首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Treatment of the porcine intestinal brush-border membranes with 100 microM ascorbic acid and 10 microM Fe2+ in the presence of various concentrations of tert-butyl hydroperoxide (t-BuOOH) resulted in a marked fluorescence development at 430 nm, depending on the hydroperoxide concentration. This fluorescence formation was closely related to lipid peroxidation of the membranes as assessed by formation of conjugated diene. However there is no linear relation between thiobarbituric acid-reactive substances (TBARS) and fluorescence formation. On the other hand, fluorescence formation in the membranes by treatment with ascorbic acid/Fe2+ or t-BuOOH alone was negligible. The results with antioxidants and radical scavengers suggest that ascorbic acid/Fe2+/t-BuOOH-induced lipid peroxidation of the membranes is mainly due to t-butoxyl and/or t-butyl peroxy radicals. Most TBARS produced during the peroxidation reaction were released from the membranes, but fluorescent products remained in the membrane components. The fluorescence properties of products formed by lipid peroxidation of the membranes were compared with those of products derived from the interaction of malondialdehyde (MDA) or acetaldehyde with the membranes. The fluorescence products in the acetaldehyde-modified membranes also exhibited the emission maximum at 430 nm, while the emission maximum of MDA-modified membranes was 470 nm. The fluorescence intensity of MDA-modified membranes was markedly decreased by treatment with 10 mM NaBH4 but that of the peroxidized or acetaldehyde-modified membranes was enhanced by about two-fold with the treatment. In addition, a pH dependence profile revealed that the fluorescence intensity of the peroxidized or acetaldehyde-modified membranes decreases with increasing pH of the medium, whereas that of MDA-modified ones did not change over the pH range from 5.4 to 8.0. On the basis of these results, the fluorescence properties of products formed in the intestinal brush-border membranes by lipid peroxidation are discussed.  相似文献   

2.
The effect of alpha-tocopherol on the lipid fluidity of porcine intestinal brush-border membranes was studied using pyrene as a fluorescent probe. Addition of alpha-tocopherol to the medium decreased fluorescence intensity and lifetime, but increased the fluorescence polarization of pyrene-labeled membranes. beta-, gamma-, and delta-Tocopherols gave no appreciable effect on the fluorescence intensity and polarization of the complex. The apparent dissociation constant (3.1 +/- 0.12 microM) of the interaction of alpha-tocopherol with the membranes, estimated from the change in the fluorescence intensity with varying concentrations of alpha-tocopherol, was in good agreement with the concentration required to cause the half-maximal inhibition of lipid peroxidation of the membranes performed by incubation with 100 microM ascorbic acid and 10 microM Fe2+. Decrease of the slope in the thermal Perrin plot of the polarization of pyrene-labeled membranes by alpha-tocopherol suggests that the movement of pyrene molecules in the membranes is restricted by binding of the tocopherol. This interpretation was confirmed by an increased harmonic mean of the rotational relaxation time of the dye molecules in the membranes from 10.9 +/- 0.16 to 18.5 +/- 0.51 microseconds after addition of 25 microM alpha-tocopherol to the medium. The perturbation of lipid phase in the membranes induced by alpha-tocopherol was also suggested from a decreased quenching rate constant of pyrene fluorescence in the membranes for Tl+. Based on these results, the effect of alpha-tocopherol on the lipid fluidity of the membranes is discussed.  相似文献   

3.
Glutathione-mediated transport across intestinal brush-border membranes   总被引:1,自引:0,他引:1  
Glutathione transport was studied in brush-border membrane vesicles of rabbit small intestine in which gamma-glutamyl transpeptidase (EC 2.3.2.2) had been inactivated by a specific affinity-labeling reagent, L-(alpha S,5S)-alpha-amino-3-chloro-4,5-dihydro-5-isoxazoleacetic acid (AT125). Transport of intact [glycine-2-3H]GSH occurred into an osmotically active intravesicular space of AT125-treated membranes. The 0.1 M NaSCN gradient (Na+ inside greater than Na+ outside) in the transport medium could be replaced with KSCN or NaCl without affecting transport activity. The initial rate of GSH transport followed Michaelis-Menten saturation kinetics (Km = 17 microM). The results suggest that, in these membranes, there was an Na+-independent mediated transport for intact GSH with marked specificity and affinity. In fact glycine, glutamic acid and cysteine did not decrease GSH uptake, as was also true for glycylglycine and glycylglycylglycine; only gamma-glutamylcysteinylglycyl ester, a derivative of GSH, partially inhibited GSH transport.  相似文献   

4.
The effect of treatment of the porcine intestinal brush-border membranes with malondialdehyde (MDA) on their lipid fluidity was examined using a fluorescence probe, 1,6-diphenyl-1,3,5-hexatriene (DPH). When the membranes were treated with MDA, the fluorescence anisotropy of DPH-labeled membranes increased and the amount of DPH molecules incorporated into the membranes decreased from 3.25 to 2.23 nmol/mg protein. In addition, the response of the fluorescence anisotropy of DPH-labeled membranes to benzyl alcohol, a well-known fluidizer, was markedly suppressed by treatment of the membranes with MDA. These results suggest that treatment of the membranes with MDA causes a decrease of the membrane lipid fluidity. This interpretation was further supported by the increase observed in the fluorescence anisotropy of DPH-labeled liposomes prepared from the extracted lipids of MDA-treated membranes. The results of SDS-polyacrylamide gel electrophoresis suggested that the formation of high-molecular-weight aggregates of the membrane proteins is not involved in the increase of the fluorescence anisotropy of DPH-labeled membranes by treatment with MDA. On the basis of these results, changes in the physical properties of the intestinal brush-border membranes by treatment with MDA are discussed.  相似文献   

5.
Summary A stopped-flow nephelometric technique was used to examine osmotic water flow across small intestinal brush-border membranes. Brush-border membrane vesicles (BBMV) were prepared from rat small intestine by calcium precipitation. Scattered 500 nm light intensity at 90° to incident was a linear function of the number of vesicles in suspension, and of the reciprocal of the suspending medium osmolality. When BBMV were mixed with hyperosmotic mannitol solutions there was a rapid increase in the intensity of scattered light that could be fit to a single exponential function. The rate constant for vesicle shrinking varied with temperature and the size of the imposed osmotic gradient. At 25°C and an initial osmotic gradient of 50 mOsm, the rate constant was 1.43±0.044 sec–1. An Arrhenius plot of the temperature dependence of vesicle shrinking showed a break at about 25°C with an activation energy of 9.75±1.04 kcal/mole from 11 to 25°C and 17.2±0.55 kcal/mole from 25 to 37°C. The pore-forming antibiotic gramicidin increased the rate of osmotically driven water efflux and decreased the activation energy of the process to 4.51±0.25 kcal/mole. Gramicidin also increased the sodium permeability of these membranes as measured by the rate of vesicle reswelling in hyperosmotic NaSCN medium. Gramicidin had no effect on mannitol permeability. Assuming spherical vesicles of 0.1 m radius, an osmotic permeability coefficient of 1.2×10–3 cm/sec can be estimated for the native brush-border membranes at 25°C. These fesults are consistent with the solubility-diffusion model for water flow across small intestinal BBMV but are inconsistent with the existence there of large aqueous pores.  相似文献   

6.
Trivalent cations of the lanthanide series (La3+----Yb3+) stimulated uptake of proline or glucose in rabbit small intestinal brush-border membrane vesicles. The lanthanides stimulated uptake to an extent greater than Al3+, choline, and in many cases, Na+. A time-course of Er3+-stimulated glucose uptake gave initial rates and overshoots greater than Na+ stimulation. The best activators were Sm3+, Eu3+ and Tm3+, which stimulated proline initial uptakes by 400-600%, and stimulated glucose uptake by 120-150%, compared to Na+. The best lanthanide cotransport activators possessed high third ionization potentials.  相似文献   

7.
8.
Ethanol, at concentrations found in the intestinal lumen after moderate drinking, has been shown to inhibit carrier-mediated intestinal transport processes. This inhibition could occur by direct interaction with membrane transporters, dissipation of the energy producing Na+ electrochemical gradient and/or nonspecific alteration of membrane integrity. The latter alteration may be reflected by changes in membrane fluidity, chemical composition or vesicular size. These possibilities were examined with studies in purified brush border membrane vesicles of rat intestine. Ethanol inhibited concentrative Na+-dependent d-glucose uptake in a dose-dependent manner. In contrast, ethanol did not inhibit concentrative d-glucose uptake under conditions of d-glucose trans-stimulation in the absence of a Na+ electrochemical gradient. Ethanol also inhibited initial, concentrative Na+-dependent taurocholic acid uptake, as well as equilibrium uptake. That ethanol exerted a dual effect on transport by increasing membrane conductance for Na+ while decreasing intravesicular space was supported by direct studies of Na+ uptake. Morphometric analysis confirmed that ethanol-treated membranes had a decreased intravesicular size when compared to untreated membranes. Finally, membrane fluidity measured by EPR showed that ethanol had a significant fluidizing effect without producing qualitative changes in membrane proteins, as determined by SDS gel electrophoresis. These results suggest that ethanol inhibits carrier-mediated transport by dissipation of the Na+ electrochemical gradient and alteration of membrane integrity rather than by direct interaction with membrane transporters.  相似文献   

9.
10.
Purified brush borders, prepared fro newborn pig intestine, were incubated in the presence of 203Hg-labelled p-chloromercuribenzenesulphonic acid and the membrane proteins later separated by polyacrylamide-gel electrophoresis. The presence of either D-glucose or phlorrhizin, during a preliminary incubation in non-radioactive p-chloromercuribenzenesulphonic acid, increased the subsequent binding of the 203Hg-labelled compound to a protein of molecular weight 31500. This increase appeared to be specific for the low-molecular-weight protein, provided that the concentration of protecting agent used corresponded to that used to produce a biological response in the intact tissue. These results are discussed in relation to the known properties of other presumptive sugar carriers isolated from different membranes.  相似文献   

11.
The porcine reproductive and respiratory syndrome Virus (PRRSV) is an infectious disease that causes abortions and respiratory disorders in swine. In this study, the interaction between PRRSV and porcine dendritic cells generated from CD14(+) monocytes in the presence of GM-CSF and IL-4 was examined. As a result, it was shown that immature and mature dendritic cells can be productively infected with PRRSV. When the expression of surface MHC molecules on infected dendritic cells was determined, MHC classes I and II were found to be downregulated when compared with uninfected dendritic cells. With the exception of the IL-4 and IFN-gamma cytokines, the induction of the IL-10, IL-12, and TNF-alpha cytokines all increased in dendritic cells infected with PRRSV. A mixed lymphocyte reaction showed that peripheral blood mononuclear cells cocultured with PRRSVinfected dendritic cells were less stimulated than peripheral blood mononuclear cells cocultured with dendritic cells treated with PBS, LPS, or UV-inactivated PRRSV. Therefore, these results suggest that PRRSV would appear to modulate the immune stimulatory function of porcine dendritic cells.  相似文献   

12.
The transport characteristics of aminocephalosporin antibiotics, possessing an alpha-amino group and a carboxyl group, in brush-border membranes isolated from rabbit small intestine have been studied by a rapid filtration technique. The uptake of cephradine by brush-border membrane vesicles was stimulated by the countertransport effect of dipeptides, which indicates the existence of a common carrier transport system. An inward H+ gradient ([pH]i = 7.5 to 8.4, [pH]o = 6.0) stimulated cephradine uptake against a concentration gradient (overshoot phenomenon), and this stimulation was reduced when the H+ gradient was subjected to rapid dissipation by the presence of carbonyl cyanide p-trifluoromethoxyphenylhydrazone, a protonophore. A valinomycin-induced K+ diffusion potential (interior-negative) stimulated H+ gradient-dependent cephradine uptake without altering the equilibrium value. The uptake of other aminocephalosporins (cefadroxil, cefaclor, cephalexin) was also stimulated in the presence of an inward H+ gradient, while the uptake of cephalosporins without the alpha-amino group (cefazolin, cefotiam) was not changed in the presence or absence of the H+ gradient. These results suggest that the transport of aminocephalosporins can be driven actively by an inward H+ gradient via the dipeptide transport system in the intestinal brush-border membranes, and that the process results in the transfer of a positive charge.  相似文献   

13.
The interaction of the lanthanide Tb3+ with washed, human platelets was examined. When bound to the platelet surface, the fluorescence of this Ca2+ analog was increased approximately 200-fold, most likely by a F?rster mechanism involving platelet surface protein aromatic residues. The binding of Tb3+ to the unactivated platelet was specific and saturable with an apparent approximate Kd of 195 microM. Both Ca2+ and La3+ effectively displaced Tb3+ from platelet surface sites, but neither cation did so completely. Plasmin treatment of the platelet surface reduced Tb3+ fluorescence by 68% at saturation without significantly affecting the approximate apparent Kd. Activating washed, aspirinated platelets with ADP induced a 78% increase in Tb3+ fluorescence at saturation. Tb3+ competed effectively and completely for platelet surface-bound 45Ca2+ with an approximate IC50 of 10 microM. These data indicate the potential utility of this fluorescent lanthanide in characterizing Ca2+-binding sites on the human platelet.  相似文献   

14.
Magnesium uptake by intestinal brush-border membranes (BBM) was studied in duodenal and jejunal vesicles of the spontaneously hypertensive rat (SHR) and normotensive control, the Wistar-Kyoto (WKY) rat. In the duodenum, no statistical difference was evidenced between the two types of rats. By contrast, initial rates of magnesium uptake in jejunal vesicles were lower in SHR (5.4 +/- 2.1 nmol/mg protein x 10 sec) in comparison to WKY rats (11.0 +/- 2.5 nmol/mg protein x 10 sec) at a magnesium concentration of 1 mM (P less than 0.01). In jejunal BBM, kinetic analysis of magnesium uptake showed three components in WKY rats, with one being diffusional. In SHR, only two components were seen, with the diffusional one being absent. The two saturable components showed Vmax of 6.5 +/- 1.3 and 26.2 +/- 6.0 nmol/mg protein x 10 sec and apparent Km of 0.22 +/- 0.12 mM and 1.9 +/- 0.4 mM in WKY rats, and Vmax of 10.9 +/- 3.5 and 14.8 +/- 5.9 nmol/mg protein x 10 sec and apparent Km of 0.43 +/- 0.23 mM and 1.3 +/- 0.2 mM in SHR. Only the component with the lowest apparent affinity appeared statistically different in SHR as compared with WKY rats for both Vmax and apparent Km (P less than 0.05). Time course evolution of magnesium uptake in jejunal BBM indicated, by extrapolation at zero time, that 2.5 and 5.1 nmol magnesium/mg protein in SHR and WKY rats, respectively, would be in the bound state. The study of the influence of medium osmolarity on 60-min magnesium uptakes was also indicative of a smaller binding compartment in jejunal BBM of SHR (3.70 and 8.26 nmol/mg protein in SHR and WKY rats, respectively); at the four osmolarities assayed, the 60-min uptakes were significantly lower in SHR as compared with WKY rats (P less than 0.01). From 60-min glucose uptakes, a smaller volume of jejunal BBM vesicles was determined for SHR as compared with WKY rats (0.34 +/- 0.06 and 0.63 +/- 0.17 microliter/mg of protein in SHR and WKY rats respectively, P less than 0.05), this volume being significantly augmented by the presence of 1 mM MgCl2 (0.48 +/- 0.05 and 1.27 +/- 0.02 microliter/mg of protein in SHR and WKY rats respectively, P less than 0.01). These results suggest that magnesium uptake and binding by jejunal BBM are altered in SHR in comparison to WKY rats, implying a possible role of the small intestine in the abnormalities of magnesium metabolism in genetic hypertension.  相似文献   

15.
Mouse intestinal brush-border membrane vesicles take up iron from media containing 59Fe3 +-nitrilotriacetic acid. The iron uptake by the vesicles represents accumulation of iron which relates to an osmotically active space. Uptake is linearly related to vesicle protein concentration and is inhibited by low incubation temperature and low medium free Fe3+ concentrations. Experiments with the lipid soluble iron ligand 8-hydroxyquinoline and with Triton X-100 imply that the uptake is rate limited by membrane transport.  相似文献   

16.
Chicken cystatin, a homologue of human cystatin C, like other low-molecular-weight proteins is metabolized by renal proximal tubule cells. However, the precise mechanism(s) of this process has not been elucidated yet. To characterize chicken cystatin binding to renal brush-border membranes, the incubation of fluorescein labelled protein with rat cortical homogenate was performed. Saturation-dependent and reversible binding with low affinity (Kd = 3.67–4.07 μM) and high capacity (Bmax = 2.32–2.79 nmol/mg) was observed. Bovine albumin was the most potent competitor (Ki = 0.7 μM) among other megalin/cubilin ligands tested. The presence of Ca+ 2 ions was necessary to effective cystatin binding by brush-border membranes. Obtained data strongly support the hypothesis that chicken cystatin is a novel ligand for megalin/cubilin receptors tandem on proximal tubular cells.  相似文献   

17.
The Ca2+ transport process by isolated renal brush-border membranes was characterized and the influence of the acidic phospholipid phosphatidic acid (PtdA) on this transport process was assessed. Ca2+ uptake by brush-border membranes exhibited saturation kinetics. It was inhibitable by a variety of multivalent cations, as well as by Ca2+-entry inhibitors, including verapamil, Ruthenium Red and gentamicin. It was selective for Ca2+ compared with Mg2+. This process was also electrophoretic since generation of K+ and anion-diffusion potentials, negative inside the vesicle, increased Ca2+ uptake. Elevations in PtdA content of brush-border membranes by either exogenous addition or endogenous generation of PtdA by incubating brush-border membranes with MgATP2- elevated the rate of Ca2+ uptake. This ATP effect could not be attributed to (Ca2+ + Mg2+)-dependent ATPase or contaminating membrane fragments. PtdA also increased the magnitude and rate of Ca2+ efflux from brush-border membranes preloaded with Ca2+. These modulations in uptake and efflux were not observed with phosphatidylcholine or phosphatidylinositol. In summary, these results are consistent with the presence of an electrophoretic uniport system for Ca2+ in renal brush-border membranes, and demonstrate that PtdA uniquely among phospholipids tested appears to facilitate transmembrane flux of Ca2+ across this membrane preparation.  相似文献   

18.
An Na+, Pi-binding protein has been extracted from kidney and intestinal brush-border membranes with an organic solvent and has been purified by Kieselghur and Sephadex LH-60 chromatography. The molecular mass of this protein has been estimated to be about 155 kDa as determined by gel-filtration chromatography on Sepharose 2B. Under denaturing conditions, polyacrylamide-gel electrophoresis revealed a monomer of molecular mass about 70 kDa. The protein has high specificity and high affinity for Pi [K0.5 (concentration at which half-maximal binding is observed) near 10 microM]. Na2+ binding also exhibits saturation behaviour, with a K0.5 near 7.5 mM. Pi binding is inhibited by known inhibitors of Pi transport in brush-border membrane vesicles. It appears that this protein could be involved in Na+/Pi co-transport across the renal and intestinal brush-border membranes.  相似文献   

19.
HgCl2 was used as an inhibitor and potential label for the glucose carrier of intestinal brush-border membranes. Half-maximal inhibition of Na+-dependent D-glucose uptake was reached with micromolar concentrations of HgCl2 when the protein concentration was 1.2 mg/ml. Similar concentrations were found to inhibit the binding of [3H]phlorizin, a reversible competitive inhibitor of sugar transport. Inhibition was reversed by dithioerythritol but only marginally by EDTA. The data support the involvement of a sulfhydryl group in the inhibitory process. Deoxycholate-extracted membranes, which are enriched in specific phlorizin binding activity, were used for labeling studies using 203HgCl2. The polypeptides were separated by gel electrophoresis and analyzed by protein staining and autoradiography. Non-specific 203HgCl2 labeling was minimized by pre-treatment with sulfhydryl reagents which do not inhibit phlorizin binding. Several bands, which are lost from the autoradiographic pattern during a negative purification of the phlorizin binding sites, could be ruled out as essential components of the sugar carrier. The polypeptide profile was also analyzed following proteolysis, which abolished phlorizin binding. Those radioactive bands of which apparent Mr values were alterd by the treatment were considered as possible candidates. Finally, samples in which inhibition was reversed by thiols were also studied. The possible identity of the polypeptide(s) involved in glucose translocation is disussed in the light of these observations.  相似文献   

20.
A Miller  rd  S T Li    F Bronner 《The Biochemical journal》1982,208(3):773-781
The Ca2+-binding properties of isolated brush-border membranes at physiological ionic strength and pH were examined by rapid Millipore filtration. A comprehensive analysis of the binding data suggested the presence of two types of Ca2+-binding sites. The high-affinity sites, Ka = (6.3 +/- 3.3) X 10(5) M-1 (mean +/- S.E.M.), bound 0.8 +/- 0.1 nmol of Ca2+/mg of protein and the low-affinity sites, Ka = (2.8 +/- 0.3) X 10(2) M-1, bound 33 +/- 3.5 nmol of Ca2+/mg of protein. The high-affinity site exhibited a selectivity for Ca2+, since high concentrations of competing bivalent cations were required to inhibit Ca2+ binding. The relative effectiveness of the competing cations (1 and 10 mM) for the high-affinity site was Mn2+ approximately equal to Sr2+ greater than Ba2+ greater than Mg2+. Data from the pH studies, treatment of the membranes with carbodi-imide and extraction of phospholipids with aqueous acetone and NH3 provided evidence that the low-affinity sites were primarily phospholipids and the high-affinity sites were either phosphoprotein or protein with associated phospholipid. Two possible roles for the high-affinity binding sites are suggested. Either high-affinity Ca2+ binding is involved with specific enzyme activities or Ca2+ transport across the luminal membrane occurs via a Ca2+ channel which contains a high-affinity Ca2+-specific binding site that may regulate the intracellular Ca2+ concentration and gating of the channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号