首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The variable regions of antibody molecules bind antigens with high affinity and specificity. This binding is imparted largely by the hypervariable portions of the variable region. Hypervariable regions typically fold into reverse turn or loop structures. Peptides derived from antibody hypervariable region sequences can bind antigens with similar specificity, albeit with markedly lower affinity. In this study, cyclic and dimeric peptide analogs of an anti-idiotypic/antireceptor antibody hypervariable region were developed. This antibody (87.92.6) binds to reovirus type 3 receptors on cells as well as to a neutralizing anti-reovirus type 3 monoclonal antibody (9B.G5). The cyclic peptides were utilized to probe the optimal conformation for binding to both the receptor and 9B.G5. By dimerizing or constraining the conformation of these peptides, higher affinity binding was produced. By utilizing several different cyclic peptides, the optimal conformation for binding was established. The conformationally optimized cyclic peptide possessed greater than 40-fold higher affinity for the receptor and the idiotype than the linear analog. This study suggests that conformationally constrained and dimeric peptides derived from antibody hypervariable loop sequences can bind antigens (including receptors) with reasonable affinity. hypervariable loop sequences can bind antigens (including  相似文献   

2.
The field of proteinomimetics utilizes peptide-based molecules to mimic native protein functions. We describe a novel general method for mimicking proteins by small cyclic peptides for the purpose of drug design, and demonstrate its applicability on bovine pancreatic trypsin inhibitor (BPTI). These unique cyclic peptides, which both embody discontinuous residues of proteins in their bio-active conformation and ensure an induced fit, may overcome some of the pharmacological drawbacks attributed to proteins and peptides. This method, which we call the backbone cyclic (BC) proteinomimetic approach, combines backbone cyclization of peptides with a suitable selection method, cycloscan. Following this procedure, we have prepared a bicyclic nonapeptide, which mimics the binding region of BPTI. The X-ray crystal structure of the complex trypsin:mimetic, as well as kinetic studies, show that the BPTI mimetic binds to the specificity pocket of trypsin in a similar manner to BPTI. Inhibition measurements of various constructs revealed that backbone cyclization imposed the conformation crucial to binding.  相似文献   

3.
N-cadherin is a member of the classical cadherin family of homophilic binding molecules. Peptide competition studies have identified the HAVDI and INPISGQ sequences as functional binding motifs in extracellular domain 1 (ECD1) of N-cadherin. Whereas monomeric versions of these motifs function as specific N-cadherin antagonists, we now show that cyclic peptides containing a tandem repeat of the individual motifs function as N-cadherin agonists. In this context, when presented to neurons as soluble molecules, the dimeric versions of the motifs stimulate neurite outgrowth in a similar manner to native N-cadherin. The response to the dimeric agonist peptides was inhibited by monomeric versions of the same motif and also by recombinant N-cadherin ECD1 protein. The responses were also inhibited by antibodies to a fibroblast growth factor receptor (FGFR) binding motif in ECD4 of N-cadherin and by a specific FGFR antagonist (PD17304). These data suggest that the peptides function by binding to and clustering N-cadherin in neurons and thereby activating an N-cadherin/FGFR signaling cascade. The novel agonists will be invaluable for dissecting out those cadherin functions that rely on signaling as opposed to adhesion and clearly have the potential to be developed as therapeutic agents for the promotion of cell survival and axonal regeneration.  相似文献   

4.
The interaction between cell-adhesion molecules CD2 and CD58 is critical for an immune response. Modulation or inhibition of these interactions has been shown to be therapeutically useful. Synthetic 12-mer linear and cyclic peptides, and cyclic hexapeptides based on rat CD2 protein, were designed to modulate CD2-CD58 interaction. The synthetic peptides effectively blocked the interaction between CD2-CD58 proteins as demonstrated by antibody binding, E-rosetting and heterotypic adhesion assays. NMR and molecular modeling studies indicated that the synthetic cyclic peptides exhibit beta-turn structure in solution and closely mimic the beta-turn structure of the surface epitopes of the CD2 protein. Docking studies of CD2 peptides and CD58 protein revealed the possible binding sites of the cyclic peptides on CD58 protein. The designed cyclic peptides with beta-turn structure have the ability to modulate the CD2-CD58 interaction.  相似文献   

5.
RNA represents a potential target for new antiviral therapies, which are urgently needed to address public health threats such as the human immunodeficiency virus (HIV). We showed previously that the interaction between the viral Tat protein and the HIV-1 trans-activation response (TAR) RNA was blocked by TB-CP-6.9a. This cyclic peptide was derived from a TAR-binding loop that emerged during lab evolution of a TAR-binding protein (TBP) family. Here we synthesized and characterized a next-generation, cyclic-peptide library based on the TBP scaffold. We sought to identify conserved RNA-binding interactions and the influence of cyclization linkers on RNA binding and antiviral activity. A diverse group of cyclization linkers, encompassing disulfide bonds to bicyclic aromatic staples, was used to restrain the cyclic peptide geometry. Thermodynamic profiling revealed specific arginine-rich sequences with low to submicromolar affinity driven by enthalpic and entropic contributions. The best compounds exhibited no appreciable off-target binding to related molecules, such as BIV TAR and human 7SK RNAs. A specific arginine-to-lysine change in the highest affinity cyclic peptide reduced TAR binding by tenfold, suggesting that TBP-derived cyclic peptides use an arginine-fork motif to recognize the TAR major groove while differentiating the mode of binding from other TAR-targeting molecules. Finally, we showed that HIV infectivity in cell culture was reduced in the presence of cyclic peptides constrained by methylene or naphthalene-based linkers. Our findings provide insight into the molecular determinants required for HIV-1 TAR recognition and antiviral activity. These findings are broadly relevant to the development of antivirals that target RNA molecules.  相似文献   

6.
Scaffolded peptides, in which fragments of the sequence are presented through a molecular scaffold in a discontinuous and nonlinear fashion, are promising candidates for the mimicry of discontinuous protein binding sites. Twelve scaffold molecules based on cyclic peptides with ring sizes ranging from 13 to 30 were generated. Up to three different peptide fragments were attached to the scaffolds in a site-selective manner, yielding scaffolded peptides in excellent purities, as documented by MS, HPLC, and 2D (1)H NMR spectroscopy data.  相似文献   

7.
A conformation-dependent epitope of human platelet glycoprotein IIIa.   总被引:2,自引:0,他引:2  
This study explores conformational states of human platelet glycoprotein IIIa (GP IIIa) and possible mechanisms of fibrinogen receptor exposure. D3GP3 is an IgG1, kappa monoclonal antibody generated against purified GP IIIa and found to be specific for GP IIIa by immunoprecipitation and Western blot analysis. The binding of D3GP3 to resting platelets caused fibrinogen binding (approximately 5,000 molecules/platelet) and platelet aggregation but not secretion. Platelets express 40,000-50,000 GP IIb-IIIa molecules in their surface membranes. However, resting platelets only bound approximately 5,000 D3GP3 molecules/platelet. D3GP3 binding to platelets could be increased 2-3-fold by dissociation of the GP IIb-IIIa complex with 5 mM EDTA or by occupying the fibrinogen receptor with either RGDS peptides or fibrinogen. Platelet stimulation with ADP in the absence of fibrinogen did not cause increased D3GP3 binding above control levels. These data suggest that 1) GP IIb-IIIa can exist in multiple conformations in the platelet membrane, 2) D3GP3 binding to GP IIIa can expose the fibrinogen receptor, 3) the binding of either RGDS peptides or fibrinogen causes exposure of the D3GP3 epitope, and 4) platelet activation in the absence of ligand does not induce the same conformational changes in GP IIb-IIIa as does receptor occupancy by RGDS peptides or fibrinogen.  相似文献   

8.
The spatial relationship between the binding sites for two cyclic peptides, cyclo(S,S)KYGCRGDWPC (cRGD) and cyclo(S,S)KYGCHarGDWPC (cHarGD), high affinity analogs for the RGD and HLGGAKQAGDV peptide ligands, in integrin alphaIIbbeta3 (GPIIb-IIIa) has been characterized. For this purpose, cRGD and cHarGD were labeled with fluorescein isothiocyanate and tetramethylrhodamine 5-isothiocyanate, respectively. Both cyclic peptides were potent inhibitors of fibrinogen binding to alphaIIbbeta3, particularly in the presence of Mn2+; IC50 values for cRGD and cHarGD were 1 and <0.1 nM in the presence of Mn2+. Direct binding experiments and fluorescence resonance energy transfer analysis using the purified receptor showed that both peptides interacted simultaneously with distinct sites in alphaIIbbeta3. The distance between these sites was estimated to be 6.1 +/- 0.5 nm. Although cRGD bound preferentially to one site and cHarGD to the other, the sites were not fully specific, and each cyclic peptide or its linear counterpart could displace the other to some extent. The binding affinity of the cHarGD site was dramatically affected by Mn2+. cRGD, but not cHarGD, bound to recombinant beta3-(95-373) in a cation-dependent manner, indicating that the cRGD site is located entirely within this fragment. With intact platelets, binding of c-RGD and cHarGD to alphaIIbbeta3 resulted in distinct conformational alterations in the receptor as indicated by the differential exposure of ligand-induced binding site epitopes and also induced the opposite on membrane fluidity as shown by electron paramagnetic resonance analyses using 5-doxylstearic acid as a spin probe. These data support the concept the two peptide ligands bind to distinct sites in alphaIIbbeta3 and initiate different functional consequences within the receptor itself and within platelets.  相似文献   

9.
Conantokin-G (con-G) and conantokin-T (con-T) are naturally occurring gamma-carboxyglutamate (Gla)-containing peptides that interact with multivalent cations in functionally relevant manners. Selective 13C-enrichment of Cgamma and Cdelta in each of the Gla residues has allowed metal binding affinities to be measured at individual side chains. Con-T possesses two metal binding sites, one with high affinity at Gla10/Gla14 and another with weak binding at Gla3/Gla4. Con-G contains two sites of comparable low affinity for Ca2+. Analysis of the 13C line-widths of con-G in the presence of Mg2+ allowed the order of metal binding to be determined, with Gla10/Gla14 loading before the Gla3/Gla4/Gla7 cluster. While the variant peptide, apo-con-T[Lys7Gla], was shown to have a very low alpha-helical content, this peptide binds a second metal with much greater affinity than wild-type con-T. This provides additional evidence that Gla7 in con-G is primarily responsible for destabilizing the apo-form, but is an important ligand for metal chelation. The residue-specific alpha-helical stabilities of con-G and con-T in their metal-free and metal-loaded states were estimated by determining rates of proton exchange from backbone peptide bond amides with deuterium atoms from 2H20-containing solvents. For both peptides, the lifetimes of protons on several peptide bond amides increased as metals of higher affinity were bound to the peptides, with the longest half-lives found in the region of the alpha-helical turn stabilized by the Gla10/Gla14 metal coordination site. We propose that Gla10 and Gla14 constitute the primary tight metal ion binding site in both peptides. This detailed analysis with physiologically relevant metal cations is crucial for deciphering the roles of critical amino acids in the bioactivity of the conantokin peptides.  相似文献   

10.
We synthesized cyclic disulfide-bonded (i, i+4) peptides with various net positive charges (+2-+5) from linear peptides derived from the alpha helical domain of Tenecin 1, an insect defensin, and investigated the effect of the intradisulfide bridge (i, i+4) on hydrophobicity, secondary structure, leakage activity and binding activity for large unilamellar vesicles, antimicrobial activity, and hemolytic activity. Intradisulfide bridge formation of the peptides resulted in the increase of amphiphilicity and hydrophobicity. Cyclic forms of the peptides did not deeply penetrate into PG/PC (1:1, mole ratio) large unilamellar vesicles and had a decreased lipid membrane perturbation activity for PG/PC LUVs. When the peptides interacted with PG/CL (2:1, mole ratio) LUVs, cyclic peptides with a high net positive charge (+4-+5) showed similar binding affinities and leakage activities for vesicles to those of linear forms, whereas cyclic peptides with a low net positive charge (+2-+3) exhibited lower leakage activity than their linear forms. CD spectra indicate that the intradisulfide bridge (i, i+4) provided little conformational constraint to linear peptides in buffer solution but resulted in the decrease of alpha helicity of the peptides in lipid membrane mimic conditions. The cyclic peptide with the highest net positive charge had a similar antibacterial activity to that of the linear peptide, whereas the cyclic peptides with a low net positive charge (+3-+4) exhibited lower antibacterial activity than their linear forms. The cyclic peptides of an appropriate net charge showed more potent activities against some bacteria than those of linear forms under high salt conditions.  相似文献   

11.
N S Tan  M L Ng  Y H Yau  P K Chong  B Ho  J L Ding 《FASEB journal》2000,14(12):1801-1813
Three truncated fragments, harboring different sushi domains, namely, sushi123, sushi1, and sushi3 domains, of Factor C were produced as biologically active secreted recombinant proteins. Sushi1 and 3 each has a high-affinity LPS binding site with K:(d) of 10(-9) to 10(-10) M. Positive cooperativity in sushi123 resulted in a 1000-fold increase in K:(d)2. The core LPS binding region of sushi1 and 3 reside in two 34-mer peptides, S1 and S3. A rigidly held disulfide-bonded structure is not essential but is important for LPS binding, as confirmed by a 100- to 10000-fold decrease in affinity. Both S1 and S3 can inhibit LAL reaction and LPS-induced hTNF-alpha secretion with different potency. LAL assay revealed that at least two molecules of S1 bind cooperatively to one LPS molecule, with Hill's coefficient of 2.42. The LPS binding by S3 is independent and noncooperative. The modified SDelta1 and SDelta3 peptides exhibited increased LPS neutralization potential although its LPS binding affinities indicated only a 10-fold improvement. Hence, the structural difference of the four sushi peptides conferred different efficiencies in LPS neutralization without altering their binding affinity for LPS. Circular dichroism spectrometry revealed that the four peptides underwent conformational change in the presence of lipid A, transitioning from a random coil to either an alpha-helical or beta-sheet structure. Two factors are critical for the sensitivity of Factor C to LPS: 1) the presence of multiple binding sites for LPS on a single Factor C molecule; and 2) high positive cooperativity in LPS binding. The results showed that in the design of an improved LPS binding and neutralizing peptide, charge balance of the peptide is a critical parameter in addition to its structure.  相似文献   

12.
The bidentate metal binding amino acid bipyridylalanine (BpyAla) was incorporated into a disulfide linked cyclic peptide phage displayed library to identify metal ion binding peptides. Selection against Ni2+–nitrilotriacetic acid (NTA) enriched for sequences containing histidine and BpyAla. BpyAla predominated when selections were carried out at lower pH, consistent with the differential pKa’s of histidine and BpyAla. Two peptides containing BpyAla were synthesized and found to bind Ni2+ with low micromolar dissociation constants. Incorporation of BpyAla and other metal binding amino acids into peptide and protein libraries should enable the evolution of novel binding and catalytic activities.  相似文献   

13.
S-Adenosylhomocysteine hydrolase (AdoHcyase) has previously been identified as a cytoplasmic adenosine and cyclic AMP binding protein. In order to examine the relationship between the adenosine and cyclic AMP binding sites on this enzyme we have explored the use of 8-azido analogues of adenosine and cyclic AMP as photoaffinity reagents for covalently labelling AdoHcyase purified from human placenta. 8-Azidoadenosine (8-N3-Ado), like adenosine, inactivated AdoHcyase, and the rate of inactivation was greatly increased by periodate oxidation. In addition, 8-N3-Ado was found to participate in the first step in the catalytic mechanism for AdoHcyase, resulting in conversion of enzyme-bound NAD+ to NADH, although it was not a substrate for the full enzyme-catalysed reaction. Radioactively labelled 8-N3-Ado, its periodate-oxidized derivative and 8-azidoadenosine 3', 5'-phosphate (8-N3-cAMP) bound specifically to adenosine binding sites on AdoHcyase and, after irradiation, became covalently linked to the enzyme. Photoaffinity-labelled enzyme could be precipitated by monoclonal antibody to human AdoHcyase. Two observations suggested that cyclic AMP and adenosine bind to the same sites on AdoHcyase. First cyclic AMP and adenosine each blocked binding of both radioactively labelled 8-N3-Ado and 8-N3-cAMP, and second, digestion with V8 proteinase generated identical patterns of peptides from AdoHcyase that had been photolabelled with [32P]8-N3-cAMP and [3H]8-N3-Ado. Binding sites for cyclic AMP on AdoHcyase were found to differ functionally and structurally from cyclic AMP binding sites on the R1 regulatory subunit of cyclic AMP-dependent protein kinase.  相似文献   

14.
An algorithm is presented for detecting a quantitative pattern in peptide fragments that bind class II major histocompatibility complex (MHC) molecules. It is referred to as a meta-algorithm because it requires successive applications of Stepwise Discriminate Analysis (SDA). On every iteration the best subsequence candidates are selected from sequences known to bind class II MHC molecules. When SDA compares probable binding subsequences with subsequences known not to bind class II MHC molecules, a quantitative model emerges that is capable of classifying subsequences as binding or non-binding. In an iterative manner, the resultant model is utilized as a criterion for selecting probable binding subsequence candidates. The procedure is repeated until models converge. In the illustrated examples, the final models correctly classify over 95% of the peptides in a database of peptides whose binding affinity for HLA-DR1 is known. The final model can then be used to predict the binding affinity of peptides that have not yet been laboratory tested.  相似文献   

15.
To provide multiple conjugating sites on cyclic peptides for their increasing biomedical applications, a tailed cyclic RGD peptide, c[RGDfE(GGGKK-NH(2))] was designed with c(RGDfE) linked through Glu to a tail consisting of a spacer of three Gly residues and a linker of two Lys residues. The spacer is used to increase the mobility and binding ability of the c(RGDfE) ligand, and the linker is used to proved multiple active sites for conjugating other molecules or biomaterials. We found that the sequence of Glu(Gly)-OAll leads to glutarimide formation, which disrupts the formation of cyclic RGD peptides. However, our results show that glutarimide formation is sequence dependent and can be inhibited by incorporating an amino acid like Lys(Boc) with steric hindrance from the protecting group. To prevent glutarimide formation, Ser(tBu) was used to replace the glycine in the GGG spacer adjacent to the residue of Glu, and a tailed cyclic RGD peptide, c[RGDfE(SGGKK-NH(2))] was successfully obtained.  相似文献   

16.
17.
The aim of these studies was to determine whether auto- and alloreactivity can arise from T cell recognition of MHC-peptides in context of syngeneic MHC. Four synthetic peptides derived from the first domain of the HLA-DR beta 1 * 0101 chain were used in limiting dilution analysis to prime T cells from HLA-DR1- and HLA-DR1+ responders. The frequency of T cells responding to these four peptides was similar in individuals with or without HLA-DR1. In both cases, the peptide corresponding to the nonpolymorphic sequence 43-62, was less immunogenic than peptides corresponding to the three hypervariable regions 1-20, 21-42, and 66-90, eliciting a lower number of reactive T cells. Experiments using a T cell line with specific reactivity to peptide 21-42 showed, however, that this response can be efficiently blocked by adding to the culture a nonpolymorphic sequence peptide. This suggests that alloreactivity can be blocked by use of monomorphic (self) peptides. The binding of both "monomorphic" and "polymorphic" synthetic DR1 peptides to affinity purified HLA-DR 1 and DR 11 molecules was measured using radiolabeled peptides and high performance size exclusion chromatography. The data showed that the polymorphic as well as monomorphic synthetic DR1 peptides bound to both DR1 and DR11 molecules. Competitive inhibition studies indicated that the monomorphic 43-62 peptide can block the binding of the polymorphic peptides, consistent with the results obtained in T cell cultures. Taken together these data suggest that anti-MHC autoreactive T cells are present in the periphery and that both auto and alloreactivity can be elicited by MHC peptides binding to MHC class II molecules.  相似文献   

18.
Septic shock is a leading cause of mortality in intensive care patients, and no specific drugs are as yet available for its treatment. Therefore, new leads are required in order to increase the number of active molecules that may develop into efficacious and safe LPS-neutralizing molecules during pre-clinical stages. We used peptides, derived from the binding regions of known LPS-binding proteins, as scaffolds to introduce modifications at the amino acid level. Structure-activity relationship studies have shown that these modifications generate highly active peptides. Thus, from a bioactive peptide with an initial 16 amino acid residues, a tetrapeptide sequence was determined. After inserting this sequence in a Cys cyclic peptide, it showed the same biological activity as the parent peptide. This sequence could provide the basis for the design of small molecules with LPS-binding properties.  相似文献   

19.
20.
The complex of the murine class II histocompatibility molecules I-A(k) with high affinity binding peptides were resistant to denaturation when examined by SDS-polyacrylamide gel electrophoresis at various pH levels. In contrast, complexes made with low affinity binding peptides were highly sensitive to denaturation by SDS. This effect was more pronounced at low pH. Placing a photoactivatable probe at the amino terminus of the peptides resulted in their covalent linkage to soluble I-A(k) molecules. We found an inverse relationship between the capacity of peptides to form SDS-stable complexes with I-A(k) and their extent of covalent association with either the alpha or beta chain. The relationship held true for three different peptides in which the main anchor residues were changed so as to affect their binding affinity for I-A(k) molecules. Thus, high affinity peptides generate a complex in which the motion of their amino termini was restricted, whereas complexes of low affinity peptides are more flexible. In agreement with this observation, complexes of I-A(k) with high affinity peptides were highly resistant to proteolysis, in contrast to those formed with weakly binding peptides, which were more likely to be cleaved. Complexes with low affinity peptides generate a structure with enhanced flexibility as compared with complexes with high affinity peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号