首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hypergravity produced by centrifugation caused inhibition of elongation growth and a decrease in the cell wall extensibility in azuki bean epicotyls ( Vigna angularis Ohwi et Ohashi). Also, hypergravity increased the molecular mass of xyloglucans, whereas it decreased xyloglucan-degrading activity in epicotyls. When the expression profiles of three xyloglucan endotransglucosylase/hydrolase ( XTH ) genes, VaXTHS4 , VaXTH1 and VaXTH2 , were analyzed under hypergravity conditions, the expression of VaXTHS4 , which shows only hydrolase activity, was downregulated in proportion to the logarithm of the magnitude of gravity (R = −0.94). However, the gene expression of VaXTH1 or VaXTH2 , which shows only transglucosylase activity, was not affected by gravitational conditions. When the seedlings that had been grown at 1  g were transferred to hypergravity conditions at 300  g , the downregulation of VaXTHS4 expression was detected within 1 h. By removal of hypergravity stimulus, VaXTHS4 expression was increased within 1 h. These results suggest that azuki bean epicotyls promptly regulate the expression level of only VaXTHS4 in response to gravity stimuli. The regulation of xyloglucan-hydrolyzing activity as a result of changes in VaXTHS4 expression may be involved in the regulation by gravity of molecular mass of xyloglucans, leading to modifications of cell wall mechanical properties and cell elongation. Lanthanum and gadolinium, potential blockers of mechanosensitive calcium ion permeable channels (mechanoreceptors), nullified the suppression of VaXTHS4 expression, suggesting that mechanoreceptors are responsible for inhibition by hypergravity of VaXTHS4 expression.  相似文献   

2.
Hypergravity stimulus suppresses plant shoot growth by making the cell wall rigid. Xyloglucan endotransglucosylase/hydrolase (XTH) is involved in determining the rigidity of cell walls. We demonstrated that hypergravity influenced the expression of some XTH genes in shoots of Arabidopsis thaliana L.; in response to hypergravity stimulus of 300 g, the expression of AtXTH22 was up-regulated, while that of AtXTH15 was down-regulated. The effect of hypergravity on the expression of these genes was nullified by lanthanum chloride at 0.1 mM, suggesting that the expression of these XTH genes in Arabidopsis is under the control of the mechanoreceptor.  相似文献   

3.
Addition of xyloglucan-derived oligosaccharides shifted the wall-bound xyloglucans to a lower molecular mass distribution and increased the cell wall extensibility of the native epidermal tissue strips isolated from azuki bean (Vigna angularis) epicotyls. To ascertain the mechanism of oligosaccharide function, we examined the action of a xyloglucan endotransglucosylase/hydrolase (XTH) showing both endotransglucosylase and endohydrolase activities, isolated from azuki bean epicotyl cell walls, in the presence of xyloglucan oligosaccharides. The addition of xyloglucan oligosaccharides enhanced the xyloglucan-degrading activity of XTH against isolated xyloglucan substrates. When the methanol-fixed epidermal tissue strips were incubated with XTH, the molecular mass of wall-bound xyloglucans was decreased and the cell wall extensibility increased markedly in the presence of the oligosaccharides. These results suggest that xyloglucan oligosaccharides stimulate the degradation of xyloglucans by enhancing the XTH activity within the cell wall architecture, thereby increasing the cell wall extensibility in azuki bean epicotyls.  相似文献   

4.
Xyloglucan endo-transglycosylases (XETs) encoded by xyloglucan endo-transglycosylases/hydrolase (XTH) genes modify the xyloglucan-cellulose framework of plant cell walls, thereby regulating their expansion and strength. To evaluate the importance of XET in wood development, we studied xyloglucan dynamics and XTH gene expression in developing wood and modified XET activity in hybrid aspen (Populus tremula × tremuloides) by overexpressing PtxtXET16-34. We show that developmental modifications during xylem differentiation include changes from loosely to tightly bound forms of xyloglucan and increases in the abundance of fucosylated xyloglucan epitope recognized by the CCRC-M1 antibody. We found that at least 16 Populus XTH genes, all likely encoding XETs, are expressed in developing wood. Five genes were highly and ubiquitously expressed, whereas PtxtXET16-34 was expressed more weakly but specifically in developing wood. Transgenic up-regulation of XET activity induced changes in cell wall xyloglucan, but its effects were dependent on developmental stage. For instance, XET overexpression increased abundance of the CCRC-M1 epitope in cambial cells and xylem cells in early stages of differentiation but not in mature xylem. Correspondingly, an increase in tightly bound xyloglucan content was observed in primary-walled xylem but a decrease was seen in secondary-walled xylem. Thus, in young xylem cells, XET activity limits xyloglucan incorporation into the tightly bound wall network but removes it from cell walls in older cells. XET overexpression promoted vessel element growth but not fiber expansion. We suggest that the amount of nascent xyloglucan relative to XET is an important determinant of whether XET strengthens or loosens the cell wall.  相似文献   

5.
Elongation growth of dark-grown azuki bean (Vigna angularis Ohwi et Ohashi cv. Takara) epicotyls was suppressed by hypergravity at 30 x g and above. Acceleration at 300 x g significantly decreased the mechanical extensibility of cell walls. The amounts of cell wall polysaccharides (pectin, hemicellulose-II and cellulose) per unit length of epicotyls increased under the hypergravity condition. Hypergravity also increased the amounts and the weight-average molecular mass of xyloglucans in the hemicellulose-II fraction, while decreasing the activity of xyloglucan-degrading enzymes extracted from epicotyl cell walls. These results suggest that hypergravity increases the amounts and the molecular mass of xyloglucans by decreasing xyloglucan-degrading activity. Modification of xyloglucan metabolism as well as the thickening of cell walls under hypergravity conditions seems to be involved in making the cell wall mechanically rigid, thereby inhibiting elongation growth of azuki bean epicotyls.  相似文献   

6.
7.
Xyloglucan endotransglucosylase activity loosens a plant cell wall   总被引:6,自引:0,他引:6  
BACKGROUND AND AIMS: Plant cells undergo cell expansion when a temporary imbalance between the hydraulic pressure of the vacuole and the extensibility of the cell wall makes the cell volume increase dramatically. The primary cell walls of most seed plants consist of cellulose microfibrils tethered mainly by xyloglucans and embedded in a highly hydrated pectin matrix. During cell expansion the wall stress is decreased by the highly controlled rearrangement of the load-bearing tethers in the wall so that the microfibrils can move relative to each other. Here the effect was studied of a purified recombinant xyloglucan endotransglucosylase/hydrolase (XTH) on the extension of isolated cell walls. METHODS: The epidermis of growing onion (Allium cepa) bulb scales is a one-cell-thick model tissue that is structurally and mechanically highly anisotropic. In constant load experiments, the effect of purified recombinant XTH proteins of Selaginella kraussiana on the extension of isolated onion epidermis was recorded. KEY RESULTS: Fluorescent xyloglucan endotransglucosylase (XET) assays demonstrate that exogeneous XTH can act on isolated onion epidermis cell walls. Furthermore, cell wall extension was significantly increased upon addition of XTH to the isolated epidermis, but only transverse to the net orientation of cellulose microfibrils. CONCLUSIONS: The results provide evidence that XTHs can act as cell wall-loosening enzymes.  相似文献   

8.
9.
Elongation growth of dark grown maize (Zea mays L cv. Cross Bantam T51) coleoptiles and mesocotyls was suppressed by hypergravity at 30 g and above. Acceleration at 300 g significantly decreased the mechanical extensibility of cell walls of both organs. Hypergravity increased the amounts of hemicellulose and cellulose per unit length in mesocotyl walls, but not in coleoptile walls. The weight average molecular masses of hemicellulosic polysaccharides were also increased by hypergravity in both organs. On the other hand, the activities of beta-glucanases extracted from coleoptile and mesocotyl cell walls were decreased by hypergravity. These results suggest that the decreased activities of beta-glucanases by hypergravity cause an increase in the molecular mass of hemicellulosic polysaccharides of both organs. The upshift of molecular mass of hemicellulosic polysaccharides as well as the thickening of cell walls under hypergravity conditions seems to be involved in making the cell wall mechanically rigid, thereby inhibiting elongation growth of maize coleoptiles and mesocotyls.  相似文献   

10.
Gravity resistance is a response that enables plants to develop against the gravitational force. Hypergravity conditions produced by centrifugation have been used to analyze the mechanisms of gravity resistance responses. Under hypergravity conditions, plants construct short and thick shoots and increase cell wall rigidity for resisting the gravitational force. Hypergravity caused a decrease in the percentage of cells with transverse microtubules, and an increase in that with longitudinal microtubules. Such a prompt reorientation of cortical microtubules is involved in the changes in morphology of shoots by gravity. Hypergravity increased cell wall rigidity by increasing the molecular mass of xyloglucans via suppression of xyloglucan breakdown as well as by the thickening of cell walls. Blocker reagents of mechanoreceptors nullified the above-mentioned changes induced by hypergravity. Gravity resistance responses were brought about normally in mutants deprived of gravitropism. This result indicates that the graviperception mechanism in gravity resistance is independent of that in gravitropism. Gravity resistance responses were brought about independently of the direction of gravistimuli, but the responses disappeared in the presence of blockers of mechanoreceptors. Thus, in gravity responses, plants may perceive the gravitational force independently of the direction of stimuli by mechanoreceptors on the plasma membrane, and may utilize the signal to construct a tough body.  相似文献   

11.
Zea mays L. cv. Cross Bantam T51) coleoptiles and mesocotyls was suppressed by hypergravity at 30 g and above. Acceleration at 300 g significantly decreased the mechanical extensibility of cell walls of both organs. Hypergravity increased the amounts of hemicellulose and cellulose per unit length in mesocotyl walls, but not in coleoptile walls. The weight-average molecular masses of hemicellulosic polysaccharides were also increased by hypergravity in both organs. On the other hand, the activities of β-glucanases extracted from coleoptile and mesocotyl cell walls were decreased by hypergravity. These results suggest that the decreased activities of β-glucanases by hypergravity cause an increase in the molecular mass of hemicellulosic polysaccharides of both organs. The upshift of molecular mass of hemicellulosic polysaccharides as well as the thickening of cell walls under hypergravity conditions seems to be involved in making the cell wall mechanically rigid, thereby inhibiting elongation growth of maize coleoptiles and mesocotyls. Received 22 February 1999/ Accepted in revised form 20 April 1999  相似文献   

12.
Liu YB  Lu SM  Zhang JF  Liu S  Lu YT 《Planta》2007,226(6):1547-1560
Xyloglucan endotransglucosylase/hydrolases (XTHs) are a class of enzymes that mediate the construction and restructure of the cellulose/xyloglucan framework by splitting and reconnecting xyloglucan molecule cross-linking among cellulose microfibrils. Remodification of cellulose microfibrils within cell-wall matrices is realized to be one of the most critical steps in the regulation of cells expansion in plants. Thirty-three XTH genes have been found in Arabidopsis thaliana but their roles remain unclear. AtXTH21 (At2g18800), an Arabidopsis XTH gene that mainly expresses in root and flower, exhibits different expression profiles from other XTH members under hormone treatment. We examined loss-of-function mutants using T-DNA insertion lines and overexpression lines and found that the AtXTH21 gene played a principal role in the growth of the primary roots by altering the deposition of cellulose and the elongation of cell wall.  相似文献   

13.
A cellulose/xyloglucan framework is considered to form the basis for the mechanical properties of primary plant cell walls and hence to have a major influence on the biomechanical properties of growing, fleshy plant tissues. In this study, structural variants of xyloglucan have been investigated as components of composites with bacterial cellulose as a simplified model for the cellulose/xyloglucan framework of primary plant cell walls. Evidence for molecular binding to cellulose with perturbation of cellulose crystallinity was found for all xyloglucan types. High molecular mass samples gave homogeneous centimeter-scale composites with extensive cross-linking of cellulose with xyloglucan. Lower molecular mass xyloglucans gave heterogeneous composites having a range of microscopic structures with little, if any, cross-linking. Xyloglucans with reduced levels of galactose substitution had evidence of self-association, competitive with cellulose binding. At comparable molecular mass, fucose substitution resulted in a modest promotion of microscopic features characteristic of primary cell walls. Taken together, the data are evidence that galactose substitution of the xyloglucan core structure is a major determinant of cellulose composite formation and properties, with additional fucose substitution acting as a secondary modulator. These conclusions are consistent with reported structural and mechanical properties of Arabidopsis mutants lacking specific fucose and/or galactose residues.  相似文献   

14.
15.
Arabidopsis root hair formation is determined by the patterning genes CAPRICE ( CPC ), GLABRA3 ( GL3 ), WEREWOLF ( WER ) and GLABRA2 ( GL2 ), but little is known about the later changes in cell wall material during root hair formation. A combined Fourier-transform infrared microspectroscopy–principal components analysis (FTIR-PCA) method was used to detect subtle differences in the cell wall material between wild-type and root hair mutants in Arabidopsis. Among several root hair mutants, only the gl2 mutation affected root cell wall polysaccharides. Five of the 10 genes encoding cellulose synthase ( CESA1 – 10 ) and 4 of 33 xyloglucan endotransglucosylase ( XTH1 – 33 ) genes in Arabidopsis are expressed in the root, but only CESA5 and XTH17 were affected by the gl2 mutation. The L1-box sequence located in the promoter region of these genes was recognized by the GL2 protein. These results indicate that GL2 directly regulates cell wall-related gene expression during root development.  相似文献   

16.
17.
When white light irradiation inhibits shoot growth in derooted pea ( Pisum sativum L. cv. Alaska) cuttings, it decreases tissue tension, a driving force for shoot growth, by making the cell wall of the inner tissues mechanically rigid. To elucidate the mechanism by which light affects the mechanical properties of the cell wall in the inner tissues, its effect on the chemical properties of the cell walls was studied by analyzing qualitatively and quantitatively cell wall polysaccharides in the epdidermis and inner tissue of pea epicotyls grown in both dark and light. The amount of polysaccharides per subhook in the cell walls of both tissues increased during a 4-h dark incubation. Light suppressed the increase in hemicellulosic (HC)-II and cellulosic polysaccharides in the inner tissues, while it did not affect the increase in other wall fractions in either the epidermal or subepidermal tissues. No light effect was observed on the neutral sugar compositions of pectin, HC-I or HC-II fractions in either of the tissues. Light increased the mass-average molecular mass of xyloglucan and rhamnoarabinogalactan in HC-II fractions in the inner tissues, while such an effect was not observed in the epidermis. These facts suggest that the light-induced decrease in the tissue tension in pea epicotyls is caused by an increase in the molecular size of xyloglucan, rhamnoarabinogalactan in the HC-II fraction and/or the suppression of the synthesis of HC-II and cellulosic polysaccharides in the inner tissues.  相似文献   

18.
Soga K  Wakabayashi K  Kamisaka S  Hoson T 《Planta》2002,215(6):1040-1046
Seedlings of Arabidopsis thaliana (L.) Heynh. (ecotype Columbia and an ethylene-resistant mutant etr1-1) were cultivated for 68.5, 91.5 and 136 h on board during the Space Shuttle STS-95 mission, and changes in the elongation growth and the cell wall properties of hypocotyls were analyzed. Elongation growth of dark-grown hypocotyls of both Columbia and etr1-1 was stimulated under microgravity conditions in space. There were no clear differences in the degree of growth stimulation between Columbia and etr1-1, indicating that the ethylene level was not abnormally high in the cultural environment of this space experiment. Microgravity also increased the mechanical extensibility of cell walls in both cultivars, and such an increase was attributed to the increase in the apparent irreversible extensibility. The levels of cell wall polysaccharides per unit length of hypocotyls decreased in space. Microgravity also reduced the weight-average molecular mass of xyloglucans in the hemicellulose-II fraction. Also, the activity of xyloglucan-degrading enzymes extracted from hypocotyl cell walls increased under microgravity conditions. These results suggest that microgravity reduces the molecular mass of xyloglucans by increasing xyloglucan-degrading activity. Modifications of xyloglucan metabolism as well as the thickness of cell wall polysaccharides seem to be involved in an increase in the cell wall extensibility, leading to growth stimulation of Arabidopsis hypocotyls in space.  相似文献   

19.
The xyloglucan endotransglucosylase/hydrolases (XTHs) are enzymes involved in cell wall assembly and growth regulation, cleaving and re-joining hemicellulose chains in the xyloglucan–cellulose network. Here, in a homologous system, we compare the secretion patterns of XTH11, XTH33 and XTH29, three members of the Arabidopsis thaliana XTH family, selected for the presence (XTH11 and XTH33) or absence (XTH29) of a signal peptide, and the presence of a transmembrane domain (XTH33). We show that XTH11 and XTH33 reached, respectively, the cell wall and plasma membrane through a conventional protein secretion (CPS) pathway, whereas XTH29 moves towards the apoplast following an unconventional protein secretion (UPS) mediated by exocyst-positive organelles (EXPOs). All XTHs share a common C-terminal functional domain (XET-C) that, for XTH29 and a restricted number of other XTHs (27, 28 and 30), continues with an extraterminal region (ETR) of 45 amino acids. We suggest that this region is necessary for the correct cell wall targeting of XTH29, as the ETR-truncated protein never reaches its final destination and is not recruited by EXPOs. Furthermore, quantitative real-time polymerase chain reaction analyses performed on 4-week-old Arabidopsis seedlings exposed to drought and heat stress suggest a different involvement of the three XTHs in cell wall remodeling under abiotic stress, evidencing stress-, organ- and time-dependent variations in the expression levels. Significantly, XTH29, codifying the only XTH that follows a UPS pathway, is highly upregulated with respect to XTH11 and XTH33, which code for CPS-secreted proteins.  相似文献   

20.
Xyloglucans are the main hemicellulosic polysaccharides found in the primary cell walls of dicots and nongraminaceous monocots, where they are thought to interact with cellulose to form a three-dimensional network that functions as the principal load-bearing structure of the primary cell wall. To determine whether two Arabidopsis thaliana genes that encode xylosyltransferases, XXT1 and XXT2, are involved in xyloglucan biosynthesis in vivo and to determine how the plant cell wall is affected by the lack of expression of XXT1, XXT2, or both, we isolated and characterized xxt1 and xxt2 single and xxt1 xxt2 double T-DNA insertion mutants. Although the xxt1 and xxt2 mutants did not have a gross morphological phenotype, they did have a slight decrease in xyloglucan content and showed slightly altered distribution patterns for xyloglucan epitopes. More interestingly, the xxt1 xxt2 double mutant had aberrant root hairs and lacked detectable xyloglucan. The reduction of xyloglucan in the xxt2 mutant and the lack of detectable xyloglucan in the xxt1 xxt2 double mutant resulted in significant changes in the mechanical properties of these plants. We conclude that XXT1 and XXT2 encode xylosyltransferases that are required for xyloglucan biosynthesis. Moreover, the lack of detectable xyloglucan in the xxt1 xxt2 double mutant challenges conventional models of the plant primary cell wall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号