首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The acute effects of ethylcholine mustard aziridinium ion (AF64A) and hemicholinium-3 (HC-3) on the release of endogenous acetylcholine (ACh) from isolated tissues were examined. Whereas addition of HC-3 (10−6–10−5 M) significantly reduced the output of ACh from isolated guinea-pig ileum longitudinal muscle strip elicited by 10 Hz stimulation, AF64A had no effect and even enhanced the release of radiolabel elicited by 1 Hz stimulation when this tissue was pre-loaded with [3H]choline. Similarly, HC-3 (10−5 M) reduced ouabain-induced endogenous ACh release from isolated rat hippocampus. Addition of AF64A (10−5−5 × 10−5 M) caused a slight increase in ACh release. In isolated rat cortex, however, AF64A did not affect ACh release. Moreover, AF64A caused a decrease in ouabain-stimulated ACh release from striatum. The present study indicates that: (a) the in vitro actions of AF64A differ from those of HC-3 and (b) the acute effects of AF64A on endogenous ACh release vary, depending on the tissues studied and the stimulation parameters used.  相似文献   

2.
Acidosis (pH 6.0) led to significant decrease in high—affinity choline uptake by rat brain synaptosomes. The effects persisted following pH readjustment (7.4) of the incubation medium, consisting of decrease in both Km and Vmax of the affinity system. pH readjustment coincided with synaptosomal leakage of lactate dehydrogenase (LDH) and with instability of the synaptosomal suspension as evidenced from turbidity modifications of the preparation. LDH leakage occurred when acidosis was performed with lactic acid, whereas it was not seen following H3PO4 acidosis, probably because of the rapid diffusion of the protonated form of lactic acid across membranes. Turbidity modifications of the suspension were prevented by EDTA. The present results indicate that acidosis to pH level comparable to what is observed in brain ischemia is deleterious for cholinergic mechanisms. They also suggest that alkaline pH shifts that occur after blood reperfusion of ischemic brain tissue might be critical for the survival of cells.To whom to address reprint requests.  相似文献   

3.
Ethylcholine mustard aziridinium ion (ECMA) was infused intracerebroventricularly (icv) to rats followed by measurement of two markers of presynaptic cholinergic neurons, choline acetyltransferase (ChAT) activity and high affinity choline transport (HAChT), in the hippocampus and cortex. Bilateral icv administration of 1, 2, or 3 nmol of ECMA per side produced dose-dependent reductions in each marker in the hippocampus, but not in the cortex, one week after treatment. Reductions of 52% and 46% for ChAT activity and HAChT, respectively, were produced in the hippocampus by 3 nmol ECMA. Measurement of these two markers at different times after icv infusion of 2 nmol ECMA/ventricle revealed that the activity of ChAT was reduced to a greater extent than was HAChT in the hippocampus 1 day and 1, 2, 4, and 6 weeks after treatment. The maximal reductions of ChAT activity and HAChT (61% and 53%, respectively) were reached between 1 and 2 weeks after ECMA administration. There was no evidence of regeneration of either marker at 4 or 6 weeks posttreatment. HAChT and ChAT activity in the cortex were not altered at any of the posttreatment times examined.ECMA-induced deficits in hippocampal ChAT activity and HAChT were not counteracted by the following treatments: (i) daily administration of GM1 ganglioside (10 mg/kg, intraperitoneally (ip)) from the day prior to infusion of ECMA until 2 weeks later; (ii) daily administration of GM1 ganglioside between 2 and 6 weeks after infusion of ECMA; and (iii) icv administration of nerve growth factor (NGF) twice per week for 2 weeks after ECMA treatment. Since similar treatments with NGF and GM1 ganglioside ameliorate lesions induced by other methods, these results indicate that the mechanism of lesion formation and the surviving cellular components influence the functional effects of neurotrophic factors. In contrast to the above results, treatment with vitamin E significantly attenuated ECMA-induced deficits of ChAT activity and HAChT. Further studies of the effects of vitamin E on the development of ECMA-induced deficits may help to elucidate the mechanism action of ECMA.  相似文献   

4.
The effects of iron-induced lipid peroxidation and of lactic acidosis on [3H]choline uptake were investigated on crude synaptosomes prepared from rat cerebral cortices. Fe2+-induced lipid peroxidation as evidenced from the production of thiobarbituric acid reactives substances (TBARS) was correlated with a decrease in high-affinity choline uptake (HACU). Trolox C, a free radical scavenger, prevented both Fe2+-induced TBARS production and decrease in HACU. Lactic acidosis (pH 6.0 for 30 or 60 min) increased the TBARS production with concomitant decrease in HACU (–48%, –78%, respectively). The acidosis dependent decrease was not reversible following pH 7.4 readjustment after 60 min acidosis. It was not prevented by trolox C, although trolox C inhibited the acidosis-induced production of TBARS. The results suggest that the contribution of acidosis to peroxidative damages is probably of less importance in comparison to other cytotoxic mechanisms.  相似文献   

5.
Acetylcholine mustard aziridinium ion inhibited the transport of [3H]choline into human erythrocytes. Treatment of the erythrocytes with 1 X 10(-4) M tetraethylpyrophosphate prevented the inhibition of [3H]choline transport by acetylcholine mustard aziridinium ion. Hydrolyzed acetylcholine mustard aziridinium ion inhibited choline transport both in the presence and absence of 1 X 10(-4) M tetraethylpyrophosphate. The product of hydrolysis was equipotent with acetylcholine mustard in its ability to inhibit choline transport; incubation of this product with sodium thiosulfate prevented inhibition of choline transport thereby indicating the presence of an aziridinium ion. The hydrolysis product is likely to be choline mustard aziridinium ion. Results on the efflux of [3H]choline from erythrocytes in the presence of the proposed choline mustard aziridinium ion showed that the mustard moiety was transported into the red cells on the choline carrier. The rate of efflux of [3H]choline produced by choline mustard aziridinium ion was 55% of that produced by the same concentration of choline. It is concluded that acetylcholinesterase (EC 3.1.1.7) of red cells rapidly hydrolyzes acetylcholine mustard aziridinium ion to acetate and choline mustard aziridinium and the latter compound can act as a potent inhibitor of choline transport. This finding would indicate that the hemicholinium-like toxicity of acetylcholine mustard in the mouse is due to the formation of choline mustard aziridinium ion.  相似文献   

6.
The effect of ethyl choline mustard (ECMA), and effective irreversible inhibitor of choline transport, was investigated on the enzymes of choline metabolism. ECMA at concentrations of 50 microM hardly affected choline acetyltransferase and caused only a 20% inhibition of choline kinase at a concentration of 1 mM. However, the mustard was an extremely effective inhibitor of choline dehydrogenase, producing 50% inhibition at concentrations of 6 microM. The inhibition was prevented by incubation in the presence of choline or by prior reaction of the mustard with thiosulphate. Separation of the components of the ECMA solution on TLC suggested that only the compound with an aziridine ring was an effective inhibitor of choline dehydrogenase. The inhibition was resistant to the washing out of excess unreacted mustard. The rate constant of inhibition was 395 M-1 X S-1. By the use of [3H]ECMA a single polypeptide in the enzyme preparation having a MW of 67,000 was labelled. The labelling was thiosulphate-sensitive and prevented by incubation with choline. It is concluded that ECMA is an irreversible inhibitor of choline dehydrogenase. It is at least as effective an inhibitor of choline dehydrogenase as of the choline transport system, although it does not appreciably inhibit choline acetyltransferase or choline kinase in the micromolar range.  相似文献   

7.
Summary According to the conventional carrier model, an inhibitor bound at the substrate transfer site inhibits competitively when on the same side of the membrane as the substrate, but noncompetitively when on the opposite side. This prediction was tested with the nonpenetrating choline analog dimethyl-n-pentyl (2-hydroxyethyl) ammonium ion. In zerotrans entry and infinitetrans entry experiments, where the labeled substrate and the inhibitor occupy the same compartment, the inhibition was competitive, but in zerotrans exit it was noncompetitive, in accord with the model. Similar behavior was seen with dimethyl-n-decyl (2-hydroxyethyl) ammonium ion. With this property of the choline transport system established, it becomes possible to estimate the relative affinity inside and outside of inhibitors present on both sides of the membrane. The tertiary amine, dibutylaminoethanol, which enters the cell by simple diffusion, is such an inhibitor. Here the inhibition kinetics were the reverse of those for nonpenetrating inhibitors; zerotrans and infinitetrans exit was inhibited competitively, and zerotrans entry noncompetitively. It follows that dibutylaminoethanol binds predominantly to the inner carrier form.  相似文献   

8.
Summary The properties of the choline transport system are fundamentally altered in saline solution containing 5mm imidazole buffer instead of 5mm phosphate: (i) The system no longer exhibits accelerated exchange. (ii) Choline in the external compartment fails to increase the rate of inactivation of the carrier by N-ethylmaleimide. (iii) Depending on the relative concentrations of choline and imidazole, transport may be activated or inhibited. The maximum rates are increased more than fivefold by imidazole, but at moderate substrate concentrations activation is observed with low concentrations of imidazole and inhibition with high concentrations. (iv) The imidazole effect is asymmetric, there being a greater tendency to activate exit than entry. All this behavior is predicted by the carrier model if imidazole is a substrate of the choline carrier having a high maximum transport rate but a relatively low affinity, and if imidazole rapidly enters the cell by simple diffusion, so that it can add to carrier sites on both sides of the membrane. Addition at thecis side inhibits, and at thetrans side activates. According to the carrier model, asymmetry is a necessary consequence of the potassium ion gradient in red cells, potassium ion being another substrate of the choline system.  相似文献   

9.
Summary Under zero-trans conditions, the facilitated transport of choline across the erythrocyte membrane is limited by the rate of reorientation of the free carrier; as a result the pH dependence of this step can be investigated, independent of other steps in transport. It is found that as the pH declines (between 8.0 and 6.0) the rate of inward movement of the free carrier rises and the rate of outward movements falls, so that the partition of the free carrier increasingly favors the inward-facing form. When the pH of the cell interior and of the medium are varied independently, the partition responds to the internal but not the external pH. The membrane potential, which varies somewhat as the pH is altered, has no effect on the carrier partition. The analysis of the results indicates that the carrier mobility is dependent on an ionizing group of pK a 6.8, which is exposed on the cytoplasmic surface of the membrane in the inward-facing carrier; in the out-ward-facing carrier the ionizing group appears to be masked, in that its pK a is shifted downward by more than one unit. The observations can be explained by assuming that an ionizing group is located in the wall of a gated channel connecting the substrate site with the cytoplasmic face of the cell membrane.  相似文献   

10.
The cholinergic projections from basal forebrain nuclei to the retrosplenial cortex (RSC) have previously been studied using a variety of histological approaches. Studies using acetylcholinesterase (AChE) histochemistry and choline acetyltransferase (ChAT) immunocytochemistry have demonstrated that this projection travels via the cingulum on route to the RSC. Preliminary studies from our laboratory, however, have shown that the fornix may also be involved in this projection. The present study uses the combination of pathway lesions, and the analysis of cholinergic neurochemical markers in the RSC to determine the role of the fornix in the cholinergic projection to the RSC. High affinity choline uptake (HACU) and ChAT activity were measured in the RSC of control rats, animals with cingulate lesions, and animals with fornix plus cingulate lesions. Fornix plus cingulate lesions resulted in significant deceases in HACU and ChAT activity in comparison to cingulate lesions alone. Muscarinic receptor binding was also evaluated in combination with the various lesions, and a significant increase in retrosplenial receptor binding was noted following fornix lesions. Together, these results support the concept of a fornix-mediated cholinergic pathway to the RSC.  相似文献   

11.
Crude striatum synaptosomes (P2 fraction) from Fisher 344 female rats were incubated in the presence of ADP-chelated Fe3+ (0.5–50 M) and ascorbate (250 M). Intrasynaptosomal conversion of tyrosine to dopamine (DA) was measured by14CO2 evolution froml-[1-14C]tyrosine in the absence of added cofactors and DOPA decarboxylase. Malondialdehyde (MDA) was measured as an index of lipid peroxidation. A concentration-dependent inhibition of DA synthesis by ADP-Fe3+/ascorbate was found with 50% inhibition occurring at 2.5 M Fe3+ concentration. This was accompanied by marked accumulation of MDA. Ascorbate or ADP alone did not affect DA synthesis and ADP-Fe3+ in the absence of exogenous ascorbate was effective only above 25 M. Exogenously added MDA did not inhibit DA synthesis. Purified synaptosomes were isolated from peroxidized and control P2 fractions using sucrose gradients. Membrane microviscosity of the purifled synaptosomes was assessed by nitroxyl spin labels of stearic acid using electron paramagetic resonance techniques. There was a significant increase in membrane microviscosity as a result of ADP-Fe3+/ascorbate induced peroxidation. Maleimide nitroxide spin-label binding to protein sulhydryls was significantly modified by peroxidation of striatum synaptosomes. The weakly immobilized component of the sulhydryl spin-label (w) was drastically decreased whereas the strongly immobilized component (s) was modified less, thus leading to a marked reduction of w/s ratio. The exposure of striatum synaptosomes to the peroxidizing system resulted in a significant increase in total iron and in a 25% decrease in protein sulhydryl content. It is concluded that ironinduced damage to the DA synthetic system is mediated by alterations of the structural properties of nerve ending membranes.  相似文献   

12.
It has been shown in our laboratory that choline mustard aziridinium ion is a potent and irreversible inhibitor of choline transport into rat brain synaptosomes; this compound showed selectivity for the sodium-dependent, high affinity carrier in that it was 30 times more potent as an inhibitor when compared with the effect on sodium-independent, low affinity choline uptake. In the present study, this mustard analogue did not inhibit synaptosomal uptake of 5-hydroxytryptamine, noradrenaline, or gamma-aminobutyric acid, thereby confirming further the specificity of this compound for the choline carrier. Studies of the effect of depolarization of the nerve terminals on the inactivation of choline carriers by choline mustard were performed. It was determined that alkylation of the carrier was significantly increased in nerve endings previously depolarized. The enhancing effect of depolarization on choline transport velocity and on the alkylation of choline carriers by choline mustard was dependent upon the presence of sodium in the external medium. Possible mechanisms for the enhanced inactivation of choline carriers by choline mustard aziridinium ion are proposed, and kinetic interactions of choline mustard with the high affinity choline carrier and with choline acetyltransferase are reviewed and discussed.  相似文献   

13.
An 815 by region of the promoter of the Saccharomyces cerevisiae gene CTR/HNM1, encoding choline permease was sequenced and its regulatory function analysed by deletion studies in an in-frame promoter-lacZ construct. In addition to the TATA box, a 10 by motif (consensus 5-CATGTGAAAT-3) was found to be mandatory for CTR/HNM1 expression. This decamer motif is located between nucleotides –262 and –271 and is identical in 9 of 10 by with the regulatory motif found in the S. cerevisiae INO1 and CHO1 genes. Constructs with the 10 by sequence show high constitutive expression, while elimination or alterations at three nucleotide positions, of the decamer motif in the context of an otherwise unchanged promoter leads to total loss of -galactosidase production. Expression of the CTR/HNM1 gene in wild-type cells is regulated by the phospholipid precursors inositol and choline; no such influence is seen in cells bearing mutations in the phospholipid regulatory genes INO2, INO4, and OPI1. There is no regulation by INO2 and OPI1 in the absence of the decamer motif. However constructs not containing this sequence (promoter intact to positions –213 or –152) are still controlled by INO4. Other substrates of the choline permease, i.e. ethanolamine, nitrogen mustard and nitrogen half mustard do not regulate expression of CTR/HNM1.  相似文献   

14.
Summary Proteoliposomes made by a butanol-sonication technique from electric organ presynaptic membranes showed choline transport activity. In contrast to intact nerve terminals, the uptake of choline was dissociated from its conversion to acetylcholine in this preparation. The kinetics of choline uptake by proteoliposomes was best described by two Michaelis-Menten components. At a low concentration of choline, uptake was inhibited by hemicholinium-3 and required external Na+ and, thus, closely resembled high-affinity choline uptake by intact cholinergic nerve terminals. Choline transport could be driven by the Na+ gradient and by the transmembrane potential (inside negative) but did not directly require ATP. External Cl, but not a Cl gradient, was needed for choline transport activity. It is suggested that internal K+ plays a role in the retention of choline inside the proteoliposome. Proteoliposomes should prove a useful tool for both biochemical and functional studies of the highaffinity choline carrier.Abbreviations ACh acetylcholine - HC-3 hemicholinium-3 - ChAT choline acetyltransferase  相似文献   

15.
Summary The substrate specificities on the inner and outer surfaces of the cell membrane have been compared by determining the relative affinities, inside and outside, of a series of choline analogs. The results of two different methods were in agreement: (1) the carrier distribution was determined in the presence of a saturating concentration of an equilibrated analog, using N-ethylmaleimide as a probe for the inward-facing carrier; (2) the degree of competition was measured between an equilibrated analog and choline in the external solution. The carrier sites are found to have markedly different specificities: the outer site is more closely complementary to the structure of choline than is the inner, and even a slight enlargement of either the trimethylammonium or hydroxyethyl group gives rise to preferential binding inside. It is also found that a nonpolar binding region, which is adjacent to the outer site, is absent from the inner site. As the transport mechanism involves the exposure of only one site at a time, first on one surface and then the other, it follows that an extensive reorganization of the structure of the substrate site may occur during the carrier-reorientation step, or alternatively that two distinct sites may be present, only one of which is exposed at a time.  相似文献   

16.
The barbiturates tested in this work (barbital, phenobarbital, thiopental and pentobartial) modify the partition of synaptosomes in a Dextran T500-poly(ethylene glycol) 4000 two-phase system. Under adequate experimental conditions, the drugs increase the partition into the upper phase and this effect appears to be due to an action on the biological material and not on the interface potential of the system. This conclusion can be drawn from the fact that synaptosomes preincubated with low concentrations (0.1 mM) of barbital and pentobarbital maintained an increased partition into the upper phase. The extent of the effect observed appeared to be inversely proportional to the hydrophobicity of the drugs since phenobarbital and barbital showed a higher effect than thiopental and pentobarbital. Dithionite-induced anoxia, rotenone and ouabain also induced a similar increase of partition of synaptosomes into the upper phase, suggesting that the surface changes detected by phase partitioning modification of synaptosomes could be somehow related to the bioenergetic maintenance of the membrane ATPase.  相似文献   

17.
Argyrotaenia velutinana, the red-banded leaf roller, and Heliothis virescens, the tobacco budworm, both require choline for growth and development when reared on semisynthetic diets. The optimum level for A. velutinana is 50 mg100 g of diet whereas that for H. virescens exceeds 100 mg100 g of diet.No choline analog tested can adequately replace choline in the diet. One compound, dimethylethylcholine, will permit some adut emergence but development is slower and mortality is greater than on the corresponding diet containing choline. This is in sharp contrast to a number of Diptera in which mary choline analogs can not only replace choline in the diet but are also incorporated into phospholipids analogous to phosphatidylcholine.In A. velutinana, dimethylisopropylcholine and β-methylcholine, although inadequate as choline replacements, can spare the dietary choline requirement, Isopropylethanolamine is a growth inhibitor for A. velutinana but not for H. virescens.  相似文献   

18.
The uptake ofl-[3H]arginine into synaptosomes prepared from rat cerebellum and cortex occurred by a high-affinity carrier-mediated process. The uptake of arginine appeared to be potentiated by removal of extracellular Na+, inhibited by high levels of extracellular K+, but not by depolarization with veratridine or 4-amino pyridine. The effect of Na+ removal or K+ elevation did not seem to be due to changes in intracellular Ca2+ or pH. In both brain regions, uptake was significantly inhibited byl-arginine,l-lysine,l-ornithine, andl-homoarginine, but not byd-arginine norl-citrulline. Uptake was also inhibited by NG-monomethyl-l-arginine acetate, but not by NG-nitro-l-arginine methyl ester nor NG-nitro-l-arginine except in the cortex at a concentration of 1 mM. The results indicate that the carrier system operating in synaptosomes showed many of the characteristics of the ubiquitous y+ system seen in many other tissues, although its apparent sensitivity to variations in extracellular Na+ was unusual.  相似文献   

19.
The sodium‐coupled, hemicholinium‐3‐sensitive, high‐affinity choline transporter (CHT) is responsible for transport of choline into cholinergic nerve terminals from the synaptic cleft following acetylcholine release and hydrolysis. In this study, we address regulation of CHT function by plasma membrane cholesterol. We show for the first time that CHT is concentrated in cholesterol‐rich lipid rafts in both SH‐SY5Y cells and nerve terminals from mouse forebrain. Treatment of SH‐SY5Y cells expressing rat CHT with filipin, methyl‐β‐cyclodextrin (MβC) or cholesterol oxidase significantly decreased choline uptake. In contrast, CHT activity was increased by addition of cholesterol to membranes using cholesterol‐saturated MβC. Kinetic analysis of binding of [3H]hemicholinium‐3 to CHT revealed that reducing membrane cholesterol with MβC decreased both the apparent binding affinity (KD) and maximum number of binding sites (Bmax); this was confirmed by decreased plasma membrane CHT protein in lipid rafts in cell surface protein biotinylation assays. Finally, the loss of cell surface CHT associated with lipid raft disruption was not because of changes in CHT internalization. In summary, we provide evidence that CHT association with cholesterol‐rich rafts is critical for transporter function and localization. Alterations in plasma membrane cholesterol cholinergic nerve terminals could diminish cholinergic transmission by reducing choline availability for acetylcholine synthesis.

  相似文献   


20.
Synthesis of acetylcholine depends on the plasma membrane uptake of choline by a high affinity choline transporter (CHT1). Choline uptake is regulated by nerve impulses and trafficking of an intracellular pool of CHT1 to the plasma membrane may be important for this regulation. We have generated a hemagglutinin (HA) epitope tagged CHT1 to investigate the organelles involved with intracellular trafficking of this protein. Expression of CHT1-HA in HEK 293 cells establishes Na+-dependent, hemicholinium-3 sensitive high-affinity choline transport activity. Confocal microscopy reveals that CHT1-HA is found predominantly in intracellular organelles in three different cell lines. Importantly, CHT1-HA seems to be continuously cycling between the plasma membrane and endocytic organelles via a constitutive clathrin-mediated endocytic pathway. In a neuronal cell line, CHT1-HA colocalizes with the early endocytic marker green fluorescent protein (GFP)-Rab 5 and with two markers of synaptic-like vesicles, VAMP-myc and GFP-VAChT, suggesting that in cultured cells CHT1 is present mainly in organelles of endocytic origin. Subcellular fractionation and immunoisolation of organelles from rat brain indicate that CHT1 is present in synaptic vesicles. We propose that intracellular CHT1 can be recruited during stimulation to increase choline uptake in nerve terminals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号