首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A bacterial consortium capable of utilizing metal-cyanides as a source of nitrogen was used to develop a microbiological process for the detoxification of silver-cyanide from electroplating wastewater. When the treatment was carried out in a 27-l rotating biological contactor (R3C) in continuous mode, the system could achieve > 99.5% removal of 0.1 mmol l(-1) silver-cyanide (approximately 5 mg l(-1) cyanide and 10 mg l(-1) silver) in 10 h with sugarcane molasses (0.1 ml l(-1)) as carbon source. The silver ions set free during biodegradation were efficiently adsorbed by the bacterial biomass. The RBC-treated effluent was found to be safe for discharge into the environment, as confirmed by chemical analysis and fish bioassay studies.  相似文献   

2.
This paper presents a study on biodegradation and simultaneous adsorption and biodegradation (SAB) of zinc and iron cyanides by Rhizopus oryzae (MTCC 2541), with a brief process review. Granular activated carbon was used for the immobilization of Rhizopus oryzae (MTCC 2541) for the SAB study. pH and temperature were optimized at an initial cyanide concentration of 100 mg/L for biodegradation and SAB. The microbes adapted to grow at maximum cyanide concentration were harvested and their ability to degrade cyanide was measured in both biodegradation and SAB. The removal efficiency of the SAB process was found to be better as compared to the biodegradation process. In the case of biodegradation, removal was found up to a maximum cyanide concentration of 250 mg CN?/L for zinc cyanide and 200 mg CN?/L for iron cyanide, whereas in the case of SAB, about 50% removal of cyanide at 400 mg CN?/L zinc cyanide and 300 mg CN/L iron cyanide was possible. It was found that the SAB process is more effective than biodegradation.  相似文献   

3.
Cladosporium cladosporioides biomass was a highly efficient biosorbent of copper cyanide and nickel cyanide from aqueous solutions. A 32–38 fold concentration of initial 0.5 mM metal cyanides could be achieved when biosorption process was carried out under standardised conditions. Residual, unrecoverable metal cyanide could be completely biodegraded in 5–6 h. The solution treated with the combined biosorption-biodegradation process was fit for discharge in the environment.  相似文献   

4.
Quan ZX  Bae JW  Rhee SK  Cho YG  Lee ST 《Biotechnology letters》2004,26(12):1007-1011
Free cyanide at 1 mm decreased the initial sulfate reduction rate of a batch culture of granular sludge from 0.3 to 0.14 mmol d(-1) g(-1) SS (suspended solid), whereas 0.5 mm cyanide had a minimal effect (0.25 mmol d(-1) g(-1) SS). The order of toxicity of metal-complexed cyanides to the sludge was as follows: zinc-complexed cyanide (most toxic) > free cyanide = nickel-complexed cyanide > copper-complexed cyanide (least toxic), which also corresponds well with the order of the stability (dissociation) constants of the metal-cyanide complexes. A consortium degrading cyanide was enriched using nickel cyanide as the sole nitrogen source. This consortium completely removed 0.5 mm of nickel-complexed cyanide under sulfate-reducing conditions in 11 d. Analysis of clone library of 16S rRNA genes shows that the consortium was composed of three major phylotypes including Desulfovibrio.  相似文献   

5.
Summary Cyanide degradation by water hyacinths, Eichornia crassipes (Mart.) Solms, in solutions containing 3–300 mg/l cyanide was investigated in batch tests. Water hyacinth was more efficient to remove free cyanide in the first 8 hours, compared to cyanide controls, free of plant. Gold mill synthetic effluents containing free cyanide (9 to 20 mg/l), thiocyanate (14 to 23 mg/l), and metallocyanides (iron, copper and zinc) was fed to a continuous lab. scale unit (6 l/h) to confirm the ability of water hyacinth to degrade free cyanide and that it can remove zinc and small amounts of iron. However, copper and thiocyanate remained untouched in the solution. According to the results, water hyacinth is only suitable to be used in conjunction with other cyanide wastewater treatments.  相似文献   

6.
Biological removal by indigenous microflora of cyanide, contained in old (6-9 years) and fresh tailings (3 months), was studied in order to assess its natural attenuation potential via biodegradation. To investigate the presence of indigenous microflora in tailings, total heterotrophic and cyanide resistant bacteria were counted using the spread-plate method. The free cyanide mineralization potential was estimated using K14CN in the presence of various unlabeled cyanide concentrations (0, 5, and 10 mg CN/kg). The biodegradation of cyanide contained initially in the samples was also investigated by monitoring formate, formamide, ammonia and total cyanide (CNT) concentrations over 111 days. The enumeration of total heterotrophic and cyanide-resistant bacteria in old tailings showed an average population of 105 cfu/g. However, no growth was detected in fresh tailings. Nevertheless, cyanide mineralization tests indicated the presence, in both old and fresh tailings, of a cyanide-degrading microflora. In old tailings, maximum mineralization percentages of free cyanide ranging from 85% to 100% were obtained after 65 days at all concentrations tested. A mineralization percentage of 83% after 170 days was also observed in fresh tailings. No decrease of total cyanide concentration in old tailings was observed when the biodegradation of endogenous cyanide was tested whereas a significant decrease was recorded in fresh tailings after 96 days. The presence of strong metal-cyanide complexes resistant to biodegradation could explain the absence of biodegradation in old tailings. This study demonstrated the presence of an indigenous free cyanide-degrading microflora in both old and fresh tailings, and suggests that natural attenuation of cyanide in gold mine tailings is likely to occur via microbial activity.  相似文献   

7.
Biological degradation of cyanide compounds   总被引:9,自引:0,他引:9  
Cyanide compounds are produced as waste products of a number of industrial processes and several routes for their removal from the environment are under investigation, including the use of biodegradation. The most recent developments in this area have come from studies of the hydrolytic and oxidative pathways for biodegradation and the conditions that affect their activity. The biodegradation of cyanide under anaerobic conditions has also recently demonstrated the feasibility for concomitant biogas generation, a possible economic benefit of the process. Significant advances have been reported in the use of plants for the phytoremediation of cyanide compounds and evidence for the biodegradation of thiocyanate and metal-cyanide complexes has become available. Despite these advances, however, physical and economic factors still limit the application of cyanide biodegradation, as do competing technologies.  相似文献   

8.
Abstract Three constitutive forms of Superoxide dismutase activity have been demonstrated in the cyanobacterial marine picoplankter Synechococcus sp. WH 7803 using polyacrylamide gel activity staining techniques. A protein which gave a positive non-haem iron stain on native polyacrylamide gels exhibited N-terminal similarity to both the iron Superoxide dismutase and the manganese Superoxide dismutase of Escherichia coli . The metal prosthetic group of each of the three activity bands was characterised by analysing their differential sensitivities to 5 mM H2O2, 2 mM cyanide and 2 mM of the copper chelator diethyldithiocarbamate. Three distinct Superoxide dismutase activities were observed, an iron Superoxide dismutase, a copper/zinc Superoxide dismutase and a third form which has not been identified. Growth of Synechococcus cells in ASW medium containing no added iron resulted in no alteration in the activity of the iron Superoxide dismutase. Growth of cultures in the absence of copper or zinc resulted in differential changes in the activities of the copper/zinc Superoxide dismutase and the unidentified Superoxide dismutase.  相似文献   

9.
The present note refers the results about the isolation of an Aspergillus fumigatus strain able to grow on an industrial cyanide waste as nitrogen source. The fungus was selected from an alkaline unpolluted soil in enrichment cultures in 50 ml of Minimal Medium added with 20 mmol glucose and supplemented initially with 0.1 mmol KCN and then with 70 μl of a waste solution from a jewelry industry containing free cyanide and cyanide complexes of heavy metal ions including copper, silver, nickel, and others. The cyanide content of the waste was 1,500 ppm. The fungal growth was monitored determining dry weight, protein content and glucose consumption. The fungus efficiently utilized the cyanide as evidenced by the decrease in the inoculated medium of the compound under detection limits within 24 h and the concomitant growth within 15 days during which periodical additions of the waste to the cultures were made. The amount of the cyanide in the biomass of the fungus grown in presence of the waste was very scarce and comparable to that in absence of the pollutant. Furthermore the fungus was able to sequestrate metals such Ag, Cu, and Ni as a resistance mechanism against heavy metals. In conclusion our results are of interest for biodegradation plans of electroplating industrial wastes containing cyanide based pollutants.  相似文献   

10.
Mannitol is a natural polyol extensively used in the food industry as low-calorie sugar being applicable for diabetic food products. We aimed to evaluate mannitol production by Lactobacillus reuteri CRL 1101 using sugarcane molasses as low-cost energy source. Mannitol formation was studied in free-pH batch cultures using 3-10% (w/v) molasses concentrations at 37?°C and 30?°C under static and agitated conditions during 48?h. L. reuteri CRL 1101 grew well in all assayed media and heterofermentatively converted glucose into lactic and acetic acids and ethanol. Fructose was used as an alternative electron acceptor and reduced it to mannitol in all media assayed. Maximum mannitol concentrations of 177.7?±?26.6 and 184.5?±?22.5?mM were found using 7.5% and 10% molasses, respectively, at 37?°C after 24-h incubation. Increasing the molasses concentration from 7.5% up to 10% (w/v) and the fermentation period up to 48?h did not significantly improve mannitol production. In agitated cultures, high mannitol values (144.8?±?39.7?mM) were attained at 8?h of fermentation as compared to static ones (5.6?±?2.9?mM), the highest mannitol concentration value (211.3?±?15.5?mM) being found after 24?h. Mannitol 2-dehydrogenase (MDH) activity was measured during growth in all fermentations assayed; the highest MDH values were obtained during the log growth phase, and no correlation between MDH activities and mannitol production was observed in the fermentations performed. L. reuteri CRL 1101 successfully produced mannitol from sugarcane molasses being a promising candidate for microbial mannitol synthesis using low-cost substrate.  相似文献   

11.
Both anemia and zinc deficiency are commonly observed in patients with chronic uremia. Oxidative stress of red blood cells (RBC) has been suggested to participate in the development of anemia in these patients with chronic uremia due to reduced life span of RBC. Whether zinc deficiency aggravates the effect of oxidative stress on RBC of chronic uremia is still not understood. We thus performed the study to determine the influence of zinc deficiency on the oxidative stress of RBC in uremic rats. Zinc deficiency was induced by long-term dietary zinc deficiency. Five-sixth nephrectomy (5/6 Nx) was used to produce chronic uremia. Experiment was carried out in the following five groups: normal control (NL), chronic uremia (Nx), chronic uremia + dietary zinc deficiency (Nx-D), Nx-D + zinc supplement (Nx-DZ) and Chronic uremia + pair-fed (Nx-PF). Osmotic fragility and lipid peroxidation of RBC were used to evaluate the oxidative stress of RBC. Five weeks after 5/6 nephrectomy (Nx), 5/6 Nx rats present a syndrome of uremia to elevate the levels of plasma creatinine and urea, and reduce the level of plasma zinc (1.12 +/- 0.08 vs 1.35 +/- 0.05 ug/ml). But they does not find to produce anemia and to increase osmotic fragility and lipid peroxidation in RBC. Dietary zinc deficiency in Nx-D group produced severe anorexia and reduced plasma zinc and selenium levels and the activity of RBC-GPX. Yet in Nx-D rats, osmotic fragility and susceptibility of lipid peroxidation in red cells did not increase, because of the increase of plasma copper level (1.85 +/- 0.3 vs 1.41 +/- 0.05 microg/ml) and RBC-SOD activity (1.95 +/- 0.27 vs 0.78 +/- 0.05 unit/g Hb). Zinc supplement in Nx-D rats (Nx-DZ group) recovered the appetite and normalized the levels of plasma zinc, copper and selenium. Food restriction in 5/6 Nx rats (Nx-PF group) decreased plasma copper level and increased osmotic fragility of RBC and elevated the susceptibility of lipid peroxidation after stressing RBC with H2O2 Because Nx-PF rats presented a lower RBC-SOD activity (0.44 +/- 0.11 vs 0.78 +/- 0.05 unit/g Hb) and a lower plasma copper level. We further found a positive relationship (r=0. 802,p<0.01) between plasma copper level and RBC-SOD activity in normal and uremic rats. This study suggests that RBC-SOD activity may play an important role in preventing RBC oxidative stress. Plasma copper level may be a marker of RBC-SOD activity. We conclude, in chronic uremia, zinc deficiency doses not result in RBC oxidative stress as plasma copper level is normal, but may affect the absorption of intestinal nutrition.  相似文献   

12.
Submerged fermentation was carried out for the production of scleroglucan by Sclerotium rolfsii MTCC 2156 using complex media, such as coconut water, sugarcane molasses and sugarcane juice at 28+/-2 degrees C and 180 rpm for 72 h. Sugarcane juice gave maximum scleroglucan production of 23.87 g/l as compared to 12.58 and 18.45 g/l with coconut water and sugarcane molasses, respectively. Utilization of these substrates would be ecologically sound and economically advantageous.  相似文献   

13.
A new bacterial strain, Rhodococcus UKMP-5M isolated from petroleum-contaminated soils demonstrated promising potential to biodegrade cyanide to non-toxic end-products. Ammonia and formate were found as final products during growth of the isolate with KCN as the sole nitrogen source. Formamide was not detected as one of the end-products suggesting that the biodegradation of cyanide by Rhodococcus UKMP-5M may have proceeded via a hydrolytic pathway involving the bacterial enzyme cyanidase. No growth of the bacterium was observed when KCN was supplied as the sole source of carbon and nitrogen even though marginal reduction in the concentration of cyanide was recorded, indicating the toxic effect of cyanide even in cyanide-degrading microorganisms. The cyanide biodegradation ability of Rhodococcus UKMP-5M was greatly affected by the presence of organic nutrients in the medium. Medium containing glucose and yeast extract promoted the highest growth rate of the bacterium which simultaneously assisted complete biodegradation of 0.1 mM KCN within 24 hours of incubation. It was found that growth and cyanide biodegradation occurred optimally at 30°C and pH 6.3 with glucose as the preferred carbon source. Acetonitrile was used as an inducer to enhance cyanide biodegradation since the enzymes nitrile hydratase and/or nitrilase have similarity at both the amino acid and structural levels to that of cyanidase. The findings from this study should be of great interest from an environmental and health point of views since the optimum conditions discovered in the present study bear a close resemblance to the actual scenario of cyanide wastewater treatment facilities.  相似文献   

14.
To enhance biological removal efficiency of total cyanides, bioaugmentation was applied to a full-scale cokes wastewaters treatment process. After a laboratorial-scale cultivation (up to 1.2 m(3)) of a cyanide-degrading yeast (Cryptococcus humicolus) and unidentified cyanide-degrading microorganisms, the microbial consortium was inoculated into a fluidized-bed type process (1280 m(3)), and then enriched for two months with a huge supply of glucose, KCN and other nutrients. Target wastewater was effluent of a biological pre-denitrification process for treating cokes wastewater, and contained about 14 mg/L of total cyanides in the form of ferric cyanide. This may be a first or rare report on the full-scale bioaugmentation of specialized-microorganisms. However, continuous operation of the full-scale cyanides-degrading bioprocess showed poor removal efficiency than expected owing to poor settling performance of microbial flocs, slow biodegradation rate of ferric cyanide and lack of organic carbon sources within the wastewater. Therefore, there is a need for further studies on how to solve these operating problems in full-scale bioaugmentation approach.  相似文献   

15.
Kim YM  Park D  Jeon CO  Lee DS  Park JM 《Bioresource technology》2008,99(18):8824-8832
A lab-scale serial anoxic-aerobic reactor for the pre-denitrification process was continuously operated to efficiently and economically treat actual cokes wastewater containing various pollutants, such as phenol, ammonia, thiocyanate and cyanide compounds. The biodegradation efficiencies of the pollutants were examined by changing hydraulic retention time (HRT) as a main operating variable. The long-term operation of the pre-denitrification process reactor showed that approximately 100% phenol, approximately 100% free cyanide, approximately 100% SCN(-), 97% ammonia, 85% COD, 84% TOC (total organic carbon) and 83% TN (total nitrogen) were removed at HRT above 11.9h. Removal efficiency of total cyanides significantly decreased with a decrease in the HRT. Free cyanide and some of total cyanides were removed in anoxic reactor, whereas thiocyanate was removed in aerobic reactor. Phenol was completely removed under successive anoxic and aerobic conditions. Although actual cokes wastewater contained high concentrations of various toxic pollutants, the pre-denitrification process showed stable and successful performances in both nitrification and denitrification reactions.  相似文献   

16.
The adsorption of cadmium, copper(II), lead and zinc ions from aqueous solution by sewage sludge, paper mill waste (PMW) and composted PMW was investigated along with the influence of pre-treatment on composted PMW. Langmuir adsorption isotherms were fitted where appropriate. Sewage sludge was the most effective biosorbent of the waste products for all metal ions examined, adsorbing, for example, up to 39.3 mg/g of Pb at an initial concentration of 77.8 mg/l. PMW was a less effective biosorbent than sewage sludge. However, it was found that composting the PMW resulted in an increase in metal uptake capacity and both sewage sludge and composted PMW have potential for low-cost remediation of high leachate wastewaters. The desorption of metal ions from PMW compost was most effective using 0.1 N H2SO4 and 1 mM nitrilotriacetic acid (NTA).  相似文献   

17.
A study was conducted to determine the effect of various factors on the rate and extent of potassium cyanide and potassium hexacyanoferrate (II, complex form) removal from aqueous and soil-containing systems. In a sterile aqueous system at neutral pH, the concentration of free cyanide was reduced by 42% in 334 h as a result of the protonation of CN and the volatilization of the HCN formed. In the presence of aerobic mixed consortium of the Institute of Gas Technology and a methylotrophic culture, Isolate 3, the concentration of free cyanide was reduced by 59% and 66% in 357 h, respectively, as a result of combined chemical conversion and microbial degradation. In the sterile aqueous system amended initially with the complex form of cyanide, a less-than-20% reduction in cyanide occured. The sorption equilibria for free and complex cyanides in slurries of the topsoil and manufactured gas plant (MGP) soil was reached in less than 22 and 4 days, respectively. The extent of desorption of cyanides from topsoil and MGP soil into water decreased with time. In sterile systems containing topsoil and MGP soil that were previously equilibrated to cyanides, only a 2% reduction in cyanide concentration occurred in 336 h due to chemical conversion. In the presence of microbial cultures, the concentration of cyanide was reduced by less than 15% and 7% in the slurries of topsoil and MGP soil, respectively. The comparison of the rate and extent of cyanide removal from the aqueous and soil-containing systems in the presence of micro-organisms suggests that cyanides were retained by the solid phase of the soil-containing systems and therefore were less available for biodegradation.  相似文献   

18.
 Our isolate, Pseudomonas putida, is known to be capable of utilizing cyanides as the sole source of carbon (C) and nitrogen (N) both in the form of free cells and cells immobilized in calcium alginate. In the present study, the cell-free extract(s) were prepared from the cells of P. putida grown in the presence of sodium cyanide. The ability of enzyme(s) to convert cyanides, cyanates, thiocyanates, formamide and cyanide-containing mine waters into ammonia (NH3) was studied at pH 7.5 and pH 9.5. The kinetic analysis of cyanide and formamide conversion into NH3 at pH 7.5 and pH 9.5 by the cell-free extract(s) of P. putida was also studied. The K m and V max values for cyanide/formamide were found to be 4.3/8 mM and 142/227 μmol NH3 released mg protein-1 min-1 respectively at pH 7.5 and 5/16.67 mM and 181/434 μmol NH3 released mg protein-1 h-1 respectively at pH 9.5. The study thus concludes that the cell-free extract(s) of P. putida is able to metabolize not only cyanides, cyanates, thiocyanates, and formamide but also cyanide-containing mine waters to NH3. Received: 10 April 1995/Received revision: 24 July 1995/Accepted: 22 August 1995  相似文献   

19.
Pseudomonas putida utilizes cyanide as the sole source of carbon and nitrogen. Agar, alginate, and carrageenan were screened as the encapsulating matrices for P. putida. Alginate-immobilized cells of P. putida degraded sodium cyanide (NaCN) more efficiently than non-immobilized cells or cells immobilized in agar or carrageenan. The end products of biodegradation of cyanide were identified as ammonia (NH3) and carbon dioxide (CO2). These products changed the medium pH. In bioreactors, the rate of cyanide degradation increased with an increase in the rate of aeration. Maximum utilization of cyanide was observed at 200 ml min−1 of aeration. Immobilized cells of P. putida degraded cyanides, cyanates and thiocyanates to NH3 and CO2. Use of Na[14C]-CN showed that 70% of carbon of Na[14C]-CN was converted into 14CO2 and only 10% was associated with the cell biomass. The substrate-dependent kinetics indicated that the K m and V max values of P. putida for the substrate, NaCN were 14 mM and 29 nmol of oxygen consumed mg protein−1 min−1 respectively. Received 29 January 1996/ Accepted in revised form 19 September 1997  相似文献   

20.
An attempt was made to use cane molasses as a culture medium for ε-PolyLysine (ε-PL) production by a natural bacterial isolate. The bacterium was identified as Bacillus sp., as confirmed by 16S rDNA sequence analysis. A BLAST result of the sequence indicated that the closest relative of this Bacillus BHU strain was B. thuringiensis, with 97 % homology. The molasses was found to be a better culture medium compared to commonly used culture media comprised of either glucose or glycerol as a carbon source. The various physicochemical parameters were studied for culture growth and polymer production, and were further optimized using response surface methodology (RSM). The correlation coefficient of the resulting model was found to be R 2?=?0.9828. The RSM predicted optimum conditions for ε-PL production (2.46 g/l) by the Bacillus strain was achieved by using molasses, 59.7 g/l; yeast extract, 15.2 mg/l; pH, 6.8 and fermentation time, 42 h at 30 °C. This study represents the first report on the potential application of cane molasses (a byproduct of sugarcane industries) as a culture medium for ε-PL production by Bacillus species. The specific Bacillus strain used in the present study can be exploited for developing a novel technology using inexpensive renewable resources for ε-PL production, a polymer of commercial interest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号