首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein folding and quality control in the endoplasmic reticulum   总被引:17,自引:0,他引:17  
The endoplasmic reticulum (ER) is a highly versatile protein factory that is equipped with chaperones and folding enzymes essential for protein folding. ER quality control guided by these chaperones is essential for life. Whereas correctly folded proteins are exported from the ER, misfolded proteins are retained and selectively degraded. At least two main chaperone classes, BiP and calnexin/calreticulin, are active in ER quality control. Folding factors usually are found in complexes. Recent work emphasises more than ever that chaperones act in concert with co-factors and with each other.  相似文献   

2.
The hepatitis C virus (HCV) genome encodes two envelope glycoproteins (E1 and E2) which interact noncovalently to form a heterodimer (E1-E2). During the folding and assembly of HCV glycoproteins, a large portion of these proteins are trapped in aggregates, reducing the efficiency of native E1-E2 complex assembly. To better understand this phenomenon and to try to increase the efficiency of HCV glycoprotein folding, endoplasmic reticulum chaperones potentially interacting with these proteins were studied. Calnexin, calreticulin, and BiP were shown to interact with E1 and E2, whereas no interaction was detected between GRP94 and HCV glycoproteins. The association of HCV glycoproteins with calnexin and calreticulin was faster than with BiP, and the kinetics of interaction with calnexin and calreticulin were very similar. However, calreticulin and BiP interacted preferentially with aggregates whereas calnexin preferentially associated with monomeric forms of HCV glycoproteins or noncovalent complexes. Tunicamycin treatment inhibited the binding of HCV glycoproteins to calnexin and calreticulin, indicating the importance of N-linked oligosaccharides for these interactions. The effect of the co-overexpression of each chaperone on the folding of HCV glycoproteins was also analyzed. However, the levels of native E1-E2 complexes were not increased. Together, our data suggest that calnexin plays a role in the productive folding of HCV glycoproteins whereas calreticulin and BiP are probably involved in a nonproductive pathway of folding.  相似文献   

3.
ER quality control: towards an understanding at the molecular level.   总被引:24,自引:0,他引:24  
The process of 'quality control' in the endoplasmic reticulum (ER) involves a variety of mechanisms that collectively ensure that only correctly folded, assembled and modified proteins are transported along the secretory pathway. In contrast, non-native proteins are retained and eventually targeted for degradation. Recent work provides the first structural insights into the process of glycoprotein folding in the ER involving the lectin chaperones calnexin and calreticulin. Underlying principles governing the choice of chaperone system engaged by different proteins have also been discovered.  相似文献   

4.
5.
ER chaperones in mammalian development and human diseases   总被引:14,自引:0,他引:14  
Ni M  Lee AS 《FEBS letters》2007,581(19):3641-3651
The field of endoplasmic reticulum (ER) stress in mammalian cells has expanded rapidly during the past decade, contributing to understanding of the molecular pathways that allow cells to adapt to perturbations in ER homeostasis. One major mechanism is mediated by molecular ER chaperones which are critical not only for quality control of proteins processed in the ER, but also for regulation of ER signaling in response to ER stress. Here, we summarized the properties and functions of GRP78/BiP, GRP94/gp96, GRP170/ORP150, GRP58/ERp57, PDI, ERp72, calnexin, calreticulin, EDEM, Herp and co-chaperones SIL1 and P58(IPK) and their role in development and diseases. Many of the new insights are derived from recently constructed mouse models where the genes encoding the chaperones are genetically altered, providing invaluable tools for examining the physiological involvement of the ER chaperones in vivo.  相似文献   

6.
Proteins synthesized in the ER are generally transported to the Golgi complex and beyond only when they have reached a fully folded and assembled conformation. To analyze how the selective retention of misfolded proteins works, we monitored the long-term fate of a membrane glycoprotein with a temperature-dependent folding defect, the G protein of tsO45 vesicular stomatitis virus. We used indirect immunofluorescence, immunoelectron microscopy, and a novel Nycodenz gradient centrifugation procedure for separating the ER, the intermediate compartment, and the Golgi complex. We also employed the folding and recycling inhibitors dithiothreitol and AIF4-, and coimmunoprecipitation with calnexin antibodies. The results showed that the misfolded G protein is not retained in the ER alone; it can move to the intermediate compartment and to the cis-Golgi network but is then recycled back to the ER. In the ER it is associated with calnexin and BiP/GRP78. Of these two chaperones, only BiP/GRP78 seems to accompany it through the recycling circuit. Thus, the retention of this misfolded glycoprotein is the result of multiple mechanisms including calnexin binding in the ER and selective retrieval from the intermediate compartment and the cis-Golgi network.  相似文献   

7.
We demonstrate the existence of a large endoplasmic reticulum (ER)-localized multiprotein complex that is comprised of the molecular chaperones BiP; GRP94; CaBP1; protein disulfide isomerase (PDI); ERdj3, a recently identified ER Hsp40 cochaperone; cyclophilin B; ERp72; GRP170; UDP-glucosyltransferase; and SDF2-L1. This complex is associated with unassembled, incompletely folded immunoglobulin heavy chains. Except for ERdj3, and to a lesser extent PDI, this complex also forms in the absence of nascent protein synthesis and is found in a variety of cell types. Cross-linking studies reveal that the majority of these chaperones are included in the complex. Our data suggest that this subset of ER chaperones forms an ER network that can bind to unfolded protein substrates instead of existing as free pools that assembled onto substrate proteins. It is noticeable that most of the components of the calnexin/calreticulin system, which include some of the most abundant chaperones inside the ER, are either not detected in this complex or only very poorly represented. This study demonstrates an organization of ER chaperones and folding enzymes that has not been previously appreciated and suggests a spatial separation of the two chaperone systems that may account for the temporal interactions observed in other studies.  相似文献   

8.
Cho DY  Yang GH  Ryu CJ  Hong HJ 《Journal of virology》2003,77(4):2784-2788
The proper folding and assembly of viral envelope proteins are mediated by host chaperones. In this study, we demonstrated that an endoplasmic reticulum luminal chaperone GRP78/BiP bound specifically to the pre-S1 domain of the L protein in vitro and in vivo where complete viral particles were secreted, suggesting that GRP78/BiP plays an essential role in the proper folding of the L protein and/or assembly of viral envelope proteins.  相似文献   

9.
Folding of hepatitis C virus E1 glycoprotein in a cell-free system   总被引:4,自引:0,他引:4       下载免费PDF全文
The hepatitis C virus (HCV) envelope proteins, E1 and E2, form noncovalent heterodimers and are leading candidate antigens for a vaccine against HCV. Studies in mammalian cell expression systems have focused primarily on E2 and its folding, whereas knowledge of E1 folding remains fragmentary. We used a cell-free in vitro translation system to study E1 folding and asked whether the flanking proteins, Core and E2, influence this process. We translated the polyprotein precursor, in which the Core is N-terminal to E1, and E2 is C-terminal, and found that when the core protein was present, oxidation of E1 was a slow, E2-independent process. The half-time for E1 oxidation was about 5 h in the presence or absence of E2. In contrast with previous reports, analysis of three constructs of different lengths revealed that the E2 glycoprotein undergoes slow oxidation as well. Unfolded or partially folded E1 bound to the endoplasmic reticulum chaperones calnexin and (with lower efficiency) calreticulin, whereas no binding to BiP/GRP78 or GRP94 could be detected. Release from calnexin and calreticulin was used to assess formation of mature E1. When E1 was expressed in the absence of Core and E2, its oxidation was impaired. We conclude that E1 folding is a process that is affected not only by E2, as previously shown, but also by the Core. The folding of viral proteins can thus depend on complex interactions between neighboring proteins within the polyprotein precursor.  相似文献   

10.
The serotonin transporter (SERT) is an N-glycosylated integral membrane protein that is predicted to contain 12 transmembrane regions. SERT is the major binding site in the brain for antidepressant drugs, and it also binds amphetamines and cocaine. The ability of various molecular chaperones to interact with a tagged version of SERT (Myc-SERT) was investigated using the baculovirus expression system. Overexpression of Myc-SERT using the baculovirus system led to substantial quantities of inactive transporter, together with small amounts of fully active and, therefore, correctly folded molecules. The high levels of inactive Myc-SERT probably arose because folding was rate-limiting due, perhaps, to insufficient molecular chaperones. Therefore, Myc-SERT was co-expressed with the endoplasmic reticulum (ER) molecular chaperones calnexin, calreticulin and immunoglobulin heavy chain binding protein (BiP), and the foldase, ERp57. The expression of functional Myc-SERT, as determined by an inhibitor binding assay, was enhanced nearly 3-fold by co-expressing calnexin, and to a lesser degree on co-expression of calreticulin and BiP. Co-expression of ERp57 did not increase the functional expression of Myc-SERT. A physical interaction between Myc-SERT-calnexin and Myc-SERT-calreticulin was demonstrated by co-immunoprecipitation. These associations were inhibited in vivo by deoxynojirimycin, an inhibitor of N-glycan precusor trimming that is known to prevent the calnexin/calreticulin-N-glycan interaction. Functional expression of the unglycosylated SERT mutant, SERT-QQ, was also increased on co-expression of calnexin, suggesting that the interaction between calnexin and SERT is not entirely dictated by the N-glycan. SERT is the first member of the neurotransmitter transporter family whose folding has been shown to be assisted by the molecular chaperones calnexin, calreticulin, and BiP.  相似文献   

11.
Molecular chaperones and foldases are a diverse group of proteins that in vivo bind to misfolded or unfolded proteins (non-native or unstable proteins) and play important role in their proper folding. Stress conditions compel altered and heightened chaperone and foldase expression activity in the endoplasmic reticulum (ER), which highlights the role of these proteins, due to which several of the proteins under these classes were identified as heat shock proteins. Different chaperones and foldases are active in different cellular compartment performing specific tasks. The review will discuss the role of ER chaperones and foldases under stress conditions, to maintain proper protein folding dynamics in the plant cells and recent advances in the field. The ER chaperones and foldases, which are described in article, are binding protein (BiP), glucose regulated protein (GRP94), protein-disulfide isomerase (PDI), peptidyl-prolyl isomerases (PPI) or immunophilins, calnexin and calreticulin.Key words: Abiotic stress, chaperones, endoplasmic reticulum, foldases, immunophilins, protein folding, signal transduction  相似文献   

12.
Tyrosinase is a type I membrane protein regulating the pigmentation process in humans. Mutations of the human tyrosinase gene cause the tyrosinase negative type I oculocutaneous albinism (OCAI). Some OCAI mutations were shown to delete the transmembrane domain or to affect its hydrophobic properties, resulting in soluble tyrosinase mutants that are retained in the endoplasmic reticulum (ER). To understand the specific mechanisms involved in the ER retention of soluble tyrosinase, we have constructed a tyrosinase mutant truncated at its C-terminal end and investigated its maturation process. The mutant is retained in the ER, and it is degraded through the proteasomal pathway. We determined that the mannose trimming is required for an efficient degradation process. Moreover, this soluble ER-associated degradation substrate is stopped at the ER quality control checkpoint with no requirements for an ER-Golgi recycling pathway. Co-immmunoprecipitation experiments showed that soluble tyrosinase interacts with calreticulin and BiP/GRP78 (and not calnexin) during its ER transit. Expression of soluble tyrosinase in calreticulin-deficient cells resulted in the export of soluble tyrosinase of the ER, indicating the calreticulin role in ER retention. Taken together, these data show that OCAI soluble tyrosinase is an ER-associated degradation substrate that, unlike other albino tyrosinases, associates with calreticulin and BiP/GRP78. The lack of specificity for calnexin interaction reveals a novel role for calreticulin in OCAI albinism.  相似文献   

13.
14.
Calnexin and calreticulin are homologous lectin chaperones that assist maturation of cellular and viral glycoproteins in the mammalian endoplasmic reticulum. Calnexin and calreticulin share the same specificity for monoglucosylated protein-bound N-glycans but associate with a distinct set of newly synthesized polypeptides. We report here that most calnexin substrates do not associate with calreticulin even upon selective calnexin inactivation, while BiP associates more abundantly with nascent polypeptides under these conditions. Calreticulin associated more abundantly with orphan calnexin substrates only in infected cells and preferentially with polypeptides of viral origin, showing stronger dependence of model viral glycoproteins on endoplasmic reticulum lectins. This may explain why inactivation of the calnexin cycle affects viral replication and infectivity but not viability of mammalian cells.  相似文献   

15.
16.
The thyrotropin receptor (TSHR) is a member of the G protein-coupled receptor superfamily. It has by now been clearly established that the maturation of the glycoproteins synthesized in the endoplasmic reticulum involves interactions with molecular chaperones, which promote the folding and assembly of the glycoproteins. In this study, we investigated whether calnexin (CNX), calreticulin (CRT) and BiP, three of the main molecular chaperones present in the endoplasmic reticulum, interact with the TSHR and what effects these interactions might have on the folding of the receptor. In the first set of experiments, we observed that in a K562 cell line expressing TSHR, about 50% of the receptor synthesized was degraded by the proteasome after ubiquitination. In order to determine whether TSHR interact with CNX, CRT and BiP, coimmunoprecipitation experiments were performed. TSHR was found to be associated with all three molecular chaperones. To study the role of the interactions between CNX and CRT and the TSHR, we used castanospermine, a glucosidase I and II inhibitor that blocks the interactions between these chaperones and glycoproteins. In K562 cells expressing the TSHR, these drugs led to a faster degradation of the receptor, which indicates that these interactions contribute to stabilizing the receptor after its synthesis. The overexpression of calnexin and calreticulin in these cells stabilizes the receptor during the first hour after its synthesis, whereas the degradation of TSHR increased in a cell line overexpressing BiP and the quantity of TSHR able to acquire complex type oligosaccharides decreased. These results show that calnexin, calreticulin and BiP all interact with TSHR and that the choice made between these two chaperone systems is crucial because each of them has distinct effects on the folding and stability of this receptor at the endoplasmic reticulum level.  相似文献   

17.
Interaction of murine BiP/GRP78 with the DnaJ homologue MTJ1   总被引:2,自引:0,他引:2  
The activity of Hsp70 proteins is regulated by accessory proteins, among which the most studied are the members of the DnaJ-like protein family. BiP/GRP78 chaperones the translocation and maturation of secreted and membrane proteins in the endoplasmic reticulum. No DnaJ-like partner has been described so far to regulate the function of mammalian BiP/GRP78. We show here that murine BiP/GRP78 interacts with the lumenal J domain of the murine transmembrane protein MTJ1 (J-MTJ1). J-MTJ1 stimulates the ATPase activity of BiP/GRP78 at stoichiometric concentrations. The C-terminal tail of BiP/GRP78 is not required for the interaction with J-MTJ1, leaving the function of this portion of the molecule still unclear. Physical interactions between J-MTJ1 and BiP/GRP78 are stable and can be abolished by a single histidine --> glutamine substitution in the highly conserved HPD motif shared by all DnaJ-like proteins. The J-MTJ1 fragment, but not the mutant J-MTJ1:H89Q fragment, stimulates the ATPase activity of Escherichia coli DnaK, although at a higher concentration than its genuine partner DnaJ. Full-length DnaJ does not stimulate BiP over the range of concentrations investigated. These results indicate that the J domain of MTJ1 is sufficient for its interaction with BiP/GRP78 and cannot be substituted by E. coli DnaJ.  相似文献   

18.
Protein folding in the endoplasmic reticulum (ER) is error prone, and ER quality control (ERQC) processes ensure that only correctly folded proteins are exported from the ER. Glycoproteins can be retained in the ER by ERQC, and this retention contributes to multiple human diseases, termed ER storage diseases. UDP-glucose:glycoprotein glucosyltransferase (UGGT1) acts as a central component of glycoprotein ERQC, monoglucosylating deglucosylated N-glycans of incompletely folded glycoproteins and promoting subsequent reassociation with the lectin-like chaperones calreticulin and calnexin. The extent to which UGGT1 influences glycoprotein folding, however, has only been investigated for a few selected substrates. Using mouse embryonic fibroblasts lacking UGGT1 or those with UGGT1 complementation, we investigated the effect of monoglucosylation on the soluble/insoluble distribution of two misfolded α1-antitrypsin (AAT) variants responsible for AAT deficiency disease: null Hong Kong (NHK) and Z allele. Whereas substrate solubility increases directly with the number of N-linked glycosylation sites, our results indicate that additional solubility is conferred by UGGT1 enzymatic activity. Monoglucosylation-dependent solubility decreases both BiP association with NHK and unfolded protein response activation, and the solubility increase is blocked in cells deficient for calreticulin. These results suggest that UGGT1-dependent monoglucosylation of N-linked glycoproteins promotes substrate solubility in the ER.  相似文献   

19.
We present the first identification of transient folding intermediates of endogenous thyroglobulin (Tg; a large homodimeric secretory glycoprotein of thyrocytes), which include mixed disulfides with endogenous oxidoreductases servicing Tg folding needs. Formation of disulfide-linked Tg adducts with endoplasmic reticulum (ER) oxidoreductases begins cotranslationally. Inhibition of ER glucosidase activity blocked formation of a subgroup of Tg adducts containing ERp57 while causing increased Tg adduct formation with protein disulfide isomerase (PDI), delayed adduct resolution, perturbed oxidative folding of Tg monomers, impaired Tg dimerization, increased Tg association with BiP/GRP78 and GRP94, activation of the unfolded protein response, increased ER-associated degradation of a subpopulation of Tg, partial Tg escape from ER quality control with increased secretion of free monomers, and decreased overall Tg secretion. These data point towards mixed disulfides with the ERp57 oxidoreductase in conjunction with calreticulin/calnexin chaperones acting as normal early Tg folding intermediates that can be "substituted" by PDI adducts only at the expense of lower folding efficiency with resultant ER stress.  相似文献   

20.
The molecular chaperone BiP/GRP78 associates with various polypeptides in the endoplasmic reticulum, including immunoglobulin chains. We now show, using chemical cross-linking, that another endoplasmic reticulum stress protein, GRP94, associates with newly synthesized immunoglobulin light and heavy chains. We demonstrate the presence of ternary complexes composed of immunoglobulin chains, BiP and GRP94. Because both BiP and GRP94 associate far less with fully assembled immunoglobulin than with unassembled subunits, our data suggest that GRP94, like BiP, functions as a molecular chaperone. The presence of both BiP and GRP94 in the same complex further suggests that the two stress proteins work in concert during the folding and assembly of immunoglobulins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号