tubulin complex shuttles between the cytoplasm and the side of a cortical microtubule, and has nucleation activity only when bound to the microtubule. 相似文献
9.
Wonjung Shin Nam-Kyung Yu Bong-Kiun Kaang Kunsoo Rhee 《Cell cycle (Georgetown, Tex.)》2015,14(12):1925-1931
Centrobin resides in daughter centriole and play a critical role in centriole duplication. Nucleation and stabilization of microtubules are known biological activities of centrobin. Here, we report a specific localization of centrobin outside the centrosome. Centrobin was associated with the stable microtubules. In hippocampal cells, centrobin formed cytoplasmic dots in addition to the localization at both centrosomes with the mother and daughter centrioles. Such specific localization pattern suggests that cytoplasmic centrobin is not just a reserved pool for centrosomal localization but also has a specific role in the cytoplasm. In fact, centrobin enhanced microtubule formation outside as well as inside the centrosome. These results propose specific roles of the cytoplasmic centrobin for noncentrosomal microtubule formation in specific cell types and during the cell cycle. 相似文献
10.
The gamma-tubulin ring complex (gammaTuRC) is a large multi-protein complex that is required for microtubule nucleation from the centrosome. Here, we show that the GCP-WD protein (originally named NEDD1) is the orthologue of the Drosophila Dgrip71WD protein, and is a subunit of the human gammaTuRC. GCP-WD has the properties of an attachment factor for the gammaTuRC: depletion or inhibition of GCP-WD results in loss of the gammaTuRC from the centrosome, abolishing centrosomal microtubule nucleation, although the gammaTuRC is intact and able to bind to microtubules. GCP-WD depletion also blocks mitotic chromatin-mediated microtubule nucleation, resulting in failure of spindle assembly. Mitotic phosphorylation of GCP-WD is required for association of gamma-tubulin with the spindle, separately from association with the centrosome. Our results indicate that GCP-WD broadly mediates targeting of the gammaTuRC to sites of microtubule nucleation and to the mitotic spindle, which is essential for spindle formation. 相似文献
11.
Polo-like kinase 1 regulates Nlp,a centrosome protein involved in microtubule nucleation 总被引:13,自引:0,他引:13
In animal cells, most microtubules are nucleated at centrosomes. At the onset of mitosis, centrosomes undergo a structural reorganization, termed maturation, which leads to increased microtubule nucleation activity. Centrosome maturation is regulated by several kinases, including Polo-like kinase 1 (Plk1). Here, we identify a centrosomal Plk1 substrate, termed Nlp (ninein-like protein), whose properties suggest an important role in microtubule organization. Nlp interacts with two components of the gamma-tubulin ring complex and stimulates microtubule nucleation. Plk1 phosphorylates Nlp and disrupts both its centrosome association and its gamma-tubulin interaction. Overexpression of an Nlp mutant lacking Plk1 phosphorylation sites severely disturbs mitotic spindle formation. We propose that Nlp plays an important role in microtubule organization during interphase, and that the activation of Plk1 at the onset of mitosis triggers the displacement of Nlp from the centrosome, allowing the establishment of a mitotic scaffold with enhanced microtubule nucleation activity. 相似文献
12.
The structure of the gamma-tubulin small complex: implications of its architecture and flexibility for microtubule nucleation 下载免费PDF全文
Kollman JM Zelter A Muller EG Fox B Rice LM Davis TN Agard DA 《Molecular biology of the cell》2008,19(1):207-215
The gamma-tubulin small complex (gamma-TuSC) is an evolutionarily conserved heterotetramer essential for microtubule nucleation. We have determined the structure of the Saccharomyces cerevisiae gamma-TuSC at 25-A resolution by electron microscopy. gamma-TuSC is Y-shaped, with an elongated body connected to two arms. Gold labeling showed that the two gamma-tubulins are located in lobes at the ends of the arms, and the relative orientations of the other gamma-TuSC components were determined by in vivo FRET. The structures of different subpopulations of gamma-TuSC indicate flexibility in the connection between a mobile arm and the rest of the complex, resulting in variation of the relative positions and orientations of the gamma-tubulins. In all of the structures, the gamma-tubulins are distinctly separated, a configuration incompatible with the microtubule lattice. The separation of the gamma-tubulins in isolated gamma-TuSC likely plays a role in suppressing its intrinsic microtubule-nucleating activity, which is relatively weak until the gamma-TuSC is incorporated into higher order complexes or localized to microtubule-organizing centers. We propose that further movement of the mobile arm is required to bring the gamma-tubulins together in microtubule-like interactions, and provide a template for microtubule growth. 相似文献
13.
LI ShunDai 《中国科学:生命科学英文版》2015,(1):117-118
<正>Cortical microtubule(MT)arrays are dynamic filamentous structures that are essential for cell differentiation and development in plants.However,the molecular mechanisms that control the organization of cortical MT arrays are not well understood.Early studies have revealed that the formation of cortical MT arrays involves MT nucleation on existing cortical MTs.The growth of new MTs follows the polarity of existing MTs and the orientation of new MTs is either in parallel with extant MTs or at a small angle(about40 degree)to the extant MTs[1].Nucleation machinery appears to be conserved between animals and plants in 相似文献
14.
Efficient formation of bipolar microtubule bundles requires microtubule-bound gamma-tubulin complexes 下载免费PDF全文
The mechanism for forming linear microtubule (MT) arrays in cells such as neurons, polarized epithelial cells, and myotubes is not well understood. A simpler bipolar linear array is the fission yeast interphase MT bundle, which in its basic form contains two MTs that are bundled at their minus ends. Here, we characterize mto2p as a novel fission yeast protein required for MT nucleation from noncentrosomal gamma-tubulin complexes (gamma-TuCs). In interphase mto2Delta cells, MT nucleation was strongly inhibited, and MT bundling occurred infrequently and only when two MTs met by chance in the cytoplasm. In wild-type 2, we observed MT nucleation from gamma-TuCs bound along the length of existing MTs. We propose a model on how these nucleation events can more efficiently drive the formation of bipolar MT bundles in interphase. Key to the model is our observation of selective antiparallel binding of MTs, which can both explain the generation and spatial separation of multiple bipolar bundles. 相似文献
15.
Centrosomal proteins CG-NAP and kendrin provide microtubule nucleation sites by anchoring gamma-tubulin ring complex 下载免费PDF全文
Takahashi M Yamagiwa A Nishimura T Mukai H Ono Y 《Molecular biology of the cell》2002,13(9):3235-3245
Microtubule assembly is initiated by the gamma-tubulin ring complex (gamma-TuRC). In yeast, the microtubule is nucleated from gamma-TuRC anchored to the amino-terminus of the spindle pole body component Spc110p, which interacts with calmodulin (Cmd1p) at the carboxy-terminus. However, mammalian protein that anchors gamma-TuRC remains to be elucidated. A giant coiled-coil protein, CG-NAP (centrosome and Golgi localized PKN-associated protein), was localized to the centrosome via the carboxyl-terminal region. This region was found to interact with calmodulin by yeast two-hybrid screening, and it shares high homology with the carboxyl-terminal region of another centrosomal coiled-coil protein, kendrin. The amino-terminal region of either CG-NAP or kendrin indirectly associated with gamma-tubulin through binding with gamma-tubulin complex protein 2 (GCP2) and/or GCP3. Furthermore, endogenous CG-NAP and kendrin were coimmunoprecipitated with each other and with endogenous GCP2 and gamma-tubulin, suggesting that CG-NAP and kendrin form complexes and interact with gamma-TuRC in vivo. These proteins were localized to the center of microtubule asters nucleated from isolated centrosomes. Pretreatment of the centrosomes by antibody to CG-NAP or kendrin moderately inhibited the microtubule nucleation; moreover, the combination of these antibodies resulted in stronger inhibition. These results imply that CG-NAP and kendrin provide sites for microtubule nucleation in the mammalian centrosome by anchoring gamma-TuRC. 相似文献
16.
Dynein motor regulation stabilizes interphase microtubule arrays and determines centrosome position 总被引:1,自引:0,他引:1 下载免费PDF全文
Koonce MP Köhler J Neujahr R Schwartz JM Tikhonenko I Gerisch G 《The EMBO journal》1999,18(23):6786-6792
Cytoplasmic dynein is a microtubule-based motor protein responsible for vesicle movement and spindle orientation in eukaryotic cells. We show here that dynein also supports microtubule architecture and determines centrosome position in interphase cells. Overexpression of the motor domain in Dictyostelium leads to a collapse of the interphase microtubule array, forming loose bundles that often enwrap the nucleus. Using green fluorescent protein (GFP)-alpha-tubulin to visualize microtubules in live cells, we show that the collapsed arrays remain associated with centrosomes and are highly motile, often circulating along the inner surface of the cell cortex. This is strikingly different from wild-type cells where centrosome movement is constrained by a balance of tension on the microtubule array. Centrosome motility involves force-generating microtubule interactions at the cortex, with the rate and direction consistent with a dynein-mediated mechanism. Mapping the overexpression effect to a C-terminal region of the heavy chain highlights a functional domain within the massive sequence important for regulating motor activity. 相似文献
17.
18.
Ran, a Ras-related GTPase, is required for transporting proteins in and out of the nucleus during interphase and for regulating the assembly of microtubules. cDNA cloning shows that rat testis, like mouse testis, expresses both somatic and testis-specific forms of Ran-GTPase. The presence of a homologous testis-specific form of Ran-GTPase in rodents implies that the Ran-GTPase pathway plays a significant role during sperm development. This suggestions is supported by distinct Ran-GTPase immunolocalization sites identified in developing spermatids. Confocal microscopy demonstrates that Ran-GTPase localizes in the nucleus of round spermatids and along the microtubules of the manchette in elongating spermatids. When the manchette disassembles, Ran-GTPase immunoreactivity is visualized in the centrosome region of maturing spermatids. The circumstantial observation that fractionated manchettes, containing copurified centrin-immunoreactive centrosomes, can organize a three-dimensional lattice in the presence of taxol and GTP, points to the role of Ran-GTPase and associated factors in microtubule nucleation as well as the potential nucleating function of spermatid centrosomes undergoing a reduction process. Electron microscopy demonstrates the presence in manchette preparations of spermatid centrosomes, recognized as such by their association with remnants of the implantation fossa, a dense plate observed only at the basal surface of developing spermatid and sperm nuclei. In addition, we have found importin beta1 immunoreactivity in the nucleus of elongating spermatids, a finding that, together with the presence of Ran-GTPase in the nucleus of round spermatids and the manchette, suggest a potential role of Ran-GTPase machinery in nucleocytoplasmic transport. Our expression and localization analysis, correlated with functional observations in other cell systems, suggest that Ran-GTPase may be involved in both nucleocytoplasmic transport and microtubules assembly, two critical events during the development of functional sperm. In addition, the manchette-to-centrosome Ran-GTPase relocation, together with the similar redistribution of various proteins associated to the manchette, suggest the existence of an intramanchette molecular transport mechanism, which may share molecular analogies with intraflagellar transport. 相似文献
19.
Dynamin 2 (Dyn2) is a large GTPase involved in vesicle formation and actin reorganization. In this study, we report a novel role for Dyn2 as a component of the centrosome that is involved in centrosome cohesion. By light microscopy, Dyn2 localized aside centrin and colocalized with gamma-tubulin at the centrosome; by immunoelectron microscopy, however, Dyn2 was detected in the pericentriolar material as well as on centrioles. Exogenously expressed green fluorescent protein (GFP)-tagged Dyn2 also localized to the centrosome, whereas glutathione S-transferase (GST)-tagged Dyn2 pulled down a protein complex(es) containing actin, alpha-tubulin and gamma-tubulin from liver homogenate. Furthermore, gel overlay and immunoprecipitation indicated a direct interaction between gamma-tubulin and a 219-amino-acid middle domain of Dyn2. Reduction of Dyn2 protein levels with small-interfering RNA (siRNA) resulted in centrosome splitting, whereas microtubule nucleation from centrosomes was not affected, suggesting a role for Dyn2 in centrosome cohesion. Finally, fluorescence recovery after photobleaching (FRAP) analysis of a GFP-tagged Dyn2 middle domain indicated that Dyn2 is a dynamic exchangeable component of the centrosome. These findings suggest a novel function for Dyn2 as a participant in centrosome cohesion. 相似文献
20.
Ran-GTP coordinates regulation of microtubule nucleation and dynamics during mitotic-spindle assembly 总被引:1,自引:0,他引:1
It was recently reported that GTP-bound Ran induces microtubule and pseudo-spindle assembly in mitotic egg extracts in the absence of chromosomes and centrosomes, and that chromosomes induce the assembly of spindle microtubules in these extracts through generation of Ran-GTP. Here we examine the effects of Ran-GTP on microtubule nucleation and dynamics and show that Ran-GTP has independent effects on both the nucleation activity of centrosomes and the stability of centrosomal microtubules. We also show that inhibition of Ran-GTP production, even in the presence of duplicated centrosomes and kinetochores, prevents assembly of a bipolar spindle in M-phase extracts. 相似文献