首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A TCR-beta minilocus in germline configuration (beta M) has previously been shown to undergo rearrangement and expression in transgenic mice. To study allelic exclusion of TCR miniloci, several beta M transgenic mouse lines were generated and crossed with mice transgenic for a functionally rearranged TCR V beta 2 gene (beta R). PCR analysis of beta M beta R double transgenic mice revealed almost complete suppression of endogenous TCR V beta gene rearrangements, but blockage of minilocus V beta rearrangements was achieved with only one of five minilocus transgenic lines. This result cannot be explained by copy number or arrangement of the multiple miniloci integrated. It appears that the minilocus is not autonomously regulated which suggests that sequences flanking the integration sites influence accessibility of the minilocus for rearrangement and allelic exclusion. However, although productively rearranged genes were formed in double transgenic mice, surface expression of minilocus-encoded beta chains was not detected. This indicates that allelic exclusion may operate at a level after gene rearrangement.  相似文献   

2.
T cells can be divided into two groups on the basis of the expression of either alpha beta or gamma delta T-cell receptors (TCRs). Because the TCR delta chain locus lies within the larger TCR alpha chain locus, control of the utilization of these two receptors is important in T-cell development, specifically for determination of T-cell type: rearrangement of the alpha locus results in deletion of the delta coding segments and commitment to the alpha beta lineage. In the developing thymus, a relative site-specific recombination occurs by which the TCR delta chain gene segments are deleted. This deletion removes all D delta, J delta, and C delta genes and occurs on both alleles. This delta deletional mechanism is evolutionarily conserved between mice and humans. Transgenic mice which contain the human delta deleting elements and as much internal TCR delta chain coding sequence as possible without allowing the formation of a complete delta chain gene were developed. Several transgenic lines showing recombinations between deleting elements within the transgene were developed. These lines demonstrate that utilization of the delta deleting elements occurs in alpha beta T cells of the spleen and thymus. These recombinations are rare in the gamma delta population, indicating that the machinery for utilization of delta deleting elements is functional in alpha beta T cells but absent in gamma delta T cells. Furthermore, a discrete population of early thymocytes containing delta deleting element recombinations but not V alpha-to-J alpha rearrangements has been identified. These data are consistent with a model in which delta deletion contributes to the implementation of a signal by which the TCR alpha chain locus is rearranged and expressed and thus becomes an alpha beta T cell.  相似文献   

3.
4.
5.
Mammalian TCR delta genes are located in the midst of the TCR alpha gene locus. In the chicken, one large V delta gene family, two D delta gene segments, two J delta gene segments, and one C delta gene have been identified. The TCR delta genes were deleted on both alleles in alpha beta T cell lines, thereby indicating conservation of the combined TCR alpha delta locus in birds. V alpha and V delta gene segments were found to rearrange with one, both or neither of the D delta segments and either of the two J delta segments. Exonuclease activity, P-addition, and N-addition during VDJ delta rearrangement contributed to TCR delta repertoire diversification in the first embryonic wave of T cells. An unbiased V delta 1 repertoire was observed at all ages, but an acquired J delta 1 usage bias occurred in the TCR delta repertoire. The unrestricted combinatorial diversity of relatively complex TCR gamma and delta loci may contribute to the remarkable abundance of gamma delta T cells in this avian representative.  相似文献   

6.
Lymphocyte development requires the assembly of antigen receptor genes through the specialized process of V(D)J recombination. This process is initiated by cleavage at the junction between coding segments (V, D, and J) and the recombination signal sequences that border these segments, resulting in generation of double-strand break intermediates. We have used a two-dimensional gel system to characterize broken molecules arising from V(D)J recombination at the T-cell receptor (TCR) delta locus and have identified linear species excised by Ddelta1-Ddelta2 and V-Ddelta2 rearrangement in thymus DNA. Relatively few (approximately 10) V-Ddelta2-excised linear species were detected in DNA from fetal thymocytes. The sizes of these species corresponded to the estimated distances between Ddelta2 and the V gene segments utilized by gammadelta T cells and indicated that both Ddelta2-proximal and -distal V gene segments are targeted for V-Ddelta2 rearrangement. Similar-sized species were observed in DNA from thymocytes of scid mice in which T-cell development is arrested prior to TCR expression. Since previous studies suggest that the TCR alpha/delta locus encodes more than 100 V gene segments, our results indicate that a few select V gene segments are predominantly targeted for rearrangement to Ddelta2, and this primarily accounts for the restricted Vdelta gene repertoire of gammadelta T cells.  相似文献   

7.
Cytotoxic T lymphocytes (CTL) play an important role in recovery from a number of viral infections. They are also implicated in virus-induced immunopathology as best demonstrated in lymphocytic choriomeningitis virus (LCMV) infection of adult immunocompetent mice. In the present study, the structure of the T-cell receptor (TCR) in LCMV-specific CTL in C57BL/6 (B6) mice was investigated. Spleen T cells obtained from LCMV-infected mice were cultured in vitro with virus-infected stimulator cells and then stained with anti-TCR V beta antibodies. A skewing of V beta usage was noticeable in T cells enriched for their reactivity to LCMV, suggesting that particular V segments are important for the recognition of LCMV T-cell epitopes in B6 mice. To gain more detailed information on the structure of the TCR specific for LCMV epitopes, we studied CTL clones. It has been shown that approximately 90% of LCMV-reactive CTL clones generated in H-2b mice are specific for a short peptide fragment of the LCMV glycoprotein, residues 278 to 286, recognized in the context of the class I major histocompatibility complex molecule, Db. Four CTL clones possessing the specificity were randomly selected from a collection of clones, and their TCR genes were isolated by cDNA cloning or by the anchored polymerase chain reaction. All four clones were found to use V alpha gene segments belonging to the V alpha 4 subfamily. By RNA blot analysis, two more clones with the same specificity were also shown to express the V alpha 4 mRNA. In contrast, three different V beta gene segments were used among the four clones examined. J beta 2.1 was used by three of the clones. Although amino acid sequences in the V(D)J junctional regions were dissimilar, aspartic acid was found in the V alpha J alpha and/or V beta D beta J beta junctions of all four of these clones, suggesting that this residue is involved in binding the LCMV fragment. Restricted usage of V alpha and possibly J beta segments in the CTL response to a major T-cell epitope of LCMV raises the possibility that immunopathology in LCMV infection can be treated with antibodies directed against such TCR segments. Thus, similar analysis of the TCR in other virus infections is warranted and may lead to therapeutic strategies for immunopathology due to virus infections.  相似文献   

8.
The variable region genes of the T cell receptor (TCR) alpha and beta chains are assembled by somatic recombination of separate germline elements. During thymocyte development, gene rearrangements display both an ordered progression, with beta chain formation preceding alpha chain, and allelic exclusion, with each cell containing a single functional beta chain rearrangement. Although considerable evidence supports the view that the individual loci are regulated independently, signaling molecules that may participate in controlling TCR gene recombination remain unidentified. Here we report that the lymphocyte-specific protein tyrosine kinase p56lck, when overexpressed in developing thymocytes, provokes a reduction in V beta--D beta rearrangement while permitting normal juxtaposition of other TCR gene segments. Our data support a model in which p56lck activity impinges upon a signaling process that ordinarily permits allelic exclusion at the beta-chain locus.  相似文献   

9.
10.
11.
12.
During thymus development, the TCR beta locus rearranges before the TCR alpha locus. Pairing of productively rearranged TCR beta-chains with an invariant pT alpha chain leads to the formation of a pre-TCR and subsequent expansion of immature pre-T cells. Essentially nothing is known about the TCR V beta repertoire in pre-T cells before or after the expression of a pre-TCR. Using intracellular staining, we show here that the TCR V beta repertoire is significantly biased at the earliest developmental stage in which VDJ beta rearrangement has occurred. Moreover (and in contrast to the V(H) repertoire in immature B cells), V beta repertoire biases in immature T cells do not reflect proximity of V beta gene segments to the DJ beta cluster, nor do they depend upon preferential V beta pairing with the pT alpha chain. We conclude that V gene repertoires in developing T and B cells are controlled by partially distinct mechanisms.  相似文献   

13.
The TCR beta-chain locus of NZW mice carries an 8.8-kb deletion which encompasses the C beta 1, D beta 2, and all six J beta 2 gene segments. On a theoretical basis, the absence of D beta 2 and J beta 2 gene segments in this strain should result in a 70% reduction of the diversity of the TCR repertoire. To experimentally assess the effects of this deletion, we bred the NZW TCR beta-chain allele onto a BALB/c background and tested the ability of this new congenic strain to respond to a panel of 22 random Ag. T cells from BALB/c.beta NZW mice responded to all 22 Ag tested but the magnitude of the response to a large proportion of these Ag (11 of 22) was markedly reduced when compared with T cells from BALB/c mice. Responses to the remaining Ag were either comparable (9 of 22) or occasionally even enhanced (2 of 22) compared with BALB/c mice. In addition, we found that the frequency of V beta 6- and V beta 8.1-bearing T cells was increased by approximately 20% in BALB/c.beta NZW mice. These results suggest that D beta 2 and J beta 2 gene segments are required to maintain a diverse T cell repertoire and that their deletion from the genome may confer a significant selective disadvantage in the wild.  相似文献   

14.
Zhang Y  Shi M  Wen Q  Luo W  Yang Z  Zhou M  Ma L 《Cellular immunology》2012,274(1-2):19-25
Secondary rearrangements of the T cell receptor (TCR) represent a genetic correction mechanism which changes T cell specificity by re-activating V(D)J recombination in peripheral T cells. Murine T-cell hybridoma A1.1 was employed to investigate whether antigenic stimulation induced re-expression of recombinase genes and altered TCR Vβ expression. Following repeated antigenic stimulation, A1.1 cells were induced to re-express recombination activating gene (RAG)1 and terminal deoxynucleotidyl transferase (TdT) which are generally considered prerequisite to TCR gene rearrangement. Accompanied with the significant changes in TCR mRNA levels over time, it is suggested that secondary rearrangements may be induced in A1.1 cells, which represent a mature T cell clone capable of re-expressing RAG genes and possesses the prerequisite for secondary V(D)J rearrangement.  相似文献   

15.
We have derived T cell lines from mice inoculated with Gross leukemia virus, which appear to represent early T cell developmental stages and to reflect normal T cell development. These cell lines may provide a breakthrough in the study of T cell development as Abelson transformants have done for the study of B cell development. Analysis of the TCR gene expression in these cell lines reveals that the sequence of rearrangement and expression of each TCR gene is not strictly ordered. Expression of RNA for the TCR alpha and -beta genes appears to be coordinated with rearrangement at the alpha and beta loci. This is not the case for gamma gene expression. Availability of the homogeneous populations of cells represented in these cells lines allows for a more detailed molecular analysis of T cell development than was previously possible.  相似文献   

16.
T cell receptor (TCR) gamma gene rearrangements were examined in panels of human T cell clones expressing TCR alpha/beta or gamma/delta heterodimers. Over half of the alpha/beta+ clones had both chromosomes rearranged to C gamma 2 but this was the case for only 20% of the gamma/delta+ clones. While more than half of the gamma/delta+ clones showed a V9JP rearrangement, this configuration was absent from all 49 alpha/beta+ clones analysed. However, this was not a result of all rearrangements being to the more 3' J gamma genes as 11 alpha/beta+ clones had rearrangement(s) to JP1, the most 5' J gamma gene segment. Both alpha/beta+ and gamma/delta+ clones showed a similar pattern of V gamma gene usage in rearrangements to J gamma 1 or J gamma 2 with a lower proportion of the more 3' genes being rearranged to J gamma 2 than for the more 5' genes. Several alpha/beta+ and several gamma/delta+ clones had noncoordinate patterns of rearrangement involving both C gamma 1 and C gamma 2. Eleven out of fourteen CD8+ clones tested had both chromosomes rearranged to C gamma 2 whereas all clones derived from CD4-8- cells and having unconventional phenotypes (CD4-8- or CD4+8+) had at least one C gamma 1 rearrangement. Twelve out of twenty-seven CD4+ clones also had this pattern, suggesting that CD4-8+ clones had a tendency to utilize more 3' J gamma gene segments than CD4+ clones. There was some evidence for interdonor variation in the proportions of TCR gamma rearrangements to C gamma 1 or C gamma 2 in alpha/beta+ clones as well as gamma/delta+ clones. The results illustrate the unique nature of the V9JP rearrangement in gamma/delta+ clones and the possible use of a sequential mechanism of TCR gamma gene rearrangements during T cell differentiation is discussed.  相似文献   

17.
The molecular organization of rearranged T-cell receptor (TCR) gamma genes intraepithelial lymphocytes (IEL) was studied in athymic radiation chimeras and was compared with the organization of gamma gene rearrangements in IEL from thymus-bearing animals by polymerase chain reaction and by sequence analyses of DNA spanning the junction of the variable (V) and joining (J) genes. In both thymus-bearing mice and athymic chimeras, IEL V-J gamma-gene rearrangements occurred for V gamma 1.2, V gamma 2, and V gamma 5 but not for V gamma 3 or V gamma 4. Sequence analyses of cloned V-J polymerase chain reaction-amplified products indicated that in both thymus-bearing mice and athymic chimeras, rearrangement of V gamma 1.2 and V gamma 5 resulted in in-frame as well as out-of-frame genes, whereas nearly all V gamma 2 rearrangements were out of frame from either type of animal. V-segment nucleotide removal occurred in most V gamma 1.2, V gamma 2, and V gamma 5 rearrangements; J-segment nucleotide removal was common in V gamma 1.2 but not in V gamma 2 or V gamma 5 rearrangements. N-segment nucleotide insertions were present in V gamma 1.2, V gamma 2, and V gamma 5 IEL rearrangements in both thymus-bearing mice and athymic chimeras, resulting in a predominant in-frame sequence for V gamma 5 and a predominant out-of-frame sequence for V gamma 2 genes. These findings demonstrate that (i) TCR gamma-gene rearrangement occurs extrathymically in IEL, (ii) rearrangements of TCR gamma genes involve the same V gene regardless of thymus influence; and (iii) the thymus does not determine the degree to which functional or nonfunctional rearrangements occur in IEL.  相似文献   

18.
19.
20.
M Capone  F Watrin  C Fernex  B Horvat  B Krippl  L Wu  R Scollay    P Ferrier 《The EMBO journal》1993,12(11):4335-4346
We describe transgenic mice carrying germline variable gene segments associated with either the T cell receptor (TCR) beta or alpha gene enhancers (E beta or E alpha). Transgenic constructs underwent high rates of site-specific rearrangements predominantly in T cells from independent mice. Rearrangements of the E beta-containing transgenes began at different stages of T cell differentiation in embryonic and adult thymus than did the E alpha-containing ones, with a pattern superimposable upon the patterns of TCR beta or TCR alpha gene expression, respectively. We demonstrate that sequences within the TCR beta and TCR alpha gene enhancers confer tissue- and stage-specificity upon the V(D)J recombination events affecting adjacent gene segments. The patterns of transgene expression also gave information on developmental events and lineage relationships (gamma delta versus alpha beta) during T cell development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号