首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Foraging behavior of a pit-building antlion larva, Myrmeleon boreTjeder was investigated experimentally to elucidate the relation between the feeding level and pit relocation.
  1. In artificial sands constructed in the field the 3rd instar larvae of M. bore rarely changed the positions of their pits, though several antlions had moved actively until they constructed pits. The average feeding rate was 0.3 prey/day/pit, and about 60% of prey captured were ants.
  2. To examine whether or not M. bore larvae concentrate into the area where they can capture more prey, 8 antlions were released into each of 6 boxes filled with sand. I divided the sand surface of each box into two half areas, then gave prey to the pits built in a half area and gave no prey to the pits built in the other half. During the 50-day observation period, nonfed antlions never moved into the area where prey were given.
  3. The 3rd instar larvae were reared separately without food. Even under starved conditions they rarely relocated their pits until dealth. The average duration of survival period was 83.9 days.
  4. The experimental results indicate that M. bore larvae adopt a tactic of sedentary ambushing. These larvae exhibit low movement rates which are independent of prey capture rates.
  相似文献   

2.
Predators use a variety of strategies for capturing prey. Trap‐building predators can save on searching and encountering costs by investing in the construction and maintenance of traps such as webs and pits. However, what to do with partially consumed prey poses a potential problem. Antlion larvae (Myrmeleon acer) catch ants in conical pits, and dispose of partially consumed carcasses by flicking them a short distance away. We tested whether this prey‐disposal behaviour affects the effectiveness of antlion pits. We observed ant behaviour around artificially constructed pits and compared falls into pits with clean margins to those with conspecific ant carcasses or control objects around the pit edge. The presence of objects near pits affected the behaviour of live ants, and reduced the effectiveness of pits. Live ants spent the most time examining fresh ant carcasses, but the presence of any object near pits deterred pitfalls. Ants fell into pits significantly more often when pit edges were clean, suggesting that antlions could incur a prey capture cost from flicking carcasses from pits as well as from the accumulation of other debris around pit margins.  相似文献   

3.
Antlion larvae are typically considered as trap-building predators, but some species of antlions always forage without using pits or only sometimes use pits to capture prey; they can ambush prey without pits. This study examined a species that switches its strategy between pit-trapping and ambushing and asked the mechanism behind the switching behaviour. A dynamic optimization model incorporating tradeoffs between the two strategies was built. The tradeoffs were prey capture success and predation risk (both are higher when pit-trapping). The model predicted that antlions should use the trap-building strategy when their energy status is low and should use the ambush strategy when their energy status is high. These predictions as well as an assumption (i.e., predation risk associated with pit-trapping is higher than that associated with ambushing) of the model were empirically confirmed. The results suggest that antlions flexibly switch between pit-trapping and ambushing to maximize their fitness by balancing the costs and benefits of the two strategies.  相似文献   

4.
Abstract 1. Larvae of a Myrmecaelurus sp. are unique among antlions because they have two prey‐capture methods; they either ambush prey at the surface, or dig pit traps that prey fall in to. It was hypothesised that larvae will use the capture method that maximises their net rate of energy gain, which will be influenced by food availability (encounter rate) and by past energy inputs (body condition). 2. Costs were estimated by measuring resting and activity metabolic rates and determining the duration of pit maintenance at various encounter rates with ants that served as prey. Benefits were estimated from the energy gained per ant captured at different encounter rates. 3. Net energy gained was higher with a pit than without one, and was influenced more by the differences in prey capture rate between the two capture methods, and less by the differences in energy costs associated with each method. The proportion of larvae that constructed pits was higher when they were in intermediate body condition than when in good or in poor body condition. 4. Thus, the use of one capture method or the other depends on a combination of the influences of past net energy gain and the antlion’s most recent change in encounter rate with prey. Ambushing without a pit may serve as a default when physiological constraints limit the larvae’s ability to invest in pit construction and maintenance, or when larvae are sated, and saving the energy of pit construction and maintenance is worthwhile.  相似文献   

5.
1. Antlions are opportunistic trap building predators that cannot control prey encounter. Their trap should ideally retain a great diversity of prey. However, building a single trap that captures many prey with varying characteristics can be challenging. 2. A series of five different ant species ranging from thin to large, of sizes ranging from 2.75 to 6.5 mm, and a mean weight ranging from 0.54 to 6.00 mg were offered in a random succession to antlions. The state of satiation of the antlions was controlled, and their mass and the depth of their pit were recorded. The reaction of antlion to the prey, the probability of capture as well as the time to escape were recorded. 3. The probability of an antlion reaction is an increasing function of the pit depth and a decreasing function of antlion mass. The probability of capture is highest for intermediate prey mass and is an increasing function of pit depth. The time to escape is a declining function of prey mass and an increasing function of pit depth. 4. There is an upper limit to prey mass given that large prey escape out of the pit. There is a lower limit to prey mass given the difficulty to apprehend the smallest, thin species. Consequently, there is a range of prey mass, corresponding to a medium‐sized ant of 2 mg, for which the pit functions best. The physics of insect locomotion on sandy slopes was identified as the key to understanding the functioning of antlion pits.  相似文献   

6.
Pit-building antlions, the larvae of a winged adult insect, capture food by digging funnel-shaped pits in sand and then lying in wait, buried at the vertex, for prey to fall inside. The sedentary nature of this sit-and-wait predatory behaviour and, especially, antlions’ innate ability to detect prey arrival, do not fit the typical profile of insects that possess learning capabilities. However, we show, for the first time, that learning can play an important role in this unique form of predation. In three separate experiments, individual antlions received, once per training day, either a vibrational cue presented immediately before the arrival of food or that same cue presented independently of food arrival. Signalling of food not only produced a learned anticipatory behavioural response (Experiment 1), but also conferred a fitness advantage: Associative learning enabled antlions to dig better pits (Experiments 2 and 3), extract food more efficiently (Experiments 2 and 3), and, in turn, moult sooner (Experiment 3) than antlions not receiving the associative learning treatment.  相似文献   

7.
Behavioral plasticity allows animals to maximize their fitness in a variety of environmental conditions. Trap‐building predators represent case studies in such plasticity as the characteristics of their traps are dependent upon the substrate available. We investigated the effect of sand particle size on pit construction in antlions (Euroleon nostras), sand‐dwelling insect larvae that build pitfall traps to capture prey. The pit construction behavior of the species comprises six stages. When antlions were exposed to different sand particle sizes, their behavior differed in terms of the occurrence and duration of particular stages and in the frequency of jerks produced during sand tossing. Jerk frequency was negatively correlated with sand particle size and also changed during pit construction. Furthermore, at larger particle sizes, individuals occasionally constructed irregular traps with a figure of eight shape, and they crossed the center of the truncated cone during deepening. In the largest substrate, particle size of antlions did not construct pits. Our results demonstrate that variation in traps under differing environmental conditions stems directly from behavioral plasticity in this species.  相似文献   

8.
The effect of increasing population density on the formation of pits, their size and spatial distribution, and on levels of mortality was examined in the antlion Myrmeleon acer Walker. Antlions were kept at densities ranging from 0.4 to 12.8 individuals per 100 cm2. The distribution of pits was regular or uniform across all densities, but antlions constructed proportionally fewer and smaller pits as density increased. Mortality through cannibalism was very low and only occurred at densities greater than five individuals per 100 cm2. Antlions in artificially crowded situations frequently relocated their pits and when more space became available, individuals became more dispersed with time. Redistribution of this species results from active avoidance of other antlions and sand throwing associated with pit construction and maintenance, rather than any attempt to optimise prey capture per se.  相似文献   

9.
Animals use a variety of escape mechanisms to increase the probability of surviving predatory attacks. Antipredator defenses can be elaborate, making their evolutionary origin unclear. Trap-jaw ants are known for their rapid and powerful predatory mandible strikes, and some species have been observed to direct those strikes at the substrate, thereby launching themselves into the air away from a potential threat. This potential escape mechanism has never been examined in a natural context. We studied the use of mandible-powered jumping in Odontomachus brunneus during their interactions with a common ant predator: pit-building antlions. We observed that while trap-jaw ant workers escaped from antlion pits by running in about half of interactions, in 15% of interactions they escaped by mandible-powered jumping. To test whether escape jumps improved individual survival, we experimentally prevented workers from jumping and measured their escape rate. Workers with unrestrained mandibles escaped from antlion pits significantly more frequently than workers with restrained mandibles. Our results indicate that some trap-jaw ant species can use mandible-powered jumps to escape from common predators. These results also provide a charismatic example of evolutionary co-option, where a trait that evolved for one function (predation) has been co-opted for another (defense).  相似文献   

10.
Unique in the insect world for their extremely sedentary predatory behavior, pit-dwelling larval antlions dig pits, and then sit at the bottom and wait, sometimes for months, for prey to fall inside. This sedentary predation strategy, combined with their seemingly innate ability to detect approaching prey, make antlions unlikely candidates for learning. That is, although scientists have demonstrated that many species of insects possess the capacity to learn, each of these species, which together represent multiple families from every major insect order, utilizes this ability as a means of navigating the environment, using learned cues to guide an active search for food and hosts, or to avoid noxious events. Nonetheless, we demonstrate not only that sedentary antlions can learn, but also, more importantly, that learning provides an important fitness benefit, namely decreasing the time to pupate, a benefit not yet demonstrated in any other species. Compared to a control group in which an environmental cue was presented randomly vis-à-vis daily prey arrival, antlions given the opportunity to associate the cue with prey were able to make more efficient use of prey and pupate significantly sooner, thus shortening their long, highly vulnerable larval stage. Whereas "median survival time," the point at which half of the animals in each group had pupated, was 46 days for antlions receiving the Learning treatment, that point never was reached in antlions receiving the Random treatment, even by the end of the experiment on Day 70. In addition, we demonstrate a novel manifestation of antlions' learned response to cues predicting prey arrival, behavior that does not match the typical "learning curve" but which is well-adapted to their sedentary predation strategy. Finally, we suggest that what has long appeared to be instinctive predatory behavior is likely to be highly modified and shaped by learning.  相似文献   

11.
Summary We generated a computer model to analyse the effects of shadow competition for sit-and-wait predators, particularly antlion larvae. The model used a simple foraging assessment rule to determine the quality of an antlion's location, and antlions relocated randomly in their habitat when a location proved to be of low quality. Shadow competition, or competition for food caused when one sit-and-wait predator intercepts moving prey before a second sit-and-wait predator is encountered, was incorporated into the model by restricting antlions to a bounded arena, and having prey for the antlions enter from the arena periphery. Antlions responded to shadow competition by relocating their pits to peripheral areas of their habitat. This peripheral accumulation of pits was most pronounced when antlion densities were high, and when prey availabilities were intermediate. An experimental test with the antlionMyrmeleon immaculatus supported the importance of shadow competition as a cause of observed pit distributions. Only the treatment which incorporated shadowing had pit distributions near the periphery, while the pit distributions in the control treatments did not differ from randomly generated distributions. We conclude that shadowing can influence sit-and-wait predator distributions when the prey distributions and movement patterns generate the conditions necessary for shadowing. But when prey availability is unpredictable, making assessment of patches difficult, or when prey do not originate in the periphery of the habitat, other factors, such as temperature or moisture, could be more important.  相似文献   

12.
Abstract 1. Pit‐building antlions are small sit‐and‐wait arthropod predators, which dig conical pits in sandy soils. We studied how biotic (conspecific density and feeding regime) and abiotic (sand depth) factors affect pit diameter and depth, while taking into account the larval body mass. 2. Pit diameter increased with larval body mass at a decelerating rate. In addition, larger larvae tended to relocate less frequently than smaller ones. 3. Sand depth positively affected overall pit size, while increasing conspecific density had a weaker but negative effect on pit size. 4. Feeding the antlions resulted in an increase in pit diameter compared with an unfed control group. However, as prey size increased this positive effect diminished. This result suggests that the existence of prey provides information about the quality of the microhabitat, triggering pit extension. However, similarly to the reduction in the foraging effort of saturated predators, antlions provided with large prey invested only little effort in pit enlargement. 5. Antlions were previously shown to be sensitive to prey and conspecific vibrations in the sand. We thus expected the feeding regime of the neighbour to affect antlion behaviour – surrogate of discriminating between local and global shortage of prey. Nevertheless, antlions with fed neighbours (a local prey shortage) did not show different behaviour compared with a control group in which both antlions were unfed (a global prey shortage).  相似文献   

13.
1. This study reports the discovery of sympatric populations of antlions (Neuroptera: Myrmeleontidae) and wormlions (Diptera: Vermileonidae) in a unique system of sandy microhabitats in the lowland rainforest of Borneo. The two species convergently evolved sit‐and‐wait predatory larvae, which construct pitfall traps to hunt insects. Despite similar specialised foraging strategies, the two species coexist in the competitive environment of small, isolated sandy patches in the rainforest, which begs the question: what biological characteristics allow their coexistence? 2. Based on larval morphology alone, it was predicted that antlions would build larger traps, which would allow them to efficiently hunt larger prey. Addressing this hypothesis, this study compared the volumes of traps constructed by the two species under field and laboratory conditions. A laboratory experiment compared their efficiency of capture of three ant species that differed in body size. 3. The results show that antlions constructed larger traps and captured prey more efficiently. The difference between the species could not be explained by trap size alone. The findings demonstrate that the overlap in resource use in these two species was low, and it is suggested that there is a separation in prey utility between them, allowing their coexistence in the space‐limited habitat of the tropical rainforest.  相似文献   

14.
Species utilizing a wide range of resources are intuitively expected to be less efficient in exploiting each resource type compared to species which have developed an optimal phenotype for utilizing only one or a few resources. We report here the results of an empirical study whose aim was to test for a negative association between habitat niche breadth and foraging performance. As a model system to address this question, we used two highly abundant species of pit-building antlions varying in their habitat niche breadth: the habitat generalist Myrmeleon hyalinus, which inhabits a variety of soil types but occurs mainly in sandy soils, and the habitat specialist Cueta lineosa, which is restricted to light soils such as loess. Both species were able to discriminate between the two soils, with each showing a distinct and higher preference to the soil type providing higher prey capture success and characterizing its primary habitat-of-origin. As expected, only small differences in the foraging performances of the habitat generalist were evident between the two soils, while the performance of the habitat specialist was markedly reduced in the alternative sandy soil. Remarkably, in both soil types, the habitat generalist constructed pits and responded to prey faster than the habitat specialist, at least under the temperature range of this study. Furthermore, prey capture success of the habitat generalist was higher than that of the habitat specialist irrespective of the soil type or prey ant species encountered, implying a positive association between habitat niche-breadth and foraging performance. Alternatively, C. lineosa specialization to light soils does not necessarily confer upon its superiority in utilizing such habitats. We thus suggest that habitat specialization in C. lineosa is either an evolutionary dead-end, or, more likely, that this species' superiority in light soils can only be evident when considering additional niche axes.  相似文献   

15.
Larvae of pit-building antlions are expected to be more efficient at capturing prey than those of non-pit-builders. To test this prediction, feeding behaviors were compared in the same experimental conditions among pit-building Baliga micans and Myrmeleon bore, and non-pit-building Distoleon contubernalis. The number of prey eaten did not differ between species. D. contubernalis larvae used the walls of the experimental chamber as fence traps to capture prey. In the field, they were also found near edges of natural barriers, such as rocks, stones, tree roots, and plant stems. Artificial pitfall traps captured more arthropods near the edges of fences than farther from them. Larvae of the two pit-building species were located in the central part of the experimental chamber. In their natural habitats, the number of arthropods captured by artificial pitfall traps increased with pit size; thus, larger pits may be more efficient for capturing prey. In conclusion, pit-building and non-pit-building antlion larvae are both efficient hunters; the former hunt efficiently by making larger pitfall traps, and the latter do so by waiting for prey at the edge of the natural fences along which arthropods walk.  相似文献   

16.
We studied the predatory behavior of seven species of the genusLeptogenys from Mexico and Cameroon. The ants of this genus are armed with long, thin, curved mandibles articulated at the extreme corners of the anterior margin of the head, permitting them easily to seize oniscoid isopods, the obligate or the principal prey of mostLeptogenys species. Workers hunt these prey, which are able to roll themselves up, solitarily. Foraging behavior comprises sequences of up to eight activities. The prey can be seized by the body (rolled up or not), or alternatively by the edge of the shell, then turned over and stung on the ventral face. A relationship between the mandible size of the workers and the handling method permitted us to established that the phase “seizure by the edge of the shell” (compared to grasping the prey by the body) was more frequent as the prey size increased or the mandible length of the workers decreased. The rate of prey escape followed the same pattern. When a prey escaped, workers reacted by using a local searching or “reserve” behavior: they moved by increasing both sinuosity and speed. Recruitment occurred mainly after a worker found a group of prey or a large prey.L. mexicana are attractive at a distance to the isopods Bathytropidae living in the same natural environment. As a consequence, prey capture is possible without foraging for this species.  相似文献   

17.
Antlions are insects which feed on ants, insect which dig a pit and lies in wait for ants and other insects. Twelve species of Myrmeleontidae family as antlions and many specimens were identified in different locations in Fars province in Iran. To unveil the genetic similarity between these species, their DNA was extracted by modified CTAB method and with the use of seventeen 10-nucleotides primers of random amplified polymorphic DNA (RAPD); the genetic analysis of them was investigated. After PCR, agarose 1.5?% was used for electrophoresis. The obtained electrophoresis bands had base pairs range between 150 and 1,000?bp. The maximum of polymorphic bands belonged to OPH5, N13, and the minimum of polymorphic bands belonged to OPA7 primers. Different genetic similarity indices were found between eight species of antlions. Possibility of use of RAPD marker together with morphological studies for classification and identification of antlions is discussed.  相似文献   

18.
Trade-offs have a central role in evolutionary ecology and life-history theory. Here, we present evidence for the existence of a rarely studied trade-off between growth rate and starvation endurance in larvae of a pit-building antlion. We first manipulated antlions’ feeding regime and obtained a spectrum of growth rates. Next, we starved the antlions and documented their rate of mass loss. Antlions growing faster during the feeding phase also lost mass faster during the successive starvation period, implying the existence of an induced trade-off between fast growth and starvation endurance. Finally, we fed all antlions with prey items of similar mass and measured both the giving-up prey mass (i.e. the remaining body mass of the prey that was not converted into predator body mass), and growth efficiency of antlions (i.e. proportion of prey consumed, negatively correlated with giving-up prey mass). The giving-up mass was negatively correlated with the growth rate of the antlions during the feeding phase, and positively correlated with their growth rate during the starvation phase (the opposite pattern was evident when examining growth efficiency), incongruently with the common phenomenon of growth compensation (i.e. extracting more of the prey after a starvation period). We suggest that antlion larvae can adopt a physiological mode bounded by two extremes: one extreme is adapted to starvation, involving reduced metabolic rates but also reduced capability to exploit prey, while the other is adapted to fast growth, allowing an efficient exploitation of prey, but at the expense of lowered starvation endurance.  相似文献   

19.
Foraging strategy of ant workers has been studied from several aspects, however, the mode of prey retrieval and factors affecting it have been rarely studied to date, even thought it is an important aspect for understanding ant foraging strategy. We investigated the behavioral response against large prey for 44 ant species of 34 genera belonging to eight subfamilies in Japan, Malaysia and Indonesia. Workers of most arboreal ants cut-up large prey at the site of prey capture, and individual workers retrieve the smaller pieces to the nests. In contrast, in most ground-living species, a group of workers retrieve large prey cooperatively without fragmentation. On the ground, parts of the prey item were often robbed by other ant species during this process, while such interference was rare on trees. The significance of the relation between nest site and mode of prey retrieval is discussed.  相似文献   

20.
Pitcher plants (Sarracenia purpurea L.) attract insects to pitchers and then capture them in fluid-filled, pitfall traps, but how efficient are pitcher plants at capturing prey in their natural environment? We monitored insect activity by videotaping pitchers and analyzing videotapes for several variables including identity of each visitor and outcome of each visit (e.g., departure or capture). Efficiency of capture (i.e., number of captures per number of visits) was low. Overall efficiency of capture was 0.83–0.93%, depending on whether potential prey were broadly or narrowly defined. Ants constituted 74% of the potential prey. Efficiency of capture of ants was even lower at 0.37%. Potential prey were more likely to visit pitchers with greater red venation and less water in the pitcher. There was no correlation between number of potential prey visiting a pitcher and pitcher age, length, or mouth width. Also, number of potential prey visits did not correlate with plant size, air temperature, time of day or date of videotaping. While the overall efficiency of prey capture was very low, pitcher plants may still benefit from the additional nutrients. However, the relationship between ants and S. purpurea remains an enigma, since it is unclear whether the plants capture enough ants to compensate for nectar lost to ants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号