首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary One of the most important sets of model prebiotic experiments consists of reactions that synthesize complementary oligonucleotides from preformed templates under nonenzymatic conditions. Most of these experiments are conducted at 4°C using 0.01–0.1 M concentrations of activated nucleotide monomer and template (monomer equivalent). In an attempt to extend the conditions under which this type of reaction can occur, we have concentrated the reactants by freezing at –18°C, which is close to the NaCl–H2O eutectic at –21°C.The results from this set of experiments suggest that successful syntheses can occur with poly(C) concentrations as low at 5×10–4 M and 2MeImpG concentrations at 10–3 M. It was also anticipated that this mechanism might allow the previously unsuccessful poly(A)-directed synthesis of oligo(U)s to occur. However, no template effect was seen with the poly(A) and ImpU system. The failure of these conditions to allow template-directed synthesis of oligo(U)s supports the previously proposed idea that pyrimidines may not have been part of the earliest genetic material.Because of the low concentrations of monomer and template that would be expected from prebiotic syntheses, this lower temperature could be considered a more plausible geologic setting for template-directed synthesis than the standard reaction conditions.  相似文献   

2.
Cyanoacetylene is an earlier intermediate in a proposedprebiotic synthesis of cytosine, while cyanoacetaldehyde is alater intermediate. There is no scientific basis for the claimthat cyanoacetaldehyde is more plausibly prebiotic thancyanoacetylene in this context.  相似文献   

3.
The reaction of guanidine hydrochloride with cyanoacetaldehyde gives high yields (40–85%) of 2,4-diaminopyrimidine under the concentrated conditions of a drying lagoon model of prebiotic synthesis, in contrast to the low yields previously obtained under more dilute conditions. The prebiotic source of cyanoacetaldehyde, cyanoacetylene, is produced from electric discharges under reducing conditions. The effect of pH and concentration of guanidine hydrochloride on the rate of synthesis and yield of diaminopyrimidine were investigated, as well as the hydrolysis of diaminopyrimidine to cytosine, isocytosine, and uracil. Thiourea also reacts with cyanoacetaldehyde to give 2-thiocytosine, but the pyrimidine yields are much lower than with guanidine hydrochloride or urea. Thiocytosine hydrolyzes to thiouracil and cytosine and then to uracil. This synthesis would have been a significant prebiotic source of 2-thiopyrimidines and 5-substituted derivatives of thiouracil, many of which occur in tRNA. The applicability of these results to the drying lagoon model of prebiotic synthesis was tested by dry-down experiments where dilute solutions of cyanoacetaldehyde, guanidine hydrochloride, and 0.5m NaCl were evaporated over varying periods of time. The yields of diaminopyrimidine varied from 1 to 7%. These results show that drying lagoons and beaches may have been major sites of prebiotic syntheses.  相似文献   

4.
The synthesis of prebiotic molecules is a major problem in chemical evolution as well as in any origin-of-life theory. We report here a plausible new prebiotic synthesis of naturally occurring purine and pyrimidine derivatives from formamide under catalytic conditions. In the presence of CaCO(3) and different inorganic oxides, namely silica, alumine, kaolin, and zeolite (Y type), neat formamide undergoes the formation of purine, adenine, cytosine, and 4(3H)-pyrimidinone, from acceptable to good yields. The role of catalysts showed to be not limited to the improvement of the yield but it is also relevant in providing a high selectivity in the products distribution.  相似文献   

5.
The use of curdlan, a natural -1,3-glucan, in protein drug delivery vehicles was studied by carrying out in vitro release studies with curdlan gels containing bovine serum albumin (BSA) as a model protein. Addition of urea (8 M) decreased the gel formation temperature to 37°C. Curdlan was hydroxyethylated in order to form gels under mild conditions such as physiological temperature and pH. In gels formed in 8 M urea solution, urea was almost released after 2 h while BSA was completely released after 45–100 h. The total time for complete release of BSA increased with curdlan concentration within gels. The strength of hydroxyethylated curdlan gels (385.7 dyne cm–2) was weaker than that of curdlan gels formed in 8 M urea solution (6277 dyne cm–2).  相似文献   

6.
A study of the encapsulation of poly(U) and poly(C) within liposomes made from dipalmitoylphosphatidyl choline (DPPC), from egg yold phosphatidyl choline (PC), and from PC with cholesterol (CHOL) was made. The liposomes were prepared under anoxic conditions following the reverse-phase evaporation method. Determinations showed that 36 to 70% of the available lipids form liposomes and 2 to 5% of the polyribonucleotides can be entrapped by liposomes. The encapsulation of polyribonucleotides has also been measured in the presence of urea, cyanamide and Zn++, condensing agents in prebiotic polymerization reactions. DPPC and PC:CHOL liposomes were formed in the presence of 1.0 M urea, although no PC liposomes were formed. The three types of liposomes were readily formed at 0.01 M urea, but in no case an enhancement of encapsulation efficiency of poly(U) was observed due to the presence of urea. Similar results were obtained with cyanamide. An enhanced encapsulation of poly(U) by the three types of liposomes was observed when Zn++ was in the range of 0.001 to 0.01 M. Poly(U) encapsulation was 15 to 25 times higher when liposomes were prepared from DPPC at 0.01 M Zn++. Similar results were obtained with poly(C). The advantages of DPPC-polyribonucleotide liposomes as precellular systems are discussed.  相似文献   

7.
We have studied the naturally split α subunit of the DNA polymerase III (DnaE) intein from Nostoc punctiforme PCC73102 (Npu) using purified proteins and determined an apparent first-order rate constant of (1.1±0.2)×10-2 s−1 at 37 °C. This represents the highest rate reported for the protein trans-splicing reaction so far (t1/2 of 60 s). Furthermore, the reaction was very robust and high-yielding with respect to different extein sequences, temperatures from 6 to 37 °C, and the presence of up to 6 M urea. Given these outstanding properties, the Npu DnaE intein appears to be the intein of choice for many applications in protein and cellular chemistry.  相似文献   

8.
The prokaryotic DNA(cytosine-5)methyltransferase M.SssI shares the specificity of eukaryotic DNA methyltransferases (CG) and is an important model and experimental tool in the study of eukaryotic DNA methylation. Previously, M.SssI was shown to be able to catalyze deamination of the target cytosine to uracil if the methyl donor S-adenosyl-methionine (SAM) was missing from the reaction. To test whether this side-activity of the enzyme can be used to distinguish between unmethylated and C5-methylated cytosines in CG dinucleotides, we re-investigated, using a sensitive genetic reversion assay, the cytosine deaminase activity of M.SssI. Confirming previous results we showed that M.SssI can deaminate cytosine to uracil in a slow reaction in the absence of SAM and that the rate of this reaction can be increased by the SAM analogue 5’-amino-5’-deoxyadenosine. We could not detect M.SssI-catalyzed deamination of C5-methylcytosine (m5C). We found conditions where the rate of M.SssI mediated C-to-U deamination was at least 100-fold higher than the rate of m5C-to-T conversion. Although this difference in reactivities suggests that the enzyme could be used to identify C5-methylated cytosines in the epigenetically important CG dinucleotides, the rate of M.SssI mediated cytosine deamination is too low to become an enzymatic alternative to the bisulfite reaction. Amino acid replacements in the presumed SAM binding pocket of M.SssI (F17S and G19D) resulted in greatly reduced methyltransferase activity. The G19D variant showed cytosine deaminase activity in E. coli, at physiological SAM concentrations. Interestingly, the C-to-U deaminase activity was also detectable in an E. coli ung + host proficient in uracil excision repair.  相似文献   

9.
Summary Previous attempts to produce nonenzymatic template-directed oligomerizations of activated pyrimidines on polypurine templates have been unsuccessful. The only efficient reactions are those where the template is composed primarily of pyrimidines, especially cytosine. Because molecular evolution requires that a synthesized daughter polynucleotide be capable of acting as a template for the synthesis of the original polynucleotide, the one-way replication achieved thus far is inadequate to initiate an evolving system.Several uracil analogs were used in this investigation in order to search for possible replacements for uracil. The monomers used in this investigation were the imidazolides of UMP, xanthosine 5-monophosphate, the bis-monophosphates of the acyclic nucleosides of uracil, and 2,4-quinazolinedione. The concentrations of various salts, buffers, pH, and temperature were among the different variables investigated in attempts to find conditions that would permit template-directed oligomerizations. Although the different monomers in this study demonstrated varying abilities to form very short oligomers, we were unable to detect any enhancement of this oligomerization that could be attributed to the poly(A) template.Although special conditions might be found that would allow purine-rich templates to work, these reactions cannot be considered robust. The results of our experiments suggest that pyrimidines were not part of the original replicating system on the primitive Earth. It has already been shown that ribose is an unlikely component of the first replicating systems, and we now suggest that phosphate was absent as well. This is due to the low solubility of phosphate in the present ocean (3×10–6 M), as well as the difficulty of prebiotic activation of phosphates.  相似文献   

10.
Oxygen consumption in Tardigrada from Spitsbergen   总被引:1,自引:0,他引:1  
Summary Oxygen consumption was measured in seven species of Tardigrada (Doryphoribius smreczynskii, Diphascon spitzbergensis, Macrobiotus islandicus, M. echinogenitus, M. harmswothi, M. spectabilis and M. dispar) from the Spitzbergen tundar. The metabolic rate was measured at 2°, 6° and 10°C. At 6°C it ranged from 0.055 (D. smreczynskii) to 0.101 mm3·10-3/g·10-6h (M. harmswothi). In D. smreczynskii the phenomenon of relative thermal independence was observed at a temperature range of 2°–6°C. The dependence of oxygen consumption (R in mm3·10-3·individ-1·h-1) on body weight (W in g·10-6) for the latter species at 2°C was R=0.088·W0.82.  相似文献   

11.
Summary The reaction of NH3 and SO sup2– inf3 with ethylene sulfide is shown to be a prebiotic synthesis of cysteamine and 2-mercaptoethanesulfonic acid (coenzyme M). A similar reaction with ethylene imine would give cysteamine and taurine. Ethylene oxide would react with NH3 and N(CH3)3 to give the phospholipid components ethanolamine and choline. The prebiotic sources of ethylene sulfide, ethylene imine and ethylene oxide are discussed. Cysteamine itself is not a suitable thioester for metabolic processes because of acyl transfer to the amino group, but this can be prevented by using an amide of cysteamine. The use of cysteamine in coenzyme A may have been due to its prebiotic abundance. The facile prebiotic synthesis of both cysteamine and coenzyme M suggests that they were involved in very early metabolic pathways. Offprint requests to: S.L. Miller  相似文献   

12.
Two strains of Methanosarcina (M. Barkeri strain MS, isolated from sewage sludge, and strain UBS, isolated from lake sediments) were found to have similar cellular properties and to have DNA base compositions of 44 mol percent guanosine plus cytosine. Strain MS was selected for further studies of its one-carbon metabolism. M. barkeri grew autotrophically via H2 oxidation/CO2 reduction. The optimum temperature for growth and methanogenesis was 37°C. H2 oxidation proceeded via an F420-dependent NADP+-linked hydrogenase. A maximum specific activity of hydrogenase in cell-free extracts, using methyl viologen as electron acceptor, was 6.0 mol min · mg protein at 37°C and the optimum pH (9.0). M. barkeri also fermented methanol andmethylamine as sole energy sources for growth. Cell yields during growth on H2/CO2 and on methanol were 6.4 and 7.2 mg cell dry weight per mmol CH4 formed, respectively. During mixotrophic growth on H2/CO2 plus methanol, most methane was derived from methanol rather than from CO2. Similar activities of hydrogenase were observed in cell-free extracts from H2/CO2-grown and methanol-grown cells. Methanol oxidation apparently proceeded via carrierbound intermediates, as no methylotrophy-type of methanol dehydrogenase activity was observed in cell-free extracts. During growth on methanol/CO2, up to 48% of the cell carbon was derived from methanol indicating that equivalent amounts of cell carbon were derived from CO2 and from an organic intermediate more reduced than CO2. Cell-free extracts lacked activity for key cell carbon synthesis enzymes of the Calvin cycle, serine path, or hexulose path.Abbreviations CAPS cycloaminopropane sulfonic acid - CH3-SCoM methyl coenzyme M - DCPIP 2,6-dichlorophenolindophenol - DEAE diethylaminoethyl - dimethyl POPOP 1,4-bis-2-(4-mothyl-5-phenyloxazolyl)-benzene - DNA deoxyribonucleic acid - dpm dismtegrations per min - DTT dithiothreitol - EDTA ethylenediamine tetraacetic acid - F420 factor 420 - G+C guanosine plus cytosine - NAD+ nicotinamide adenine dinucleotide - NADP+ nicotinamide adenine dinucleotide phosphate - PBBW phosphate buffered basal Weimer - PMS phenazine methosulfate - PPO 2,5-diphenyloxazole - rRNA ribosomal ribonucleic acid - RuBP ribulose-1,5-bisphosphate - Tris tris-hydroxymethyl-aminomethane - max maximum specific growth rate  相似文献   

13.
This work deals with the development of a new bioprocess for the efficient synthesis of lactosucrose, a potential prebiotic oligosaccharide with a high value-added, from two important and inexpensive agro-industrial by-products such as tofu whey and cheese whey permeate. The bioconversion is driven by the ability of the enzyme levansucrase SacB from Bacillus subtilis CECT 39 to transfructosylate lactose contained in the cheese whey permeate by using not only sucrose but also raffinose and stachyose, which are present in considerable amounts in the tofu whey, as suitable donors of fructosyl moieties. The maximum lactosucrose concentration obtained from both by-products was 80.1 g L-1 after a short reaction time 120 min at 37°C, leading to productivity and specific productivity values of 40.1 g lactosucrose L-1 h-1 and 80.1 mg lactosucrose U enzyme−1 h−1, respectively. Findings contained in this work could provide a new strategy to valorize agro-industrial by-products as cheese whey permeate and, specially, tofu whey by means of their use as renewable resources in the enzymatic synthesis of bioactive oligosaccharides.  相似文献   

14.
We have reported that (1) the synthesis of GSA, a uremic toxin, increases depending on the urea concentration and (2) GSA is formed from argininosuccinic acid (ASA) and the hydroxyl radical or SIN-1 which generates superoxide and NO simultaneously. However, an excess of NO, which also serves as a scavenger of the hydroxyl radical, inhibited GSA synthesis. We also reported that arginine, citrulline or ammonia plus ornithine, all of which increase arginine, inhibit GSA synthesis even in the presence of urea. To elucidate the mechanism for increased GSA synthesis by urea, we investigated the effect of urea on ASA and arginine, the immediate precursor of NO.Isolated rat hepatocytes were incubated in 6 ml of Krebs-Henseleit bicarbonate buffer containing 3% bovine serum albumin, 10 mM sodium lactate, 10 mM ammonium chloride and with or without 36 mM of urea and 0.5 or 5 mM ornithine at 37°C for 20 min. In vivo experiments, 4 ml/100 g body weight of 1.7 M urea or 1.7 M NaCl were injected intra-peritoneally into 5 male Wistar rats. Two hours after the intra-peritoneal injection of urea or 1.7 M NaCl, blood, liver and kidney were obtained by the freeze cramp method and amino acids were determined by an amino acid analyzer (JEOL:JCL-300).ASA in isolated hepatocytes was not detected with or without 36 mM (200 mgN/dl) urea, but the arginine level decreased from 36 to 33 nmol/g wet cells with urea. Ornithine which inhibits GSA synthesis, increased ASA markedly in a dose dependent manner and increased arginine. At 2 h after the urea injection the rat serum arginine level decreased by 42% (n = 5), and ornithine and citrulline levels increased significantly. Urea injection increased the ASA level in liver from 36–51 nmol/g liver but this was not statistically significant.We propose that urea inhibits arginine synthesis in hepatocytes, where the arginine level is extremely low to begin with, which decreases NO production which, in turn, increases hydroxyl radical generation from superoxide and NO. This may, also, be an explanation for the reported increase in oxygen stress in renal failure.  相似文献   

15.
A quantitative study was made of macromolecular (nucleic acids, protein), carbohydrate and mineral (magnesium, potassium and phosphorus) components of Aspergillus nidulans in glucose limited chemostat cultures, under varying conditions of dilution rate, temperature, pH and NaCl concentration.The overall mineral content showed greatest variation in response to changes in culture salinity, which also affected the mycelial carbohydrate content. Concomitant and opposite changes in the conent of cations and carbohydrates under conditions of increasing salinity may be interpreted in terms of mycelial osmoregulation. Slight variations in DNA content but gross fluctuations in the level of RNA were noted under the different cultural conditions examined. Co-ordinate changes in RNA and Mg2+ contents were evident only under certain conditions: dilution rate from 0.05–0.07 h-1 or temperature from 22–30° C. The constant molar stoichiometry between RNA and Mg2+ characteristic of unicellular microorganisms was not a feature of fungal growth. The protein content was most affected by shifts of temperature and reached minimal values at 25 and 50° C.The growth environment had a marked influence on the protein synthesising activity of RNA, which increased eightfold as the dilution rate was increased from 0.02–0.175 h-1, doubled within the temperature range 20–30° C and fell by 50% between 40 and 50° C. These observations are discussed in the context of the constant ribosomal efficiency in protein synthesis hypothesis.  相似文献   

16.
Fast pyrolysis of bagasse pretreated by sulfuric acid was conducted in a fixed bed reactor to prepare levoglucosenone (LGO), a very important anhydrosugar for organic synthesis. The liquid yield and LGO yield were studied at temperatures from 240 to 350 °C and sulfuric acid loadings from 0.92 to 7.10 wt.%. An optimal LGO yield of 7.58 wt.% was obtained at 270 °C with a sulfuric acid pretreatment concentration of 0.05 M (corresponding to 4.28 wt.% sulfuric acid loading). For comparison, microcrystalline cellulose pretreated by 0.05 M sulfuric acid solution was pyrolyzed at temperature from 270 °C to 320 °C, and bagasse loaded with 3-5 wt.% phosphoric acid was pyrolyzed at temperature from 270 °C to 350 °C. The highest yield of LGO from bagasse was 30% higher than that from microcrystalline cellulose, and treatment with sulfuric acid allowed a 21% higher yield than treatment with phosphoric acid.  相似文献   

17.
Summary The effect of arabinosyl cytosine (ara-C) was studied on the uptake, phosphorylation and incorporation of 3H-thymidine in human tonsillar lymphocyte cultures is described along with its effect on the level of DNA polymerase and thymidine kinase activities induced by phytohaemagglutinin (PHA). Freshly isolated tonsillar lymphocytes are stimulated cells with a remarkably high activity of DNA polymerase a and thymidine kinase. During in vitro culture, these stimulated cells are transformed to the resting state with low DNA polymerase and thymidine kinase activity. However, a new DNA synthesising cycle can be induced by PHA with maximum at 48 h.10–6 M ara-C inhibited the incorporation of 3H-thymidine by 90–95%. This inhibition may be reversed by rinsing the cells. The inhibition of the transport of 3H-thymidine seems to be only a consequence of the inhibitory effect of ara-C on the DNA polymerisation reaction, because at 10 °C, where DNA synthesis was arrested, ara-C does not influence the uptake and the phosphorylation of 3H-thymidine.Ara-C (10–6 M) abolished also the PHA induced elevation of DNA polymerase a and thymidine kinase activities without influencing protein synthesis of the cell. This supports a coordinated regulation mechanism between DNA synthesis and the synthesis of enzymes involved in DNA replication.  相似文献   

18.
The claim by Nelson et al. (2001) that the reactionof cyanoacetaldehyde and urea provides `an efficient prebioticsynthesis' of cytosine is disputed. The authors have not dealt withthe important points presented in a criticism of this reaction(Shapiro, 1999): (1) The reactants undergo side reactions with commonnucleophiles that appear to proceed more rapidly than cytosineformation, and (2) No reactions have been described thus far thatwould produce cytosine at a rate sufficient to compensate for itsdecomposition by deamination, and permit accumulation over extendedperiods of time. Instead, Nelson et al. have conducted `drying-down' experiments, inan effort to simulate evaporations on the early Earth, but thedesign of these experiments is flawed. The initial reactantconcentrations are much higher than might be expected in a naturalsetting, and potentially interfering substances such as glycine,cyanide and thiols have been excluded. `Drying beaches and dryinglagoons' have been invoked as sites for such a reaction but noeffort has been made to describe the characteristics of such sitesor to estimate their frequency with reference to the present Earth.In the absence of contradictory data, the conclusion put forward inShapiro (1999) remains valid: `It was quite unlikely that cytosineplayed a role in the origin of life'.  相似文献   

19.
M Halmann  S Bloch 《Bio Systems》1979,11(4):227-232
Irradiation of dilute aqueous formaldehyde (5 × 10?2–10?3M) in the absence of oxygen by ultaviolet light from high- or low-pressure mercury lamps resulted in the formation of glyoxal and of malonaldehyde. The concentration of malonaldehyde reached a maximum after several hours and then declined. This maximal malonaldehyde concentration was proportional to the initial formaldehyde concentration. At initially 0.05 M formaldehyde (pH 9.4 and 36°C) malonaldehyde reached maximally 3.4 × 10?5 M. In the range of pH 8.0–11.6, the maximal malonaldehyde concentration was reached at pH 9.4. Quantum yields of glyoxal and malonaldehyde after irradiation of 0.01 M formaldehyde (in 0.01 M NaHCO3, 27°C, at 254 nm, under argon, for 195 min) were 7 × 10?3 and 1.5 × 10?3, respectively. In the presence of acetone (0.01 M), the chemical and quantum yields of glyoxal were enhanced, while those of malonaldehyde decreased. The known reaction of malonaldehyde with urea to form pyrimidines may be a model of a prebiotic synthesis of pyrimidines.  相似文献   

20.
Anthocyanin synthesis in the broom sorghum, Sorghum bicolor Moench cvs. Acme Broomcorn and Sekishokuzairai-Fukuyama, is mediated separately or synergistically by an ultraviolet light-B (UV-B) photoreceptor and phytochrome. When seedlings were exposed to moderate low temperatures ranging from 12 to 20° C before irradiation, only the phytochrome-mediated anthocyanin synthesis was markedly enhanced compared with the control, which was kept throughout at 24° C; synthesis mediated by the UV-B photoreceptor was unaffected. The effectiveness of an exposure to 20° C increased as the duration of exposure increased up to 24 h and as the time of exposure became closer to the time of irradiation. However, when seedlings were exposed to 20° C from after irradiation until harvest, anthocyanin syntheses induced by both UV-B and red light were equally suppressed, probably due to the general reduction of metabolism involved in anthocyanin synthesis that is a consequence of lower temperature. The results support the view that the signal transduction of the pyhtochrome system is different from that of the UV-B photoreceptor, and indicate that the phytochrome system may involve a step or steps which are amplified by a previous exposure to the moderate low temperature.Abbreviations FR far-red light - LT low temperature - MLT moderate low temperature - Pfr far-red-light-absorbing form of phytochrome - R red light - UV ultraviolet light - UV-B ultraviolet light-B We thank Drs. Y. Takeuchi (Shionogi Pharmaceutical Company, Aburahi, Shiga) and K. Hosaka (the Experimental Farm, Kobe University, Kasai) for seeds; Dr. M. Watanabe and Mr. M. Kubota (the National Institute for Basic Biology, Okazaki) for operation of the spectrograph. This work was supported by grants from the Yamada Science Foundation, Ministry of Education (No. 63480015 and 03454048), and the National Institute for Basic Biology (Large Spectrograph grant No. 91-523).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号