首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined the factors that influence the permeability characteristics of isolated perfused rat lungs and compared the ex vivo permeability-surface area product (PS) with that obtained in vivo. In lungs perfused for 20 min with homologous blood or a physiological salt solution (PSS) containing 4 g/100 ml albumin, mean PS values, obtained by the single-sample method of Kern et al. [Am. J. Physiol. 245 (Heart Circ. Physiol. 14): H229-H236, 1983], were 9.9 +/- 0.6 (SE) and 6.8 +/- 0.3 cm3.min-1.g wet lung-1.10(-2), respectively. These values were similar to lung PS obtained in intact rats (7.7 +/- 0.4 cm3.min-1.g wet lung-1.10(-2). In perfused lungs, PS values were influenced by the perfusate albumin concentration, the length of perfusion time, and the degree of vascular recruitment. Twenty minutes after lung isolation, PS was 126% higher in lungs perfused with albumin-free PSS containing Ficoll than in lungs perfused with albumin-PSS. Moreover, PS in Ficoll-PSS-perfused lungs increased even higher after 2 h of perfusion, and this time-dependent increase in PS was attenuated by addition of 0.1 g/100 ml albumin to the perfusate. Two hours of ex vivo ventilation with hypoxic (0 or 3% 0(2)) or hyperoxic (95% 0(2)) gas mixture did not affect PS values in perfused lungs. However, PS was elevated in lungs perfused ex vivo with protamine, which causes endothelial cell injury, or in lungs from rats exposed in vivo to human recombinant tumor necrosis factor.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
We investigated whether platelet-activating factor (PAF) increased epithelial or endothelial permeability in isolated-perfused rabbit lungs. PAF was either injected into the pulmonary artery or instilled into the airway of lungs perfused with Tyrode's solution containing 1% bovine serum albumin. The effect of adding neutrophils or platelets to the perfusate was also tested. Perfusion was maintained 20-40 min after adding PAF and then a fluid filtration coefficient (Kf) was determined to assess vascular permeability. At the end of each experiment, one lung was lavaged, and the lavagate protein concentration (BALP) was determined. Wet weight-to-dry weight ratios (W/D) were determined on the other lung. PAF added to the vascular space increased peak pulmonary arterial pressure (Ppa) from 13.5 +/- 3.1 (mean +/- SE) to 24.2 +/- 3.3 cmH2O (P less than 0.05). The effect was amplified by platelets [Ppa to 70.8 +/- 8.0 cmH2O (P less than 0.05)] but not by neutrophils [Ppa to 22.0 +/- 1.4 cmH2O (P less than 0.05)]. Minimal changes in Ppa were observed after instilling PAF into the airway. The Kf, W/D, and BALP of untreated lungs were not increased by injecting PAF into the vasculature or into the air space. The effect of PAF on Kf, W/D, and BALP was unaltered by adding platelets or neutrophils to the perfusate. PAF increases intravascular pressure (at a constant rate of perfusion) but does not increase epithelial or endothelial permeability in isolated-perfused rabbit lungs.  相似文献   

3.
To describe the flow characteristics of vessels open in zone 1, we perfused isolated rabbit lungs with Tyrode's solution containing 1% albumin, 4% dextran, and papaverine (0.05 mg/ml). Lungs were expanded by negative pleural pressure (Ppl) of -10, -15, -20, and -25 cmH2O. Pulmonary arterial (Ppa) and venous (Ppv) pressures were varied relative to alveolar pressure (PA = 0) and measured 5-10 mm inside the pleura (i) and outside (o) of the lungs. With Ppa(o) at -2.5 cmH2O, we constructed pressure-flow (P-Q) curves at each Ppl by lowering Ppv(o) until Q reached a maximum, indicating fully developed zone 1 choke flow. Maximum flows were negligible until Ppl fell below -10 cmH2O, then increased rapidly at Ppl of -15 and -20 cmH2O, and at Ppl of -25 cmH2O reached about 15 ml.min-1.kg body wt-1. The Ppv(o) at which flow became nearly constant depended on degree of lung inflation and was 5-8 cmH2O more positive than Ppl. As Ppv(o) was lowered below Ppa(o), Ppv(i) remained equal to Ppv(o) until Ppv(i) became fixed at a pressure 2-3 cmH2O more positive than Ppl. At this point the choke flow was therefore located in veins near the pleural boundary. No evidence of choke flow (only ohmic resistance) was seen in the intrapulmonary segment of the vessels remaining open in zone 1. With Ppv(o) held roughly at Ppl, Q could be stopped by lowering Ppa(o), at which time Ppa(i) was several cmH2O above Ppv(i), showing that intrapulmonary vessel closure had occurred.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
We continuously weighed fully distended excised or in situ canine lobes to estimate the fluid filtration coefficient (Kf) of the arterial and venous extra-alveolar vessels compared with that of the entire pulmonary circulation. Alveolar pressure was held constant at 25 cmH2O after full inflation. In the in situ lobes, the bronchial circulation was interrupted by embolization. Kf was estimated by two methods (Drake and Goldberg). Extra-alveolar vessels were isolated from alveolar vessels by embolizing enough 37- to 74-micron polystyrene beads into the lobar artery or vein to completely stop flow. In excised lobes, Kf's of the entire pulmonary circulation by the Drake and Goldberg methods were 0.122 +/- 0.041 (mean +/- SD) and 0.210 +/- 0.080 ml X min-1 X mmHg-1 X 100 g lung-1, respectively. Embolization was not found to increase the Kf's. The mean Kf's of the arterial extra-alveolar vessels were 0.068 +/- 0.014 (Drake) and 0.069 +/- 0.014 (Goldberg) (24 and 33% of the Kf's for the total pulmonary circulation). The mean Kf's of the venous extra-alveolar vessels were similar [0.046 +/- 0.020 (Drake) and 0.065 +/- 0.036 (Goldberg) or 33 and 35% of the Kf's for the total circulation]. No significant difference was found between the extra-alveolar vessel Kf's of in situ vs. excised lobes. These results suggest that when alveolar pressure, lung volume, and pulmonary vascular pressures are high, approximately one-third of the total fluid filtration comes from each of the three compartments.  相似文献   

5.
The actions of leukotrienes (LT's) C4, D4, E4 and F4 have been investigated in the perfused hind-limb of the anesthetized pig. In the blood perfused hind limb LTC4, D4 and E4 increased the perfusion pressure in a dose-dependent fashion whereas LTF4 decreased perfusion pressure. In the Tyrode perfused hind limb all LT's increased perfusion pressure (rank order potency LTC4 = LTD4 much greater than LTF4). The actions of LTF4 were not affected by a wide variety of pharmacological treatments, including indomethacin, methysergide and FPL-55712. The LT's aggregated porcine platelets (rank order potency LTC4 greater than LTF4 greater than LTD4) and induced the release of a platelet-derived vasodilatory mediator. The results provide pharmacological evidence of specific leukotriene receptors in vivo and that leukotrienes can independently modulate blood flow. These data suggest that important interactions may occur between platelets, the arachidonate lipoxygenase products and platelet-derived substances in response to inflammatory stimuli in the cardiovascular system.  相似文献   

6.
We examined the effect of the air interface on pulmonary vascular resistance (PVR) in zones 1, 2, and 3 by comparing pressure-flow data of air- and liquid-filled isolated rabbit lungs. Lungs were perfused with Tyrode's solution osmotically balanced with 1% albumin and 4% dextran and containing the vasodilator papaverine (0.05 mg/ml). Lung volume was varied by negative pleural pressure form 0 to -25 cmH2O. Pulmonary artery (Ppa) and venous (Ppv) pressures were fixed at various levels relative to the lung base. Alveolar pressure (PA) was always zero, and perfusate flow was measured continuously. In zone 1 Ppa was -2.5 cmH2O and Ppv was -15 cmH2O. In zone 2 Ppa was 10 cmH2O and Ppv was -5 cmH2O. In zone 3 Ppa was 15 cmH2O and Ppv was 8 cmH2O. We found that in zone 1 the interface was essential for perfusion, but in zones 2 and 3 it had much lesser effects. In general, PVR depended almost uniquely (i.e., with small hysteresis) on transpulmonary pressure, whereas a large hysteresis existed between PVR and lung volume. PVR was high in collapsed and especially in atelectatic lungs, fell sharply with moderate inflation, and within the ranges of vascular pressure studied did not rise again toward total lung capacity. These results suggest that in zone 1 the interface maintains the patency of some alveolar vessels, probably in corners. The majority of alveolar septal vessels appears to be exposed directly to PA in zones 2 and 3, because at equal transpulmonary pressure the PVR is similar in the presence or absence of an interface.  相似文献   

7.
In this study, 14 canine lung lobes were isolated and perfused with autologous blood at constant pressure (CP) or constant flow (CF). Pulmonary capillary pressure (Pc) was measured via venous occlusion or simultaneous arterial and venous occlusions. Arterial and venous pressures and blood flow were measured concurrently so that total pulmonary vascular resistance (RT) as well as pre- (Ra) and post- (Rv) capillary resistances could be calculated. In both CP and CF perfused lobes, 5-min arachidonic acid (AA) infusions (0.085 +/- 0.005 to 2.80 +/- 0.16 mg X min-1 X 100 g lung-1) increased RT, Rv, and Pc (P less than 0.05 at the highest dose), while Ra was not significantly altered and Ra/Rv fell (P less than 0.05 at the highest AA dose). In five CP-perfused lobes, the effect of AA infusion on the pulmonary capillary filtration coefficient (Kf,C) was also determined. Neither low-dose AA (0.167 +/- 0.033 mg X min-1 X 100 g-1) nor high-dose AA (1.35 +/- 0.39 mg X min-1 X 100 g-1) altered Kf,C from control values (0.19 +/- 0.02 ml X min-1 X cmH2O-1 X 100 g-1). The hemodynamic response to AA was attenuated by prior administration of indomethacin (n = 2). We conclude that AA infusion in blood-perfused canine lung lobes increased RT and Pc by increasing Rv and that microvascular permeability is unaltered by AA infusion.  相似文献   

8.
Leukotrienes C4 and D4 have been implicated as possible mediators of hypoxic pulmonary vasoconstriction. To test this hypothesis, the relationship between pulmonary leukotriene (LT) synthesis in response to hypoxia and alterations in pulmonary hemodynamics was evaluated in pentobarbital sodium-anesthetized, neuromuscular-blocked, male, mongrel dogs. A reduction in the fraction of inspired O2 (FIO2) in vehicle-treated animals (n = 12) from 0.21 to 0.10 was associated with increases in LTC4 and LTD4 in bronchoalveolar lavage fluid (BALF). After 30 min of continuous hypoxia, LTC4 and LTD4 increased from control values of 59.4 +/- 10.4 and 91.7 +/- 18.1 ng/lavage to 142.7 +/- 31.8 (P less than 0.05) and 156.3 +/- 25.3 (P less than 0.01) ng/lavage, respectively. Concomitantly, mean pulmonary arterial pressure (Ppa) and pulmonary vascular resistance (PVR) were increased over control by 67 +/- 7 (P less than 0.001) and 62 +/- 7% (P less than 0.001), respectively. In contrast, in animals treated with diethylcarbamazine (n = 5), a leukotriene A4 synthase inhibitor, identical reductions in FIO2 were not associated with increases in LTC4 and LTD4 in BALF, although at the same time period, Ppa and PVR were increased over control by 60 +/- 13 (P less than 0.05) and 112 +/- 31% (P less than 0.05), respectively. These results, therefore, do not support the contention that leukotrienes mediate hypoxic pulmonary vasoconstriction in dogs.  相似文献   

9.
The Starling fluid filtration coefficient (Kf) of blood-perfused excised goat lungs was examined before and after infusion of Escherichia coli endotoxin. Kf was calculated from rate of weight gain as described by Drake et al. [Am. J. Physiol. 234 (Heart Circ. Physiol. 3): H266-H274, 1978]. These calculations were made twice during base line and then at hourly intervals for 5 h after infusion of 5 mg (approximately 250 micrograms/kg) of E. coli endotoxin or after injection of oleic acid (47 microliter/kg). All lungs were perfused at constant arterial and venous pressure under zone 3 conditions. Base-line Kf averaged 27 +/- 10 and 20 +/- 4 (SD) microliter.min-1.cmH2O-1.g dry wt-1 for endotoxin and oleic acid groups, respectively. It was unchanged in the endotoxin group throughout the experiment but approximately doubled in the oleic acid lungs. Pulmonary arterial and venous pressures were not changed significantly during the course of these experiments in either group. Lung wet-to-dry weight ratios of these lungs were 5.6 +/- 0.6 and 6.1 +/- 0.5 ml/g for the endotoxin and oleic acid groups, respectively. This compares with 4.6 +/- 0.5 ml/g for normal, freshly excised but not perfused goat lungs. The small change in lung water and unchanged pulmonary pressures after both endotoxin and oleic acid suggest that lung injury was minimal. We conclude that 1) endotoxin does not cause a direct injury to the endothelium of isolated lungs during the first 5 h of perfusion, and 2) neutrophils are not sufficient to cause increased Kf after endotoxin infusion in this preparation.  相似文献   

10.
The purpose of this study was to determine the neural output of pulmonary stretch receptors (PSRs) in response to conditions that, in previous studies (J. Appl. Physiol. 65: 179-186, 1988 and Respir. Physiol. 80: 307-322, 1990), produced apnea in anesthetized cats. These conditions included changes in airway pressure (Paw; 2 or 6 cmH2O), stroke or tidal volume (1-4 ml/kg), frequency [conventional mechanical ventilation (CMV) vs. high-frequency ventilation (HFV) at 10, 15, and 20 Hz], and levels of inspired CO2 (0, 2, and 5%). These data were needed to assess properly the specific contribution of the PSRs to the apnea found with certain combinations of the above variables. Each PSR was subjected to HFV over a range of mechanical and chemical settings, and its activity was recorded. PSRs exhibited continuous activity associated with pump stroke in 11 of 12 fibers tested. PSRs fired more rapidly when mean Paw was 6 cmH2O [45.3 +/- 0.8 (SE) impulses/s] than when it was 2 cmH2O (31.7 +/- 0.9 impulses/s, P = 0.0001). At both pressures, PSR activity increased as the volume of inflation, or tidal volume, was increased from 1 to 4 ml/kg. At Paw of 2 cmH2O, the number of impulses per second for HFV was not different from that for CMV (averaged over the respiratory cycle), under conditions previously demonstrated as apneogenic for both modes of ventilation. Therefore the absolute amount of information being sent to the brain stem processing centers via PSRs during HFV did not differ from that during CMV. Thus any PSR contribution to HFV-induced apnea must have been the result of changes in the pattern of the signal or the central nervous system's processing of it rather than an increase in the amount of inhibitory afferent signal.  相似文献   

11.
We determined lung vascular responses to voltage-gated Ca2+ channel potentiation with BAY K 8644 (BAY). We anesthetized 46 rats (Sprague-Dawley; halothane and pentobarbital) and then excised and perfused their lungs at constant blood flow of 25 +/- 2 (SE) ml.kg-1.min-1 at constant airway and left atrial pressures of 5 and 6 cmH2O, respectively. Pulmonary arterial pressure (Ppa) increased from 13.3 +/- 0.3 cmH2O at baseline to 17.3 +/- 1.3 cmH2O after BAY (2.8 x 10(-6) M; n = 5; P less than 0.01). As determined by micropuncture, arteriolar and venular (Pven) pressures did not change. Increase of perfusate Ca2+ (16 x 10(-3) M; n = 8) similarly increased Ppa. NG-mono-methyl-L-arginine (2 x 10(-4) M), an inhibitor of endothelium-derived relaxing factor, augmented the pressor effect of BAY when given after (n = 4) but not before (n = 4) BAY (P less than 0.01). Prior cyclooxygenase blockade with indomethacin (5 mg/kg; n = 5) attenuated the Ppa response to BAY (P less than 0.01). None of these agents changed Pven. To confirm vasoactivity in veins, we induced smooth muscle depolarization with KCl (20 x 10(-3) M; n = 6) and receptor-mediated responses with histamine (3 x 10(-4) M; n = 7). Both of these agents increased Pven markedly (P less than 0.01). We interpret that, in rat lung, BAY causes arterial but not venous constriction, because the venous segment differs from the arterial with regard to Ca2+ channel potentiation.  相似文献   

12.
In 10 anesthetized, paralyzed, supine dogs, arterial blood gases and CO2 production (VCO2) were measured after 10-min runs of high-frequency ventilation (HFV) at three levels of mean airway pressure (Paw) (0, 5, and 10 cmH2O). HFV was delivered at frequencies (f) of 3, 6, and 9 Hz with a ventilator that generated known tidal volumes (VT) independent of respiratory system impedance. At each f, VT was adjusted at Paw of 0 cmH2O to obtain a eucapnia. As Paw was increased to 5 and 10 cmH2O, arterial PCO2 (PaCO2) increased and arterial PO2 (PaO2) decreased monotonically and significantly. The effect of Paw on PaCO2 and PaO2 was the same at 3, 6, and 9 Hz. Alveolar ventilation (VA), calculated from VCO2 and PaCO2, significantly decreased by 22.7 +/- 2.6 and 40.1 +/- 2.6% after Paw was increased to 5 and 10 cmH2O, respectively. By taking into account the changes in anatomic dead space (VD) with lung volume, VA at different levels of Paw fits the gas transport relationship for HFV derived previously: VA = 0.13 (VT/VD)1.2 VTf (J. Appl. Physiol. 60: 1025-1030, 1986). We conclude that increasing Paw and lung volume significantly decreases gas transport during HFV and that this effect is due to the concomitant increase of the volume of conducting airways.  相似文献   

13.
Increased activity of the renin-angiotensin system may be involved in sodium and water retention during controlled mechanical ventilation (CMV) with positive end-expiratory pressure (PEEP). We therefore evaluated renal, hemodynamic, and hormonal effects of an acute angiotensin-converting enzyme inhibition (ACEI) during PEEP and extracellular volume expansion in five trained chronically tracheotomized dogs. Three protocols were performed: control, 4 h spontaneous breathing with continuous positive mean airway pressure (Paw) of 4 cmH2O (CPAP 4); CMV 20, CPAP for 1st h, CMV with 20 cmH2O Paw for 2 h (2nd and 3rd h), and 1 h of CPAP (4th h); and CMV20-ACEI, ACEI (Ramipril, 2 mg/kg body wt) followed by the same protocol as in CMV 20. During control, sodium excretion (UNaV) and urine volume (V) increased continuously to 56.2 +/- 2.7 (SE) mumol.min-1.kg body wt-1 and 482 +/- 23 microliters.min-1.kg body wt-1, respectively. UNaV and V increased less during PEEP in CMV 20 and CMV 20-ACEI. However, significantly more sodium and water were retained in CMV 20 than in CMV 20-ACEI (2.3 +/- 0.3 vs. 1.0 +/- 0.3 mmol/kg body wt, and 20 +/- 3 vs. 11 +/- 2 ml/kg body wt) because of a decrease of glomerular filtration rate and fractional UNaV in CMV 20. Heart rate did not change in control, CMV 20, or CMV 20-ACEI. Mean arterial pressure increased during control by 13 mmHg, did not change during CMV 20, and was decreased by 7 mmHg in CMV 20-ACEI.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
With an isolated perfused canine lung, the compliance of pulmonary circulation was measured and partitioned into components corresponding to alveolar and extra-alveolar compartments. When the lungs were in zone 3, changes in outflow pressure (delta Po) affected all portions of the vasculature causing a change in lung blood volume (delta V). Thus the ratio delta V/delta Po in zone 3 represented the compliance of the entire pulmonary circulation (Cp) plus that of the left atrium (Cla). When the lungs were in zone 2, changes in Po affected only the extra-alveolar vessels that were downstream from the site of critical closure in the alveolar vessels. Thus the ratio delta V/delta Po with forward flow in zone 2 represented the compliance of the venous extra-alveolar vessels (Cv) plus Cla. With reverse flow in zone 2, delta V/delta Po represented the compliance of the arterial extra-alveolar vessels (Ca). The compliance of the alveolar compartment (Calv) was calculated from the difference between Cp and the sum of Ca + Cv. When Po was 6-11 mmHg, Cp was 0.393 +/- 0.0380 (SE) ml X mmHg-1 X kg-1 with forward perfusion and 0.263 +/- 0.0206 (SE) ml X mmHg-1 X kg-1 with reverse perfusion. Calv was 79 and 68% of Cp with forward and reverse perfusion, respectively. When Po was raised to 16-21 mmHg, Cp decreased to 0.225 +/- 0.0235 (SE) ml X mmHg-1 X kg-1 and 0.183 +/- 0.0133 (SE) ml X mmHg-1 X kg-1 with forward and reverse perfusion, respectively. Calv also decreased but remained the largest contributor to Cp. We conclude that the major site of pulmonary vascular compliance in the canine lung is the alveolar compartment, with minor contributions from the arterial and venous extra-alveolar segments.  相似文献   

15.
The effects of positive end-expiratory pressure (PEEP) on the pulmonary circulation were studied in 14 intact anesthetized dogs with oleic acid (OA) lung injury. Transmural (tm) mean pulmonary arterial pressure (Ppa)/cardiac index (Q) plots with transmural left atrial pressure (Pla) kept constant were constructed in seven dogs, and Ppa(tm)/PEEP plots with Q and Pla(tm) kept constant were constructed in seven other dogs. Q was manipulated by using a femoral arteriovenous bypass and a balloon catheter inserted in the inferior vena cava. Pla was manipulated using a balloon catheter placed by thoracotomy in the left atrium. Ppa(tm)/Q plots were essentially linear. Before OA, the linearly extrapolated pressure intercept of the Ppa(tm)/Q relationship approximated Pla(tm). OA (0.09 ml/kg into the right atrium) produced a parallel shift of the Ppa(tm)/Q relationship to higher pressures; i.e., the extrapolated pressure intercept increased while the slope was not modified. After OA, 4 Torr PEEP (5.4 cmH2O) had no effect on the Ppa(tm)/Q relationship and 10 Torr PEEP (13.6 cmH2O) produced a slight, not significant, upward shift of this relationship. Changing PEEP from 0 to 12 Torr (16.3 cmH2O) at constant Q before OA led to an almost linear increase of Ppa(tm) from 14 +/- 1 to 19 +/- 1 mmHg. After OA, Ppa(tm) increased at 0 Torr PEEP but changing PEEP from 0 to 12 Torr did not significantly affect Ppa(tm), which increased from 19 +/- 1 to 20 +/- 1 mmHg. These data suggest that moderate levels of PEEP minimally aggravate the pulmonary hypertension secondary to OA lung injury.  相似文献   

16.
Importance of vasoconstriction in lipid mediator-induced pulmonary edema   总被引:2,自引:0,他引:2  
Lipid mediators of inflammation cause pulmonary edema, yet it is unclear to what degree hemodynamic alterations or increased vascular permeability contribute to lung edema formation. The isolated rat lung preparation was used to examine the effect of leukotriene C4 (LTC4) and platelet-activating factor (PAF) on pulmonary arterial pressure (Ppa), lung microvascular pressure (Pmv), lung wet-to-dry weight ratio, and the 125I-albumin escape index. We first defined the response of the isolated rat lung perfused with protein-free salt solution to hydrodynamic stress by raising the lung outflow pressure. Sustained elevation of the lung outflow pressure less than 5.5 cmH2O (4.01 mmHg) caused a negligible increase in Ppa and wet-to-dry lung weight ratio. Elevation of outflow pressures greater than 7.5 cmH2O (5.4 mmHg) increased the vascular albumin escape index more than the lung wet-to-dry weight ratio. Dibutyryl adenosine 3',5'-cyclic monophosphate (db-cAMP) inhibited the increase in albumin escape index because of increased lung outflow pressure, suggesting perhaps a pressure-independent microvascular membrane effect of db-cAMP. Both LTC4 (2-micrograms bolus) and PAF (2-2,000 ng/ml perfusate) increased the albumin escape index in association with increases in Ppa and Pmv. Because the increased albumin escape index after LTC4 or PAF injection was largely accounted for by the increased vascular pressures and because db-cAMP and papaverine inhibited the rise in vascular pressures and in the albumin escape index, we conclude that vasoconstriction is an important contributor to LTC4- and PAF-induced edema formation in rat lungs.  相似文献   

17.
Lower thoracic spinal cord stimulation (SCS) results in the generation of large positive airway pressures (Paw) and may be a useful method of restoring cough in patients with spinal cord injury. The purpose of the present study was to assess the mechanical contribution of individual respiratory muscles to pressure generation during SCS. In anesthetized dogs, SCS was applied at different spinal cord levels by using a 15-lead multicontact electrode before and after sequential ablation of the external and internal obliques, transversus abdominis (TA), rectus abdominis, and internal intercostal muscles. Paw was monitored after tracheal occlusion. SCS at the T(9) spinal cord level resulted in maximal changes in Paw (60 +/- 3 cmH(2)O). Section of the oblique muscles resulted in a fall in Paw to 29 +/- 2 cmH(2)O. After subsequent section of the rectus abdominis and TA, Paw fell to 25 +/- 2 and 12 +/- 1 cmH(2)O respectively. There was a small remaining Paw (4 +/- 1 cmH(2)O) after section of the internal intercostal nerves. Stimulation with a two-electrode lead system (T(9) + T(13)) resulted in significantly greater pressure generation compared with a single-electrode lead due to increased contributions from the obliques and transversus muscles. In a separate group of animals, Paw generation was monitored after section of the abdominal muscles and again after section of the external intercostal and levator costae muscles. These studies demonstrated that inspiratory intercostal muscle stimulation resulted in only a small opposing inspiratory action (相似文献   

18.
The objective of this study was to determine whether adenosine (ADO) prevents phorbol myristate acetate- (PMA) induced lung injury by modulating peptidoleukotrienes (LT) and/or tumor necrosis factor (TNF) production. PMA significantly increased pulmonary vascular resistance (PVR, 275 +/- 4 to 447 +/- 30 cmH2O.1-1.min) and microvascular filtration coefficient.(Kf, 0.024 +/- 0.002 to 0.040 +/- 0.006 g.min-1.cmH2O-1) in isolated blood-perfused rabbit lungs. ADO (5 mumol/min) blocked the increases in PVR (257 +/- 9 to 283 +/- 26) and Kf (0.028 +/- 0.005 to 0.018 +/- 0.002). After PMA (30 min), perfusate levels of LTC4 + LTD4 increased by 15.3 +/- 2.1 pg/ml; LTE4 increased by 15.1 +/- 4.1 pg/ml. ADO reduced the increase in LTC4 + LTD4 to 2.7 +/- 6.1 pg/ml, but total LT increased by 31.9 +/- 16.6 pg/ml, implying that ADO enhanced the conversion of LTC4 and LTD4 to LTE4. MK-886 (L663,536), an LT synthesis inhibitor, blocked the increase in total LT (6.1 +/- 13.9 pg/ml) but did not reduce the PMA-induced increase in Kf (0.022 +/- 0.003 to 0.035 +/- 0.005) or PVR (238 +/- 11 to 495 +/- 21). After PMA administration, perfusate TNF levels were not different from the 10-fold increase observed in control experiments and were not reduced by ADO or MK-886. TNF production was independent of perfusate blood components and presumably due to low levels of endotoxin in the perfusate (70-90 ng/ml). These results indicate that ADO does not protect against PMA-induced acute lung injury by altering circulating levels of LT or TNF.  相似文献   

19.
Indicator dilution technique was used to study effects of reduced vascular volume or acute injury on removal of low doses of [3H]propranolol and [14C]serotonin (5-hydroxytryptamine, 5-HT) by perfused rabbit lung. Glass-bead (500 micron) embolization doubled pulmonary arterial pressure (Ppa) at flow rates of 20, 50, and 100 ml/min, decreased volume of distribution by approximately 50%, and increased pulmonary vascular resistance by at least 60%. Before embolization, (flow rate 20 ml/min) removal of [3H]propranolol and [14C] 5-HT was 89 +/- 2 and 75 +/- 5%, respectively, and was unaltered by changes in flow rate. However, after embolization, [3H]propranolol and [14C]5-HT removal decreased in a flow-dependent manner, reaching 28 +/- 4 and 1 +/- 3% (P less than 0.05), respectively, at a flow rate of 100 ml/min. When phorbol myristate acetate (PMA, 200 nM) was perfused (50 ml/min) through the lungs for 15 min, Ppa increased from 13 +/- 1 to 25 +/- 2 cmH2O (P less than 0.05), whereas [3H]propranolol removal decreased from 92 +/- 1 to 75 +/- 5% (P less than 0.05) and [14C]5-HT removal decreased from 73 +/- 3 to 46 +/- 8% (P less than 0.05). The PMA also caused vasoconstriction, which could be partially blocked by adding papaverine (500 microM) to the perfusion medium. Under the latter conditions, Ppa increased to 19 +/- 1 cmH2O and [3H]propranolol removal was unaffected. However, the combination of PMA and papaverine reduced [14C]5-HT removal from 64 +/- 4 to 19 +/- 3%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Pulmonary microcirculatory responses to leukotrienes B4, C4 and D4 in sheep   总被引:1,自引:0,他引:1  
The pulmonary microvascular responses to leukotrienes B4, C4, and D4 (total dosage of 4 micrograms/kg i.v.) were examined in acutely-prepared halothane anesthetized and awake sheep prepared with lung lymph fistulas. In anesthetized as well as unanesthetized sheep, LTB4 caused a marked and transient decrease in the circulating leukocyte count. Pulmonary transvascular protein clearance (pulmonary lymph flow X lymph-to-plasma protein concentration ratio) increased transiently in awake sheep, suggesting a small increase in pulmonary vascular permeability. The mean pulmonary artery pressure (Ppa) also increased. In the acutely-prepared sheep, the LTB4-induced pulmonary hemodynamic and lymph flow responses were damped. Leukotriene C4 increased Ppa to a greater extent in awake sheep than in anesthetized sheep, but did not significantly affect the pulmonary lymph flow rate (Qlym) and lymph-to-plasma protein concentration (L/P) ratio in either group. LTD4 increased Ppa and Qlym in both acute and awake sheep; Qlym increased without a significant change in the L/P ratio. The LTD4-induced rise in Ppa occurred in association with an increase in plasma thromboxane B2 (TxB2) concentration. The relatively small increase in Qlym with LTD4 suggests that the increase in the transvascular fluid filtration rate is the result of a rise in the pulmonary capillary hydrostatic pressure. In conclusion, LTB4 induces a marked neutropenia, pulmonary hypertension, and may transiently increase lung vascular permeability. Both LTC4 and LTD4 cause a similar degree of pulmonary hypertension in awake sheep, but had different lymph flow responses which may be due to pulmonary vasoconstriction at different sites, i.e. greater precapillary constriction with LTC4 because Qlym did not change and greater postcapillary constriction with LTD4 because Qlym increased with the same rise in Ppa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号