首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Summary The pleiotropy of tif-1, a mutation in E. coli K12 causing, among other effects, cellular filamentation at 42° and thermal induction of lysogenic derivatives, can be explained by the participation of the tif + gene product in more than one reaction pathway. Pathways that involve the tif + product may be analyzed by selection of secondary mutations that reverse both tif-1-mediated prophage induction and cell filamentation. Among revertants of a tif-1 lysogen among 20% are recombination deficient. These appear to carry a recA mutation. In addition to this class is a rarer (7%) phenotypically distinguishable class of revertants, called zab, first described here. Markers tif-1, recA and zab are closely linked. Mutations lex which are dominant and located near malB also appear (3%) among tif-1 revertants. The lex + function is needed for normal UV, X-ray and mitomycin C induction of prophage .The zab mutation resembles recA in causing (1) high sensitivity to UV, X-rays and mitomycin C, (2) drastic DNA degradation following UV irradiation but normal capacity to repair UV-damaged infecting phage (Hcr+), (3) failure to carry out UV reactivation and UV mutagenesis of UV-irradiated bacteriophage , (4) a markedly reduced level of spontaneous induction of . In contrast, other capacities, strikingly diminished by recA, are affected less, if at all by zab. Thus zab (1) permits 30–60% normal recombination proficiency, (2) shows real, although very low inducibility of by UV or mitomycin C, (3) permits 100% efficiency of plating of red gam, and (4) does not degrade DNA spontaneously.The hypothesis is proposed that the tif-1 mutation is a regulatory mutation controlling the activity, or more likely the synthesis of repair enzyme(s). The level of these repair enzyme(s), rather than DNA lesions, may govern the stability of the prophage repressor and the capacity of the bacteria to form septa.  相似文献   

2.
Summary The activity of the EcoK DNA restriction system of Escherichia coli reduces both the plating efficiency of unmodified phage and the transforming ability of unmodified pBR322 plasmid DNA. However, restriction can be alleviated in wild-type cells, by UV irradiation and expression of the SOS response, so that 103-to 104-fold increases in phage growth and fourfold increases in plasmid transformation occurred with unmodified DNA. Restriction alleviation was found to be a transient effect because induced cells, which initially failed to restrict unmodified plasmid DNA, later restricted unmodified phage . Although the SOS response was needed for restriction alleviation, constitutive SOS induction, elicited genetically with a recA730 mutation, did not alleviate restriction and UV irradiation was still needed. A hitherto unsuspected involvement of the umuDC operon in this alleviation of restriction is characterized and, by differential complementation, was separated from the better known role of umuDC in mutagenic DNA repair. The need for cleavage of UmuD for restriction alleviation was shown with plasmids encoding cleavable, cleaved, and non-cleavable forms of UmuD. However, UV irradiation was still needed even when cleaved UmuD was provided. The possibility that restriction alleviation occurs by a general inhibition of the EcoK restriction/modification complex was tested and discounted because modification of was not reduced by UV irradiation. An alternative idea, that restriction activity was competitively reduced by an increase in EcoK modification, was also discounted by the lack of any increase in the modification of Ral, a naturally undermodified phage. Other possible mechanisms for restriction alleviation are discussed.  相似文献   

3.
Summary The SOS response in UV-irradiated bacteria enhances the survival and mutagenesis of infecting damaged bacteriophage . In a lexA(Def) strain, SOS bacterial genes are fully derepressed by an inactivating mutation in the LexA repressor gene. We tested several lexA(Def) derivative strains for their capacity to constitutively promote high survival and mutagenesis of irradiated . We showed that UV irradiation of the lexA(Def) host bacteria is still necessary for optimal efficiency of both these SOS functions, which are dependent on the umuC gene product and an activated form of RecA protein.  相似文献   

4.
Summary The ability to reactivate ultraviolet (UV) damaged phage CbK (W-reactivation) is induced by UV irradiation of Caulobacter crescentus cells. Induction of W-reactivation potential is specific for phage CbK, requires protein synthesis, and is greatly reduced in the presence of the rec-526 mutation. The induction signal generated by UV irradiation is transient, lasting about 1 1/2–2 h at 30°C; if chloramphenicol is present during early times after UV irradiation, induction of W-reactivation does not occur. Induction is maximal when cells are exposed to 5–10 J/m2 of UV, a dose that also results in considerable mutagenesis of the cells. Taken together, these observations demonstrate the existence of a UV inducible, protein synthesis requiring, transiently signalled, rec-requiring DNA repair system analogous to W-reactivation in Escherichia coli. In addition, C. crescentus also has an efficient photoreactivation system that reverses UV damage in the presence of strong visible light.  相似文献   

5.
Summary Mutants of E. coli defective in susceptibility to UV-induction of mutations were isolated by direct screening for their UV nonmutable phenotype (Umu). Screening of about 30,000 mutagenized clones of a uvrB derivative of AB1157 yielded six Umu strains. The mutants can be classified into three groups by the location of the mutations, umuA, umuB and umuC. Mutations umuA and umuB are, respectively, mapped close to lexA and recA genes and mutations at both loci partially reduce UV mutagenesis. The locus of umuC is between hemA and purB and the mutations at this new locus result in a moderate increase of UV sensitivity. The mutation diminishes UV mutagenesis and UV reactivation of phage without affecting the inducibility of phophage nor the inhibition of cell division following UV irradiation. Related properties of an isogenic strain of a recF mutant are compared with those of umuC .  相似文献   

6.
Summary Cell division and incorporation of 3H-thymidine into acid-insoluble fraction were investigated for three uvrA recA double mutants of E. coli K12 irradiated with UV at 1.5 ergs/mm2, producing about ten pyrimidine dimers per genome (about 0.01% survival). Cell division was measured both in M9 medium and in the same medium which was made very viscous by the addition of Metlose (the same product as Methocel used by Lin et al., 1971). It was found that a major fraction of irradiated bacteria continues to divide once or twice and stops thereafter. Incorporation of 3H-thymidine proceeded at a considerable rate for a short period following irradiation and then stopped. During subsequent incubation, the incorporation gradually decreased and after 4 h incubation most of the early incorporated radioactivity disappeared from the acid-insoluble fraction. These results indicate that cell division occurs after irradiation without parallel DNA synthesis as in a recA thy mutant of E. coli K12 deprived of thymine (Inouye, 1971). These results suggest that UV irradiation increases lethal sectoring due to the reckless cell division without parallel DNA synthesis. Since DNA synthesis took place only for a short period after irradiation, it may be assumed that the recA gene normally has at least a dual function; 1. elimination of damage induced by UV to support elongation or initiation of DNA, and 2. maintenance of coordination between DNA synthesis and cell division.  相似文献   

7.
Summary In Escherichia coli, induction of the SOS functions by UV irradiation or by mutation in the recA gene promotes an SOS mutator activity which generates mutations in undamaged DNA. Activation of RecA protein by the recA730 mutation increases the level of spontaneous mutation in the bacterial DNA. The number of recA730-induced mutations is greatly increased in mismatch repair deficient strains in which replication errors are not corrected. This suggests that the majority of recA730-induced mutations (90%) arise through correctable, i.e. non-targeted, replication errors. This recA730 mutator effect is suppressed by a mutation in the umuC gene. We also found that dam recA730 double mutants are unstable, segregating clones that have lost the dam or the recA mutations or that have acquired a new mutation, probably in one of the genes involved in mismatch repair. We suggest that the genetic instability of the dam recA730 mutants is provoked by the high level of replication errors induced by the recA730 mutation, generating killing by coincident mismatch repair on the two unmethylated DNA strands. The recA730 mutation increases spontaneous mutagenesis of phage poorly. UV irradiation of recA730 host bacteria increases phage untargeted mutagenesis to the level observed in UV-irradiated recA + strains. This UV-induced mutator effect in recA730 mutants is not suppressed by a umuC mutation. Therefore UV and the recA730 mutation seem to induce different SOS mutator activities, both generating untargeted mutations.  相似文献   

8.
Summary It has been shown that linear DNA molecules of phage are converted to the twisted circular structure (species I) by covalent closure of the both strands at the cohesive ends after infection to the immune bacteria and that the twisted circular molecules are transformed to the circular form (species II) by a single-strand break in one of the strands of their DNA. This system offers a very sensitive method to study on the strand breaks or their repair. For characterization of the defects of ultraviolet sensitive strains, the structural changes of ultraviolet irradiated DNA in these strains were studied.Ultraviolet irradiation to phage greatly reduced the extent of conversion of the molecules to the species I in the uvrD mutant while the irradiation showed little effect on the conversion in the uvrA, B and C mutants. When infected bacteria carrying species I molecules were irradiated, the species I molecules in the uvrD mutant were disrupted while most of the molecules in the uvrA, B and C mutants kept the structure. These results indicate that in the irradiated DNA strand breaks are rarely introduced or, if introduced, repaired rapidly in the uvrA, B and C mutants and they are introduced in the uvrD mutant leading to the degradation of the DNA. These results provide a firm evidence that the defect of the uvrD mutant is different from other Her- mutants and in the process of repair synthesis.Ultraviolet irradiation to the uvrD mutants promote the formation of the species I molecules from the infected irradiated -DNA.Such effect was not observed with the uvrA mutant. Since the uvrD mutant has UV reactivation capacity and the uvrA mutant has not, the above phenomenon is probably caused by UV reactivation and may provide a more direct method to study the mechanisms of UV reactivation than the plaque assay.Abbreviations used UV Ultraviolet light - UVr Ultraviolet light reactivation This work was aided in part by a research grant GM 08384 from the United States Public Health Service.  相似文献   

9.
Summary Escherichia coli was infected with precA +to determine the genetic and physiological factors controlling recA +gene expression. When precA +replication was prevented by superinfection immunity, recA +protein synthesis was induced by UV radiation. The recA +gene is negatively controlled by the lexA +gene product because i) a dominant lexA mutation, lexA3, prevented induction of recA +protein synthesis ii) a recessive lexA mutation, tsl-1, caused induction of recA +protein synthesis. Conversely positive control of recA +gene expression requires recA +protein because i) a co-dominant tif-1 mutation (a recA mutation) caused induction of recA +protein synthesis ii) a recessive mutation, recA1, prevented cis-induction of recA protein synthesis. recA +protein and Protein X of UV irradiated bacteria co-migrated and were subject to the same physiological and genetic controls. It is concluded that Protein X is recA +protein. lysogenic induction was prevented by TPCK, a protease inhibitor. However TPCK did not prevent induction of recA +protein synthesis, indicating that induction of the two processes occurs in different ways. It is suggested that the lexA +and recA +proteins normally combine to repress the recA +gene. Derepression might occur after DNA damaging treatments because the amount of this complex would be reduced by recA +protein i) binding to single-stranded DNA and/or ii) being activated to function proteolytically towards regulatory molecules such as repressor.  相似文献   

10.
Summary Post-irradiation DNA degradation in P. mirabilis rec + strains after UV irradiation is found to be more extensive in starvation buffer than in growth medium. In growth medium restriction of protein synthesis, but not DNA synthesis, largely prevents the expression of breakdown limitation. By the addition of chloramphenicol during post-irradiation incubation in growth medium the expression of break-down limitation was followed and found to occur 20 to 40 min after UV irradiation. Pre-irradiation by a low dose of UV leads after a corresponding time of post-irradiation incubation to breakdown limitation even in starvation buffer after a second UV exposure.Post-irradiation DNA degradation is presumed to be initiated at the sites of DNA lesions which arise at replication points damaged by UV. While pre-starvation restricts the efficiency of postirradiation DNA degradation by the reduction of the number of replication points active at the time of irradiation, caffeine as well as 2,4-dinitrophenol inhibit DNA degradation even in rec - cells probably by the interference with nicking or exonucleoltytic events initiated at those sites in the absence of breakdown limitation.Breakdown limitation is postulated to be due to inducible derepression of REC-functions which lead to the protection and, probably, repair of DNA lesions arising at the replication points following UV exposure.  相似文献   

11.
Summary We examined the possibility that the recA441 mutation, which partially suppresses the UV sensitivity of uvr recF mutant bacteria, exerts its effect by coding for an altered RecA protein that competes more efficiently than the RecA+ protein with SSB for ssDNA in vivo. Using an assay measuring recombination between UV-damaged DNA and intact homologous DNA, we found that the introduction of the recA441 mutation partially suppressed the defects in recombination in bacteria lacking RecF activity but not in bacteria with excess SSB, although recombination was affected more in recF mutants than in bacteria overproducing SSB. These results therefore do not support the hypothesis that RecA441 protein, or RecA protein with the help of RecF protein, is required during recombination of UV-damaged DNA to compete with SSB for ssDNA.  相似文献   

12.
Summary The rate of synthesis of total cellular proteins has been studied by pulse labelling cells at various periods after irradiation with UV or -rays, after treatment with mitomycin C (MMC) or after expression of the temperature sensitive mutation tif. Subsequent gel electrophoresis and autoradiography reveals changes in the rate of synthesis of several proteins. The most striking change is in a protein of molecular weight 40,000, protein X, which has been previously most extensively studied in cells treated with nalidixic acid (Gudas, 1976). Synthesis of large quantities of protein X is induced by UV, -rays, MMC treatment or tif expression in rec + but not recA cells. A feature of recA cells is that they break down their DNA excessively after irradiation or MMC treatment. However, if protein synthesis following irradiation is prohibited by chloramphenicol, post-irradiation degradation becomes excessive in recA + cells. This inverse relationship between DNA degradation and new protein synthesis is consistent with the hypothesis that an induced protein such as X is responsible for controlling DNA degradation following irradiation. Protein X is not induced in a lexB mutant following MMC treatment. In this respect the lexB mutant behaves like lexA and recA mutants in that the ability to induce protein X can be correlated with excessive DNA degradation.Studies on the induction of proteins in inf, tif and tif sfi mutants fail to reveal any correlation between induction of protein X and either the induction of prophage or septation.  相似文献   

13.
    
Summary A new mutation affecting DNA polymerase I of Escherichia coli is described. Strains carrying mutation polA107 are similar to polA1 strains in their sensitivity to methyl methanesulphonate (MMS), thymine deprivation, their reduced ability to repair MMS treated phage and are unable to propagate a phage red - mutant.Like the polA1-recBC combination, polA107-recBC double mutants are inviable. However, in contrast to polA1 mutants, polA107 mutants grow almost normally in the presence of acridine orange. PolA107 bacteria are more sensitive to UV and X-ray irradiation than Pol+ strains but not as sensitive as polA1 strains. Following X-ray irradiation, DNA degradation in the polA107 strains is as extensive as in the polA1 strain. X-ray induced single-strand breaks, however, are repaired in the polA107 strain but not in the polA1 strain. Following UV irradiations in contrast to the polA1 strain, only low levels of DNA degradation were observed in the polA107 strain.Complementation for MMS or radiation resistance between the polA107 and polA1 mutations was not observed. In the following paper it is shown that the polA107 strain contains a normal level of DNA polymerizing activity but lacks the associated 5–3 exonucleolytic activity found in DNA polymerase I.  相似文献   

14.
Lysogenic induction of lambdoid phages in lexA mutants of Escherichia coli   总被引:2,自引:0,他引:2  
Summary UV irradiation of lexA3 mutants of E. coli caused lysogenic induction of prophage , i21, i434 and 80. Maximal induction in lexA3 lysogens needed less UV than in lexA + bacteria and gave 25–100% of the normal levels of infective centres induced. Assays of gene expression arising from derepression of a defective prophage showed at least 40% of the normal levels of induction by mitomycin C in lexA3 bacteria. The need for post-irradiation protein synthesis for lysogenic induction in lexA3 lysogens was reduced by increasing the basal level of recA protein with a recA + plasmid. It is concluded that in lexA E. coli some recA protein synthesis, too small to be detected by physical means, is needed for UV induced lysogenic induction.  相似文献   

15.
Summary The addition of caffeine or theophylline to the growth medium of irradiatedE. coli B/rtry resulted in a 10-fold or greater increase in the frequency oftry + mutants. These observations extend those ofWitkin (1958). Caffeine produced a slight reduction in the rate of RNA and protein synthesis, and a somewhat greater but temporary reduction in the rate of DNA synthesis. The analogue must be added immediately after UV-irradiation to produce its optimal effect, and the ability of an irradiated culture to respond to caffeine was lost completely after 20 min incubation in broth. Normal purine ribosides did not compete with caffeine. The optimal exposure time to caffeine was correlated with the time of DNA doubling, but marked increases of mutation frequency resulted when caffeine was present for 30 min in the absence of DNA synthesis. Incubation in caffeine before irradiation had no effect. Caffeine also reduced mutation frequency decline caused by incubation of irradiated bacteria in chloramphenicol. It is suggested that caffeine interfers with a dark repair enzyme system which removes a UV photoproduct (s) whose presence during DNA synthesis leads to mutation.With 4 Figures in the TextDedicated to ProfessorL. C. Dunn.Research supported by Grant NSF-G 14 044 from the National Science Foundation.  相似文献   

16.
Summary We have previously shown that a mutation (groPC259) in the E. coli dnaJ gene renders the cell inviable at high temperatures and arrests bacteriophage DNA replication at all temperatures (Sunshine et al., 1977). We have isolated dnaJ ++ transducing phages both by in vitro cloning and by abnormal excision of a dnaK transducing phage integrated near the dnaJ locus. The dnaJ gene product has been identified on SDS polacrylamide gels after infection of UV-irradiated E. coli cells by dnaJ ++ derivative phages. It is a polypeptide chain with an apparent molecular weight of 37,000-daltons. This has been verified by the fact that a transducing phage carrying an amber mutation in the dnaJ gene fails to induce the synthesis of the 37,000-dalton polypeptide chain upon infection of sup ++ bacteria, but does so upon infection of supF or supD bacteria.  相似文献   

17.
Summary Mutagenic repair in Escherichia coli after ultraviolet (UV) irradiation has previously been shown to require a function of DNA polymerase III. In contrast, no effect of incubating a polC temperature-sensitive strain at 42° has been found after gamma irradiation. Thus at present there is no direct evidence for the involvement of polymerase III in gamma ray mutagenesis. This could, however, merely reflect the stability of the premutational lesion during the period of polymerase III insufficiency such that mutagenic repair is resumed on the plate during subsequent incubation at permissive temperature.It was previously suggested that an inducible factor might interact with polymerase III to enable it to polymerise in an error-prone way in daughter strand gaps opposite non-coding lesions in the template strand. A temperature-resistant revertant (CM 792) of a temperature-sensitive polC strain (CM 731) has been isolated which has properties expected of a strain in which the polymerase III complex is no longer susceptible to the inducible co-factor. Its UV sensitivity, spontaneous mutation rate and mutagenic response to ethyl methanesulphonate are all normal or near normal, also the rates of mutation to prototrophy after gamma irradiation and to streptomycin resistance after UV. These latter mutations are believed to arise through constitutive mutagenic repair at sites in pre-existing DNA. In contrast, the rate of UV-induced mutation to prototrophy due to changes at ochre suppressor loci is greatly depressed and no Weigle-reactivation of bacteriophage T3 is observable; both these effects are believed to result from the action of inducible mutagenic repair in newly-replicated DNA. It is suggested that the 3 to 5 exnnuclease activity of the polymerase III complex in CM 792 may not be susceptible to inhibition by an inducible factor and so continues to remove mismatched bases inserted in newly-replicated DNA opposite damage template sites thus preventing the fixation of errors as mutations.  相似文献   

18.
    
Summary Double lysogens for prophages cI + and cI ind ts-857 are induced only by the combined effects of ultraviolet (UV) irradiation and high temperature, not by either treatment alone (Sussman and Jacob, 1962). We have followed the kinetics of inactivation of the cI + repressor brought about by irradiation in asynchronously and synchronously growing cultures of B/r (cI +) (cI ind ts-857). Assays of the yield of phage released as a result of temporary thermal inactivation of the UV-resistant ind ts-857 repressor at intervals after the irradiation accurately reflect the time course of UV-induced inactivation of the cI + repressor. The results show that UV-induced derepression takes place in all cells of the population approximately 20 min after the irradiation whether the cells were growing asynchronously or synchronously. Hence UV induction of prophage is not triggered at a particular stage in the cell cycle.  相似文献   

19.
Summary Certain treatments that damage DNA and/or inhibit replication in E. coli have been reported to induce synthesis of a new protein, termed protein X, in recA + lexA + strains. We have examined some of the treatments that might induce protein X and we have, in particular, tested the hypothesis of Gudas and Pardee (1975) that DNA degradation products play an essential role in the induction process.We confirmed that UV irradiation, nalidixic acid treatment, or thymine starvation result in protein X synthesis in wild type strains. However, we found that UV irradiation, unlike nalidixic acid, also induced protein X in recB strains, in which little DNA degradation occurs. Furthermore, we found that the presence of DNA fragments resulting from host-controlled restriction of phage DNA did not affect protein X synthesis. We conclude that no causal relationship exists between the production of DNA fragments and induction of protein X.The presence of the plasmid R46, which confers enhanced mutagenesis and UV resistance on its host, did not affect protein X synthesis. Growth in the presence of 5-bromouracil, which does not result in production of degradation fragments, resulted eventually in a low rate of protein X synthesis. In dnaA mutants, deficient in the initiation of new rounds of replication, UV irradiation induced protein X, again unlike nalidixic acid. Thus, the inhibition of active replication forks is not an essential requirement for protein X induction.  相似文献   

20.
Summary The E. coli dnaK (groPC756) gene product is essential for bacteriophage DNA replication. Bacterial DNA segments carrying this gene have been cloned onto a bacteriophage vector. The product of the dnaK gene has been identified on SDS polyacrylamide gels after infection of UV-irradiated E. coli cells. The dnaK gene codes for a polypeptide with an apparent molecular weight of 93,000-Mr. Transducing phages carrying amber mutations in the dnaK gene fail to induce the synthesis of the 93,000-Mr polypeptide chain upon infection of sup + bacteria, but do so upon infection of supF bacteria. E. coli carrying the dnaK756 mutation are, in addition, temperature sensitive for growth at 43° C. It is shown that the dnaK756 mutation results in an overproduction of the dnaK gene product at that temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号