首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gordonia polyisoprenivorans CCT 7137 was isolated from groundwater contaminated with leachate in an old controlled landfill (São Paulo, Brazil), and cultured in GYM medium at different concentrations of sugarcane molasses (2%, 6%, and 10%). The strain growth was analyzed by monitoring the viable cell counts (c.f.u. mL?1) and optical density and EPS production was evaluated at the end of the exponential phase and 24 h after it. The analysis of the viable cell counts showed that the medium that most favored bacterial growth was not the one that favored EPS production. The control medium (GYM) was the one that most favored the strain growth, at the maximum specific growth rate of 0.232 h?1. Differences in bacterial growth when cultured at three different concentrations of molasses were not observed. Production of EPS, in all culture media used, began during the exponential phase and continued during the growth stationary phase. The highest total EPS production, after 24 h of stationary phase, was observed in 6% molasses medium (172.86 g L?1) and 10% (139.47 g L?1) and the specific total EPS production was higher in 10% molasses medium (39.03 × 10?11 g c.f.u.?1). After the exponential phase, in 2%, 6%, and 10% molasses media, a higher percentage of free exopolysaccharides (EPS) was observed, representing 88.4%, 62.4%, and 64.2% of the total, respectively. A different result was observed in pattern medium, which presented EPS made up of higher percentage of capsular EPS (66.4% of the total). This work is the first study on EPS production by G. polyisoprenivorans strain in GYM medium and in medium utilizing sugarcane molasses as the sole nutrient source and suggests its potential use for EPS production by G. polyisoprenivorans CCT 7137 aiming at application in biotechnological processes.  相似文献   

2.
Summary The actinomycete strain Lg, which was isolated from groundwater contaminated with leachate flowing out of a former municipal landfill site (upstate S?o Paulo, Brazil) and found to produce exopolysaccharides, was analysed by polyphasic taxonomy. The growth of this strain on sugarcane molasses, at various concentrations from 2% to 10%, and on the standard glucose-yeast-maltose (GYM) medium was observed by monitoring the optical density of the culture at 600 nm. Lg was found to be Gram-positive, catalase-positive, oxidase-negative, non-motile, non-sporing and did not reduce nitrate. Morphological, biochemical, chemotaxonomic and molecular tests indicated that Lg has properties typical of Gordonia polyisoprenivorans and this new strain was thus named G. polyisoprenivorans CCT 7137. Growth of the bacterium in the experimental media was notably affected by the molasses content, being fastest at 2% and 3%, the lowest contents, the maximum specific growth-rates being 0.157 h−1 and 0.168 h−1, respectively. These rates were greater than those achieved at higher concentrations and of the same order as the rate in GYM medium, 0.175 h−1. CCT 7137 is one of six strains of G. polyisoprenivorans so far isolated and recorded in the literature, and one of the two found in contaminated groundwater. This is the first known study of the growth of a strain of G. polyisoprenivorans in GYM medium and on sugarcane molasses as sole source of nutrients. The latter is proposed as a potential substrate for production of this strain.  相似文献   

3.
Axenic cultivation of biocontrol fungus Trichoderma viride was conducted on a synthetic medium and different wastewaters and wastewater sludges in shake flasks to search for a suitable raw material resulting in higher biocontrol activity. Soluble starch based synthetic medium, dewatered municipal sludge, cheese industry wastewater sludge, pre-treated and untreated pulp and paper industry wastewater and slaughter house wastewater (SHW) were tested for T. viride conidia and protease enzyme production. The maximum conidia production followed the order, soluble starch medium (>109 c.f.u./mL), untreated pulp and paper industry wastewater (4.9 × 107 c.f.u./mL) > cheese industry wastewater (1.88 × 107 c.f.u./mL) ≈ SHW (1.63 × 107 c.f.u./mL) > dewatered municipal sludge (3.5 × 106 c.f.u./mL) > pre-treated pulp and paper industry wastewater (1.55 × 106 c.f.u./mL). The protease activity of T. viride was particularly higher in slaughterhouse wastewater (2.14 IU/mL) and dewatered municipal sludge (1.94 IU/mL). The entomotoxicity of soluble starch based synthetic medium was lower (≈6090 SBU/μL) in contrast to other raw materials. The entomotoxicity inversely decreased with carbon to nitrogen ratio in the growth medium and the conidia concentration and protease activity also contributed to the entomotoxicity. The residual c.f.u./g formulation of T. viride conidia were up to approximately, 90% after 1 month at 4 ± 1 °C and about 70% after 6 months at 25 ± 1 °C. Thus, production of T. viride conidia would help in marketability of low cost biopesticide from the sludge and safe reduction of pollution load.  相似文献   

4.
The genotypic diversity of indigenous bacterial endophytes within stem of tropical maize (Zea mays L.) was determined in field and greenhouse experiments. Strains were isolated from stem tissues of a tropical maize cultivar (PEHM-1) by trituration and surface disinfestation and their population dynamics was determined. Endophytes were found in most of the growing season at populations ranging from 1.36–6.12 × 105 colony-forming units per gram fresh weight (c.f.u./gm fw) of stem. Analysis of these bacterial endophytes using Gas Chromatography—Fatty Acid Methyl Ester (GC-FAME) led to the identification of Bacillus pumilus, B. subtilis, Pseudomonas aeruginosa and P. fluorescens as the relatively more predominant group of bacterial species residing in maize stem. When the maize seedlings grown in a greenhouse were inoculated with these four isolates individually, their population densities decreased (1.6–3.1 × 105 c.f.u./gm fw of stem) as compared to the field-grown maize (1.8–3.8 × 105 c.f.u./gm fw of stem). The highest persistence, however, was recovered in the case of B. subtilis with a population density of 3.1 × 105 c.f.u./gm fw of stem tissue on 28 days after emergence (DAE). This is the first report on population dynamics of bacterial endophytes from tropical maize and the results establish that symptomless populations of bacteria exist in the maize stem.  相似文献   

5.
Aureobasidium pullulans (de Bary) Arnaud (Ach 1-1) was grown in a glucose fed-batch fermentor to 106 g dry wt l−1 in 48 h. The cells were dried in a fluidized bed dryer with a final viability of 62%. After 7 months at 4°C, the viability was 28% of the initial value (= 2.3 × 1010 c.f.u. g−1 dry matter). A protection level of 89% was achieved with the biomass preparation at 1 × 108 c.f.u. ml−1 after 28 and 7 days for apples stored respectively at 5 and 25°C against Penicillium expansum. Our process is suitable to produce large quantities of the strain Ach 1-1 as biological control agent for apple preservation.  相似文献   

6.
Idli is a traditional cereal/legume-based naturally fermented steamed product with a soft and spongy texture which is highly popular and widely consumed as a snack food item in India. The predominant fermentation microflora comprises lactic acid bacteria and yeasts and causes an improvement in the nutritional, textural and flavour characteristics of the final product. The flavour profile of idli batter prepared with initial levels of 2 × 104 c.f.u. g−1 of Candida versatilis CFR 505 and 2 × 101 c.f.u. g−1 of Pediococcus pentosaceus CFR 2123 in 500 g idli batter, packed in polyester polylaminate pouches and stored at 30 ± 2 °C was periodically analysed by GC-MS. The desirable flavour compounds such as ketones, diols and acids were found to be present upto 8 days of storage, whereas undesirable flavours like sulphurous and oxazolidone compounds, ethanone and thiazole appeared in the batter subsequent to 6 days of storage. The sensory attributes of idlis (final product) prepared from the stored batter related well to the determined flavour profile. The present study appeared to indicate that the flavour profile of traditional fermented foods can be a reliable qualitative and quantitative parameter for objective assessment. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Summary Environmental monitoring is important to enable effective resource management and public health protection as well as rapid and accurate identification of Vibrio cholerae in drinking-water sources. Traditional methods employed in identification are laborious, time-consuming and practically not viable for screening of a large number of samples. In this study, a direct cell duplex PCR assay for the detection of viable toxigenic V. cholerae in environmental water samples was developed. In the PCR assay, two gene sequences were amplified together, one of outer membrane protein (ompW), which is species-specific and another of cholera toxin (ctxAB). The detection limit of duplex PCR was 5 × 104 V. cholerae/reaction. Different environmental water samples were artificially spiked with V. cholerae O1 cells and filtered through a 0.22 μm membrane, and the filters enriched in alkaline peptone water for 6 h and then used directly in the duplex PCR assay. The PCR procedure coupled with enrichment could detect as few as 1.2 c.f.u./ml in ground water, 1.2 × 102 c.f.u. ml−1 in sewer water and 1.2 × 103c.f.u. ml−1 in tap water. The assay was successfully applied directly for screening of environmental potable water samples collected from a cholera-affected area. The proposed method is simple and can be used for environmental monitoring of toxigenic as well as non-toxigenic V. cholerae.  相似文献   

8.
Concerns about food safety as well as the development of resistance to many fungicides by major postharvest pathogens have increased recently. Biological control, using microorganisms antagonistic to the fungal plant pathogens, appears to be promising as an alternative to fungicides. The microbial biocontrol agent has to be produced on an industrial scale, maintaining its biocontrol efficacy. The purpose of the current study was to optimize the conditions for microbial biomass production of the biocontrol agent Pantoea agglomerans PBC-1 in a 2-l mechanically stirred reactor (STR), defining mixing and mass transfer technological parameters and the growth kinetics for different saccharides. In the batch mode, different impellers and spargers were tested. Despite the oxygen mass transfer improvement achieved with marine propeller combined with porous sparger, the biomass did not increase, if compared with the use of a Rushton turbine and L-sparger, pointing out the relevance of a radial flux for better broth homogenization. Different carbon sources were used: sucrose, glucose and fructose; each of which led to viable populations 3.9 × 109, 1.4 × 109, 3.9 × 109 c.f.u/ml, respectively, after 20 h of incubation. Fed-batch technology allows the maintenance of high cell viability for longer periods of time in the stationary growth phase, which can be crucial for the scale-up of biocontrol agent production process that is achieved together with a reduction of 85% on the incidence caused by the pathogens, brought about by fresh microbial biomass preparation on artificially wounded apples or oranges, stored for 7 days at 25°C against Penicillium expansum and Penicillium digitatum.  相似文献   

9.
Lactobacillus acidophilus, as a probiotic, is widely used in many functional food products. Microencapsulation not only increases the survival rate of L. acidophilus during storage and extends the shelf-life of its products, but also optimal size microcapsule makes L. acidophilus have an excellent dispersability in final products. In this paper, L. acidophilus was microencapsulated using spray drying (inlet air temperature of 170°C; outlet air temperature of 85–90°C). The wall materials used in this study were β-cyclodextrin and acacia gum in the proportion of 9:1 (w/w), and microcapsules were prepared at four levels of wall materials (15, 20, 25 and 30% [w/v]) with a core material concentration of 6% (v/v). The microcapsule diameters were measured by Malvern’s Mastersizer-2000 particle size analyzer. The results showed that the particle diameters of microcapsule were mostly within 6.607 μm and 60.256 μm and varied with 2.884–120.226 μm (the standard smaller microcapsule designated as <350 μm). Through comparison of microcapsule size and uniformity with different concentration of wall materials, we concluded that the optimal concentration of wall material was 20% (w/v), which gave microcapsule with a relatively uniform size (averaging 22.153 μm), and the number of surviving encapsulated L. acidophilus was 1.50 × 109 c.f.u./ml. After 8 weeks storage at 4°C, the live bacterial number was above 107 c.f.u./ml, compared with unencapsulated L. acidophilus, 104–105 c.f.u./ml. Through the observation of scanning electron microscopy, we found that the shapes of microcapsule were round and oval, and L. acidophilus cells located in the centre of microcapsule.  相似文献   

10.
The need for a rapid detection and characterization of biowarfare (BW) agents cannot be over emphasized. With diverse array of potential BW pathogen available presently, rapid identification of the pathogen is crucial, so that specific therapy and control measures can be initiated. We have developed a multiplex polymerase chain reaction based reverse line blot macroarray to simultaneously detect four pathogens of BW importance viz. Bacillus anthracis, Yersinia pestis, Brucella melitensis and Burkholderia pseudomallei. The multiplex PCR utilizes 14 pairs of primers targeting 18 specific markers. These markers include genes which are genus specific, species-specific chromosomal sequences and virulence markers of plasmid origin. The assay was evaluated on various human, environment and animal isolates. The assay w successful in simultaneous detection and characterization of isolates of the four pathogens on as a single platform with sensitivity ranging from 0.3 pg to 0.3 ng of genomic DNA. The assay was able to detect 5 × 102 cfu/ml for B. anthracis, 8 × 102 cfu/ml for Yersinia sp., 1.4 × 102 cfu/ml for B. melitensis and 4 × 102 cfu/ml for B. pseudomallei.  相似文献   

11.
In order to replace the conventional chemical pesticides, extensive researches have been done on entomopathogenic fungi. Entomopathogenic fungus Beauveria bassiana is an important biocontrol agent against major economic pests and is being employed in Integrated pest management (IPM) along with synthetic pesticides. Cabbage aphid Brevicoryne brassicae L. is one of the important pests of Brassicaceae family. Therefore, in this research, the virulence isolate of B. brassicae (IRAN 429C) was investigated on adults of cabbage aphid under laboratory conditions. The experiments were conducted at 25 ± 2 °C, 60 ± 10 R. H. and a photoperiod of 16:8 (L: D). After preliminary experiments, the adult aphids were treated with fungal concentrations of 1 × 103 to 1 × 107 spores/ml. Probit analysis was conducted to calculate LC50 and LC95 values for the isolate. Positive correlation was observed between concentrations and pest mortality. LC50 and LC95 values calculated for IRAN 429C isolate are 2.04 × 105 and 1.82 × 108, respectively. The mortality was counted one day after the treatment and then continued for 14 days. Cumulative mortality for 14 days after treatment varied from 54% for IRAN 429C at low concentration (103 conidia/ml) to 83% at high concentration (107 conidia/ml). The lowest LT50 was obtained at 7.67 days for IRAN 429C isolate at concentration 1 × 107 spore/ml. According to the insecticidal activity of mentioned fungi on cabbage aphid, it can be used in biocontrol programmes of B. brassicae.  相似文献   

12.
Summary A preliminary comparative evaluation of the two commonly encountered free-living nitrogen fixers in the aquatic system, Azotobacter and Azospirillum was carried out in the laboratory for use as biofertilizers in aquaculture considering the importance of eco-friendly and econo-friendly productivity optimization of freshwater aquaculture. The ammonium–nitrogen levels in water media in Azotobacter treatment varied in the range 2.59–34.34 μg-N/l and was found to be significantly different from that of Azospirillum treatment (p < 0.05). The viable population of the respective nitrogen fixers as colony forming units (c.f.u.) in water media in charcoal-immobilized Azotobacter treatment ranged from 0.39 to 2.48 × 103 c.f.u./ml and were significantly higher (p < 0.05) than the counterparts. The nitrogenase activity in the same treatment similarly remained higher, at 8.3–12.15 nmol of ethylene/ml water/h followed by the alginate-immobilized Azotobacter treatment which was at 7.2–11.40 nmol of ethylene/ml water/h compared to 5.8–7.8 and 4.65–4.83 in the respective Azospirillum-treated counterparts. Hence, better performance of Azotobacter sp. over Azospirillum sp., and of charcoal immobilization over alginate immobilization were observed.  相似文献   

13.
The cherry slugworm Caliroa cerasi is a significant destructive pest of sour cherries (Prunus cerasus) in Turkey. The potential of entomopathogenic fungi for controlling C. cerasi was evaluated. The effects of exposure methods and conidial concentrations (1 × 106, 1.5 × 106, 1 × 107 and 1.5 × 107 conidia/ml) on mature larvae of C. cerasi infected by Beauveria bassiana were investigated under laboratory conditions. Larvae sprayed directly with B. bassiana conidial suspensions and larvae exposed to B. bassiana-treated leaves resulted in 100% mortality within 2.90 and 2.77 days, respectively. The median lethal time (LT50) and days to mortality were highest in the 1.0 × 107 concentrations of conidia for both direct spray and leaf exposure. The present study suggests that B. bassiana has good potential for control of the cherry slugworm, C. cerasi.  相似文献   

14.
Greenhouse cage trials were conducted to determine the optimal concentration of Beauveria bassiana (Balsamo) Vuillemin (Ascomycota: Hypocreales) (BotaniGard 22WP® formulation) as vectored by the bumble bee, Bombus impatiens (Cresson) (Hymenoptera: Apidae) pollinator for control of greenhouse whitefly, Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae) on greenhouse tomato, tarnished plant bug, Lygus lineolaris (Palisot de Beauvois) (Hemiptera: Miridae) and green peach aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae) on greenhouse sweet pepper. Three inoculum concentrations of B. bassiana: low, 9 × 109; middle, 6.24 × 1010; and high, 2 × 1011 conidia g?1 of inoculum and two controls (one with bees and heat-inactivated inoculum, and the other which contained only the host plants and pest species) were tested in a completely randomized block design. Beauveria bassiana killed 18, 54 and 56% of the adult T. vaporariorum and 33, 70 and 67% of the adult L. lineolaris, respectively, at the low, middle and high concentrations; but no infection from B. bassiana occurred in each of the control treatments. Internal infection rates after surface sterilization of the pest insects were 11, 34 and 35% for adult T. vaporariorum, 29, 54 and 58% for adult L. lineolaris, 22, 34 and 30% for nymphal M. persicae and 17, 29 and 32% for nymphal T. vaporariorum, respectively, at the low, middle and high concentrations. Significantly more bumble bees died at the high concentration of B. bassiana (42–45%) than at the other concentrations (9–15%) and the controls (5–7%). Spores of B. bassiana were collected throughout the plant canopy with the greatest numbers sampled from the top third of the canopy [ca. 1,200 colony forming units (CFU) per cm?2]. The middle concentration was selected as the optimal concentration because it provided the best pest control with the least impact on the bees.  相似文献   

15.
We speculated that Daphniopsis tibetana may be adapted to short-term lack of food through a mechanism of population growth compensation. D. tibetana were collected from Lake Namuka Co, Tibet, and acclimated to diluted seawater in 2007. All larvae used in experiments were synchronized newborn (<24-h old) and of an average body length of 790 (770–810) μm. We evaluated the effect of continuous starvation for 1, 3, 5, 7, 9, and 11 days and intermittent periods of starvation of 0.5, 1, 1.5, and 2 days on the compensatory population growth effect in D. tibetana. The duration of starvation significantly influenced population growth, body length, and heart rate. After 1 and 3 days of continuous starvation and 0.5 days intermittent starvation, the age of first reproduction was 16.3 days and the reproduction frequency was 0.8 (10 days?1), which were similar to the control group. In these two starved groups, lifetime fecundity values were 426.3 and 412.3, average life spans were 54.5 and 54.3 days, and intrinsic rates of increase (r m) were 0.136 and 0.133 days?1, respectively, which is significantly higher than the other starved groups and not different from the control group (P > 0.05). In the group with 7, 9, and 11 days of continuously starved groups, body lengths were significantly lower (P < 0.05) than those of controls. With increasing starvation time (1, 3, 5, and 7 days), heart rate progressively decreased (184, 178, 172, and 166 min?1). Body length, measured at the end of the experiment, declined with increasing duration of intermittent starvation. After 2 days of intermittent starvation, final heart rate sharply decreased to 150 min?1, which was highly significantly different from the other treatment groups. The results of this study conclude that D. tibetana is capable of complete compensatory population growth after short-term starvation.  相似文献   

16.
Disease-causing bacteria of the genus Aeromonas are able to adhere to pipe materials, colonizing the surfaces and forming biofilms in water distribution systems. The aim of our research was to study how the modification of materials used commonly in the water industry can reduce bacterial cell attachment. Polyvinyl chloride and silicone elastomer surfaces were activated and modified with reactive organo-silanes by coupling or co-crosslinking silanes with the native material. Both the native and modified surfaces were tested using the bacterial strain Aeromonas hydrophila, which was isolated from the Polish water distribution system. The surface tension of both the native and modified surfaces was measured. To determine cell viability and bacterial adhesion two methods were used, namely plate count and luminometry. Results were expressed in colony-forming units (c.f.u.) and in relative light units (RLU) per cm2. Almost all the chemically modified surfaces exhibited higher anti-adhesive and anti-microbial properties in comparison to the native surfaces. Among the modifying agents examined, poly[dimethylsiloxane-co-(N,N-dimethyl-N-n-octylammoniopropyl chloride) methylsiloxane)] terminated with hydroxydimethylsilyl groups (20 %) in silicone elastomer gave the most desirable results. The surface tension of this modifier, was comparable to the non-polar native surface. However, almost half of this value was due to the result of polar forces. In this case, in an adhesion analysis, only 1 RLU cm?2 and less than 1 c.f.u. cm?2 were noted. For the native gumosil, the results were 9,375 RLU cm?2 and 2.5 × 108 c.f.u. cm?2, respectively. The antibacterial activity of active organo-silanes was associated only with the carrier surface because no antibacterial compounds were detected in liquid culture media, in concentrations that were able to inhibit cell growth.  相似文献   

17.
Maize is an economically important crop in northern Mexico. Different fungi cause ear and root rot in maize, including Fusarium verticillioides (Sacc.) Nirenberg. Crop management of this pathogen with chemical fungicides has been difficult. By contrast, the recent use of novel biocontrol strategies, such as seed bacterization with Bacillus cereus sensu lato strain B25, has been effective in field trials. These approaches are not without their problems, since insufficient formulation technology, between other factors, can limit success of biocontrol agents. In response to these drawbacks, we have developed a powder formulation based on Bacillus B25 spores and evaluated some of its characteristics, including shelf life and efficacy against F. verticillioides, in vitro and in maize plants. A talc-based powder formulation containing 1 × 109 c.f.u. g?1 was obtained and evaluated for seed adherence ability, seed germination effect, shelf life and antagonism against F. verticillioides in in vitro and in planta assays. Seed adherence of viable bacterial spores ranged from 1.0 to 1.41 × 107 c.f.u. g?1. Bacteria did not display negative effects on seed germination. Spore viability for the powder formulation slowly decreased over time, and was 53 % after 360 days of storage at room temperature. This formulation was capable of controlling F. verticillioides in greenhouse assays, as well as eight other maize phytopathogenic fungi in vitro. The results suggest that a talc-based powder formulation of Bacillus B25 spores may be sufficient to produce inoculum for biocontrol of maize ear and root rots caused by F. verticillioides.  相似文献   

18.
Field-measured grazing rates (ml/animal/d) of cladocerans (mostly daphniids) and diaptomids were assembled from various published studies and plotted as a function of corresponding phytoplankton concentration (μg l−1 f.w.). Filtering rates of both zooplankton groups initially increased with seston concentration until maximal grazing rates were observed at approximately 4 × 102 and 1 × 102 μg l−1 for cladocerans and copepods, respectively; at higher algal concentrations, filtering rates of both declined as a function of food concentration. The shape of these curves are most consistent with Holling's (1966) Type 3 functional response. We found little support for the Type 3 functional response in published laboratory studies of Daphnia; most investigators report either a Type 1 or Type 2 response. The one study in which the Type 3 response was observed involved experiments where animals were acclimated at low food concentrations for 24 h, whereas those studies associated with response Types 1 or 2 had acclimation periods of only 1 to 3 h. We therefore assembled relevant data from the literature to examine the effect of acclimation period on the feeding rates of Daphnia at low food concentrations. In the absence of any acclimation, animals filtered at extremely low rates. After 2 h of acclimation, however, filtering rates increased 4 to 5-fold but declined again with longer durations; after > 70 h of pre-conditioning, filtering rates were almost as low as they had been with no acclimation. We also found little support for the Type 3 functional response in published studies of copepods. The only study associated with a Type 3 response involved a marine copepod that had been subjected to a starvation period of 48 h; however, an analysis of the effects of acclimation period did not yield conclusive evidence that filtering rates of freshwater copepods (Diaptomus and Eudiaptomus) decrease significantly with acclimation duration. The low filtering rates associated with long acclimation periods in laboratory experiments appears to be a direct result of animals becoming emaciated from prolonged exposure to low food concentrations, a situation which renders them incapable of high filtering rates. This may explain the Type 3 functional response for field cladocerans, since zooplankton in food-limiting situations are constantly exposed to low food concentrations, and would therefore have low body carbon and consequently less energy to filter-feed. We cannot, however, use this to explain the Type 3 response for field diaptomids, since copepods in the laboratory did not appear to lose body carbon even after 72 h of feeding at very low food levels, and there was inconclusive evidence that either Diaptomus or Eudiaptomus decrease their filtering rates with acclimation period. Although Incipient Limiting Concentrations (ILC) for Daphnia ranged from 1 to 8.5 × 103 μg 1−1, more than half of these fell between 1 and 3 × 103 μg l−1, bracketing the value of 2.7 × 102 μg l−1 for field cladocerans. There was, however, a great deal of variation in reported maximum ingestion rates (MIR), maximum filtering rates (MFR) and ILC values for Daphnia magna. ILC values from the few laboratory studies of freshwater copepods ranged between 0.5 to 2.8 × 103 μg 1−1, and was higher than the ILC value of approximately 0.2 × 103 μg l−1 calculated for field populations of D. minutus. Generally, there was considerable agreement among laboratory studies regarding the shape of grazing-rate and ingestion-rate curves when data were converted to similar units and presented on standardized scales.  相似文献   

19.
Colletotrichum truncatum (Ct) was examined in a tank mix with the herbicide 2,4-D, clopyralid plus MCPA (Caurtail M®), or metribuzin (Sencor®) for control of scentless chamomile at 8- (younger) and 11-leaf stages (older) under controlled conditions. In initial trials, Ct at 7 × 106 spores/ml (200 l/ha) reduced the fresh weight of scentless chamomile only slightly. However, its combinations with herbicides improved the efficacy variably depending on the herbicide used and stage of the weeds. Ct plus 2,4-D reduced the fresh weight by about 50% at both leaf stages of scentless chamomile when compared to untreated controls but no plants were killed. The fungus plus Curtail M consistently killed younger but not older plants, and the efficacy was substantially greater than that of the herbicide alone. The herbicide Sencor was highly effective on younger plants, and adding Ct did not achieve additional benefits. On older plants, however, Ct plus Sencor was substantially more effective than the herbicide alone, causing 76% fresh-weight reduction when compared to controls and killing 9 out of 16 older plants in four trials. Sencor applied alone reduced the fresh weight of older plants by 65%, but no plants were killed. Tested at doses ranging from 2 × 106 to 20 × 106 spores/ml, Ct plus Curtail M was most effective at the highest fungal inoculum dose, consistently killing younger but not older plants. In comparison, Ct at a medium dose (7 × 106 spores/ml) plus Sencor killed the majority of older chamomile plants (7 out of 12), whereas the herbicide alone did not cause plant mortality. Further increasing fungal inoculum dose from this medium level did not enhance the weed control by Ct plus Sencor.  相似文献   

20.
Use of chemical pesticides in agriculture harms humans, non-target organisms and environments, and causes increase resistance against chemicals. In order to develop an effective bio-pesticide against coleopterans, particularly against Agelastica alni (Coleoptera: Chrysomelidae) which is one of the serious pests of alder leaf and hazelnut, we tested the insecticidal effect of 21 Bacillus isolates against the larvae and adults of the pest. Bacillus thuringiensis var. tenebrionis-Xd3 (Btt-Xd3) showed the highest insecticidal effect based on screening tests. For toxin protein production and high sporulation of Xd3, the most suitable medium, pH and temperature conditions were determined as nutrient broth medium enriched with salts, pH 7 and 30?°C, respectively. Sporulated Btt-Xd3 in nutrient broth medium enriched with salts transferred to fermentation medium containing soybean flour, glucose and salts. After fermentation, the mixture was dried in a spray dryer, and spore count of the powder product was determined as 1.6?×?1010 c.f.u. g?1. Moisture content, suspensibility and wettability of the formulation were determined as 8.3, 86% and 21 s, respectively. Lethal concentrations (LC50) of formulated Btt-Xd3 were determined as 0.15?×?105 c.f.u. ml?1 for larvae at laboratory conditions. LC50 values were also determined as 0.45?×?106 c.f.u. ml?1 at the field condition on larval stage. Our results showed that a new bio-pesticide developed from B. thuringiensis tenebrionis (Xd3) (Btt-Xd3) may be valuable as a biological control agent for coleopteran pests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号