首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kinetic analyses of the irreversible inhibition of l-tyrosine and l-phenylalanine transport in Bacillus subtilis by phenylalanine chloromethyl ketone revealed that the inhibition was due to an affinity labeling process. Phenylalanine chloromethyl ketone is a competetive inhibitor of l-tyrosine and l-phenylalanine transport. The Ki values for irreversible inhibition of l-tyrosine and l-phenylalanine transport were 194 and 177 μm, respectively, and the first order rate constants for the alkylation reaction leading to inactivation of transport of l-tyrosine and l-phenylalanine were 0.016 and 0.012 min?1, respectively. The similarity of these constants are consistent with the involvement of the same functional site for l-phenylalanine and l-tyrosine transport. A second effect of phenylalanine chloromethyl ketone was inhibition of the uptake of neutral, aliphatic amino acids; transport of basic and acidic amino acids was unaffected by it. Since high concentrations of any amino acid did not reduce the inhibitory effects of phenylalanine chloromethyl ketone on transport of neutral, aliphatic amino acids, an independent effect, not due to an affinity labeling process was inferred. A procedure for selective labeling of the l-tyrosine/l-phenylalanine transport system was demonstrated that should be applicable to the introduction of a radioactive label into the transport protein(s).  相似文献   

2.
Inactivation of cathepsin B1 by diazomethyl ketones   总被引:3,自引:0,他引:3  
Benzyloxycarbonyl-phenylalanyl diazomethyl ketone and benzyloxy-carbonyl-phenylalanyl-phenylalanyl diazomethyl ketone, which have been shown to inactivate the thiol protease papain by a mechanism different from that of substrate chloromethyl ketone derivatives, have now been examined as inhibitors of cathepsin B1 of beef spleen. The dipeptide derivative irreversibly inactivates this protease rapidly, apparently by affinity labeling.  相似文献   

3.
In a new strategy for labeling the active sites of serine proteinases with fluorescence probes (Bock, P. E. (1988) Biochemistry 27, 6633-6639), a thioester peptide chloromethyl ketone inhibitor is incorporated into the enzyme active center and used to produce a unique thiol group which provides a site for selective chemical modification with any one of many thiol-reactive fluorescence probes. This approach was developed to increase the opportunities for identifying fluorescent proteinase derivatives that act as reporters of binding interactions by allowing a large number of derivatives, representing a broad range of probe spectral properties, to be readily prepared. In the studies described here, the specificity of the labeling approach was evaluated quantitatively for the labeling of human alpha and beta/gamma-thrombin with the thioester peptide chloromethyl ketones, N alpha-[(acetylthio)acetyl]-D-Phe-Pro-Arg-CH2Cl and N alpha-[(acetylthio)acetyl]-D-Phe-Phe-Arg-CH2Cl, and the thiol-reactive fluorescence probe, 5-(iodoacetamido)fluorescein. Irreversible inactivation of thrombin by the inhibitors was accompanied by incorporation of 0.98 +/- 0.06 mol/mol of the thioester group into the active site, independent of a 470-fold difference between the thioester peptide chloromethyl ketones in the bimolecular rate constants of alpha-thrombin affinity labeling. Subsequent mild treatment of the covalent thrombin-inhibitor complexes with NH2OH in the presence of 5-(iodoacetamido)fluorescein resulted in generation of the thiol group together with its selective modification and incorporation of 0.96 +/- 0.07 mol of probe/mol of active sites. The incorporated label was localized to a 9000 molecular weight region of alpha and beta/gamma-thrombin containing the catalytic-site histidine residue. Evaluation of competing, side reactions showed that they did not significantly compromise the active site specificity of labeling. These results demonstrated equivalent, active-site-selective fluorescence probe labeling of alpha and beta/gamma-thrombin by use of either of the thioester peptide chloromethyl ketones, with a site specificity of greater than or equal to 94%.  相似文献   

4.
A chloromethyl ketone derivative of pyroglutamic acid was newly synthesized and its reactivity with bacterial pyroglutamyl aminopeptidase (L-pyroglutamyl-peptide hydrolas, EC 3.4.11.8) as an affinity labelling reagent was examined. The compound was found to inactivate the enzyme markedly and rapidly at very low concentrations, though the enzyme was resistant to N-tosyl-phenylalanyl chloromethyl ketone. The rate of the enzyme inactivation by pyroglutamyl chloromethyl ketone was retarded in the presence of a poor substrate, pyroglutamyl valine. The enzyme inactivated by treating with p-chloromercuribenzoate failed to react with pyroglutamyl chloromethyl ketone. These results strongly suggest an active site-directed mechanism for the enzyme inactivation by pyroglutamyl chloromethyl ketone. This compound was shown to be useful as a titrant for the catalytically active protein of pyroglutamyl aminopeptidase.  相似文献   

5.
P E Bock 《Biochemistry》1988,27(17):6633-6639
The feasibility of a new approach to incorporation of spectroscopic probes into the active sites of certain serine proteases has been demonstrated. The method is based on inactivation of a serine protease with a thioester derivative of a peptide chloromethyl ketone. The thiol group generated by reaction of the covalent enzyme-inhibitor complex with NH2OH provides a unique site for subsequent labeling with thiol-reactive probes. To evaluate the method, N alpha-[(acetylthio)acetyl]-D-Phe-Pro-Arg-CH2Cl was synthesized by reaction of the thrombin-specific tripeptide chloromethyl ketone with succinimidyl (acetylthio)acetate and purified by sulfopropyl-Sephadex and Sephadex G-10 chromatography. Reverse-phase high-performance liquid chromatography indicated that the product was 90 +/- 3% pure. The compound was quantitated by using 5,5'-dithiobis(2-nitrobenzoic acid) to measure the concentration of thiol produced in the presence of NH2OH. On this basis, titrations of the irreversible loss of human alpha-thrombin activity had end points of 1.1 +/- 0.1 mol of inhibitor/mol of active sites, indicating a 1:1 stoichiometry for inactivation. Incubation of N alpha-[(acetylthio)acetyl]-D-Phe-Pro-Arg-thrombin with 5-(iodoacetamido)fluorescein in the presence of NH2OH resulted in incorporation of 0.96 mol of the fluorescence probe/mol of active sites and the appearance of fluorescein fluorescence associated with the active site containing B-chain on sodium dodecyl sulfate-polyacrylamide gels. Fluorescence labeling of thrombin required reaction of the inhibitor at the active site as well as subsequent generation of the thiol group with NH2OH. It is concluded that active site selective labeling can be achieved by using this approach, which is likely to be applicable to other proteases, peptide chloromethyl ketones, and a wide variety of probes.  相似文献   

6.
We prepared a tritiated chloromethyl ketone derivative of Tyr-D-Ala-Gly(Me)Phe-Gly-ol 3H-D-Ala-Gly-(Me)Phe-chloromethyl ketone, and studied its binding characteristics in rat brain membranes. A significant portion (about 70%) of the binding becomes wash-resistant after 60 min of incubation. The binding of the ligand is highly stereospecific and mu-opioid receptor selective. These characteristics of the ligand, together with its high specific radioactivity (57 Ci/mmol) makes it a good candidate for biochemical characterization and covalent labeling of mu opioid receptors.  相似文献   

7.
Peptidyl chloromethyl ketones were used for the specific labeling of proteinases by attaching a biotin group to the N-terminal end of the peptide. Such labeled peptide inhibitors allowed the detection and quantitation of proteolytic enzymes immobilized on the plastic surface of a microtiter plate, as well as on nitrocellulose. The validity of these solid-phase assays was demonstrated using subtilisin Carlsberg as a model enzyme and biotinyl-epsilon-aminocaproyl-L-alanyl-L-alanyl-L-propyl-L-phenylal++ + anyl- chloromethyl ketone as a specific reagent. In addition to being usable for the screening of a particular proteinase in a large number of samples, these assays can be adapted for the analysis of specific proteolytic enzyme present in complex mixtures.  相似文献   

8.
Tight junctions and microvilli constitute an anti-invasive barrier at the luminal side of enteric cell layers. Both subcellular structures are disrupted following adhesion of Entamoeba histolytica trophozoites to enteric cell layers in vitro. It was our aim to analyse the molecular mechanism underlying this disruption. Therefore, we cocultured enteric T84 cell layers established on filter inserts with E. histolytica trophozoites and tested various modulators of enteric molecules, involved in the functional regulation of tight junctions, as well as inhibitors of trophozoite virulence factors on their capacity to maintain the transepithelial electrical resistance. Pretreatment of trophozoites with the proteinase inhibitor N-Tosyl-Phenylalanine chloromethyl ketone or N-Tosyl-l-Lysine chloromethyl ketone prevented the decrease in transepithelial electrical resistance whereas none of the modulators used to pretreat enterocytes were successful. Moreover, zymography and Western blot analysis revealed that both N-Tosyl-Phenylalanine chloromethyl ketone and N-Tosyl-l-Lysine chloromethyl ketone inhibited E. histolytica cysteine proteinases and prevented proteolysis of tight junction molecules ZO-1 and ZO-2 and of villin, the major actin bundling molecule in microvilli. Immunocytochemistry with an antibody against ezrin, an actin-binding molecule in microvilli, and phase contrast microscopy demonstrated that pretreatment of trophozoites with N-Tosyl-Phenylalanine chloromethyl ketone or N-Tosyl-l-Lysine chloromethyl ketone also prevented disturbance of microvilli and destruction of Caco-2 enteric cell layers in cocultures. Taken together, our results indicate that trophozoites use their proteinases to overcome microvilli and tight junction barriers during the invasion of enteric cell layers, that these phenomena could be prevented by pretreatment of trophozoites with N-Tosyl-Phenylalanine chloromethyl ketone or N-Tosyl-l-Lysine chloromethyl ketone, and that such pretreatment disabled trophozoites to destroy enteric cell layers in vitro.  相似文献   

9.
Diazomethyl ketone and chloromethyl ketone analogs of thyrotropin releasing hormones have been synthesized and studied for their inhibitory effects on thyrotropin releasing hormone-induced release of radioactive 125I-labelled hormones from the thyroid gland of eight-week old male Long-Evans rats. When Long-Evans rats were pretreated with thyrotropin releasing hormone diazomethyl ketone (TRH-DMK) or the chloromethyl ketone derivative (TRH-CMK), a dose-related inhibition of thyrotropin releasing hormone-induced 125I release was observed which could be partially reversed by thyrotropin stimulating hormone (TSH). The diazomethyl ketone was a more effective inhibitor than the chloromethyl ketone. These compounds may act as an active-site directed antagonists whose effects are unique to the hypothalamo-pituitary-thyroid system.  相似文献   

10.
Incorporation of amino acids into proteins in HeLa cells, virus-transformed 3T3 mouse fibroblasts, and mouse plasmacytoma cells is inhibited after the addition of L-1-tosylamido-2-phenylethyl chloromethyl ketone, an alkylating agent and chymotrypsin-specific protease inhibitor. Addition of this drug to tissue culture cells at concentrations of 20 to 30 mug per ml results in an irreversible inhibition of the incorporation of amino acids into cellular proteins, and a rapid and complete breakdown of polyribosomes. A comparative study examining the effects of L-1-tosylamido-2-phenylethyl chloromethyl ketone and several known inhibitors of in vivo protein synthesis, with known mechanisms of action, revealed that an optimal concentration of L-1-tosylamido-2-phenylethyl chloromethyl ketone: (a) immediately and selectively inhibits initiation of protein synthesis, (b) does not significantly affect normal elongation rates, and (c) does not promote a premature release of nascent peptides. L-1-Tosylamido-2-phenylethyl chloromenthyl ketone may prove to be a useful tool in investigating the initiatior of protein synthesis in eukaryotic cells.  相似文献   

11.
Zymogen/enzyme discrimination using peptide chloromethyl ketones   总被引:4,自引:0,他引:4  
Glutamylglycinylarginyl chloromethyl ketone, tyrosylglycinylarginyl chloromethyl ketone, and phenylalanylprolylarginyl chloromethyl ketone have been labeled at their amino termini using fluorescein, rhodamine-X, lissamine-rhodamine, pyrene, and the 1,5-, 2,5-, and 2,6-dimethylaminonaphthalene-1-sulfonyl moieties. These peptidyl chloromethyl ketones have also been modified by incorporation of biotin and epsilon-amino caproyl biotin. The ability of these various chloromethyl ketones to be incorporated into a collection of zymogen-enzyme pairs has been evaluated using a variety of coagulation and fibrinolytic proteins. All labeled chloromethyl ketones were efficiently incorporated into the proteases tested, with the exception of urokinase which was refractory to inhibition by phenylalanylprolylarginyl chloromethyl ketone derivatives. No modification of any zymogen species was observed even under conditions designed to detect minimal reactivity. When enzymes were modified using chloromethyl ketones labeled with epsilon-amino caproyl biotin, the modified proteins readily reacted with avidin under a variety of different conditions. The observed reactivity with avidin was used in enzyme "blotting" following electrophoretic resolution of polypeptide chains and to remove active enzyme present in enzyme-zymogen mixtures. These reagents have been used to evaluate the potential for active site expression by the single-chain human factor VII molecule. Studies conducted with tissue factor, phospholipids, and calcium using factor X as substrate demonstrate that no activity can be obtained without initial activation of either factor X to factor Xa or factor VII to factor VIIa by an external source. We thus conclude that factor VII is a true zymogen, inert in the blood clotting process prior to its cleavage to factor VIIa.  相似文献   

12.
Summary N-formyl-norleucyl-leucyl-phenylalanine-chloromethyl ketone is chemotactic for, and induces lysosomal enzyme release from rabbit peritoneal neutrophils over essentially the same range of concentrations as does the free acid form of the same peptide (Na-formyl-norleucyl-leucyl-phenylalanine-OH). The chloromethyl ketone derivative does however differ from the free acid in respect to its ability to interact with the neutrophil and cause deactivation or desensitization to cytochalasin B. Neutrophils preincubated in the cold with the chloromethyl ketone followed by washing have cytochalasin B sensitivity conferred upon them, as measured by the release of lysosomal enzymes. The degree of release induced by this pre-treatment appears to be related to the initial responsiveness of the cells. This is in contrast to the free acid where no cytochalasin B sensitivity in conferred under any circumstances. Thus, the chloromethyl ketone, unlike the free acid, appears to irreversibly activate the cell. Desensitization to the late addition of cytochalasin B is also significantly retarded when the chloromethyl ketone derivative is compared to the free acid form of the peptide. These studies suggest that the chloromethyl ketone derivative of the peptide may covalently interact with the neutrophil receptor.  相似文献   

13.
The present studies compared caspase activation under cell-free conditions in vitro and in etoposide-treated HL-60 leukemia cells in situ. Immunoblotting revealed that incubation of HL-60 cytosol at 30 degrees C in the presence of cytochrome c and ATP (or dATP) resulted in activation of procaspases-3, -6, and -7 but not -2 and -8. Although similar selectivity was observed in intact cells, affinity labeling revealed that the active caspase species generated in vitro and in situ differed in charge and abundance. ATP and dATP levels in intact HL-60 cells were higher than required for caspase activation in vitro and did not change before caspase activation in situ. Replacement of ATP with the poorly hydrolyzable analogs 5'-adenylyl methylenediphosphate, 5'-adenylyl imidodiphosphate, or 5'-adenylyl-O-(3-thiotriphos-phate) slowed caspase activation in vitro, suggesting that ATP hydrolysis is required. Caspase activation in vitro was insensitive to phosphatase and kinase inhibitors (okadaic acid, staurosporine, and genistein) but was inhibited by Zn(2+), aurintricarboxylic acid, and various protease inhibitors, including 3,4-dichloroisocoumarin, N(alpha)-p-tosyl-L-phenylalanine chloromethyl ketone, N(alpha)-p-tosyl-L-lysine chloromethyl ketone, and N-(N(alpha)-benzyloxycarbonylphenylalanyl)alanine fluoromethyl ketone, each of which inhibited recombinant caspases-3, -6, -7, and -9. Experiments with anti-neoepitope antiserum confirmed that these agents inhibited caspase-9 activation. Collectively, these results suggest that caspase-9 activation requires nucleotide hydrolysis and is inhibited by agents previously thought to affect apoptosis by other means.  相似文献   

14.
Previously purified arginine esterase from dog seminal plasma was characterized enzymatically. The enzyme was found to have a rather narrow specificity for arginine esters, much less for lysine esters and was practically devoid of activity towards tyrosine esters, casein, albumin and azocoll. It had a broad optimum pH between 8 and 9. It presented no kallikrein-like activities either in the blood pressure test in dog or in the rat uterus contraction test. It was inhibited by bovine pancreas trypsin inhibitor, aprotinin, phenylalanylprolyl arginine chloromethyl ketone, diisopropylfluorophosphate, phenylmethylsulfonyl fluoride, sodium dodecyl sulfate and leupeptin, but not by soybean trypsin inhibitor, tosyllysine chloromethyl ketone, tosylamide-2-phenylethyl chloromethyl ketone, iodoacetamide, Triton X-100 and EDTA. Experiments involving incubation of prostatic cytosol with purified arginine esterase showed that actin was the only important prostatic protein that was extensively hydrolyzed by this enzyme. It is not known presently whether the hydrolysis of actin is related to a true physiological function of the enzyme and whether actin and arginine esterase ever come into contact with each other in vivo. These properties indicate that arginine esterase from dog seminal plasma is different from other known proteinases including classical kallikreins, although it presents many similarities with this class of enzyme.  相似文献   

15.
Tosyllysine chloromethyl ketone and tosylphenylalanine chloromethyl ketone in vitro are active-site specific and irreversible inhibitors of trypsin (EC 3.4.21.4) and chymotrypsin (EC. 3.4.21.1) respectively. Using rat hepatoma cells in suspension culture, both inhibitors were found to partially inhibit breakdown of prelabelled cell proteins ot amino acids, the effect being greastest in the absence of serum. Protein synthesis in rat hepatoma cells, reticulocytes and reticulyte lysates was also irreversibly inhibited by these compounds. Reduction of ATP levels with antimycin a inhibited protein degradation, but neither tosylphenylalanine chloromethyl ketone nor tosyllysine chloromethyl ketone had any effect on ATP concentration in rat hepatoma cells. These results suggest that the degradation of at least some proteins in animal cells may involve the action of serine protease(s).  相似文献   

16.
Tosyllysine chloromethyl ketone and tosylphenylalanine chloromethyl ketone in vitro are active-site specific and irreversible inhibitors of trypsin (EC 3.4.21.4) and chymotrypsin (EC. 3.4.21.1) respectively. Using rat hepatoma cells in suspension culture, both inhibitors were found to partially inhibit breakdown of prelabelled cell proteins ot amino acids, the effect being greastest in the absence of serum. Protein synthesis in rat hepatoma cells, reticulocytes and reticulyte lysates was also irreversibly inhibited by these compounds. Reduction of ATP levels with antimycin a inhibited protein degradation, but neither tosylphenylalanine chloromethyl ketone nor tosyllysine chloromethyl ketone had any effect on ATP concentration in rat hepatoma cells. These results suggest that the degradation of at least some proteins in animal cells may involve the action of serine protease(s).  相似文献   

17.
Nα-p-tosyl-L-lysine chloromethyl ketone (TLCK) stimulates lipid synthesis in locust fat body in vitro, and is able to reverse the inhibitory effects of AKH-I on lipid synthesis. Effective stimulatory concentrations of TLCK were in the range of 0.2–1.0 mM. Similar stimulatory effects were also achieved with phenylalanine chloromethyl ketone (PheCK) and leucine chloromethyl ketone (LeuCK), but not with tosyl-phenylalanine chloromethyl ketone (TPCK), dansyl-glu-gly-arg-CK, chloroacetone, chloroacetic acid, chloroacetamide, chloroacetaldehyde, chloroacetyl-L-leucine or acetylated or fluorescamine-labelled TLCK, PheCK, and LeuCK. The level of stimulation caused by TLCK was dependent on incubation time, so that after a 5-h preincubation of fat body tissue with TLCK the stimulated rate was severalfold higher than the control. TLCK also increased the rate of uptake of trehalose and uridine, but not glucose, deoxyglucose or glycine. Increasing concentrations of bovine serum albumin (BSA) in the incubation medium caused a reduction in the rate of TLCK-stimulated acetate uptake, such that levels of uptake were no higher with 1% BSA than in the controls. A range of more specific protease and kinase inhibitors was tested, but none caused stimulation; thus the mode of action of TLCK on the stimulation of acetate uptake has yet to be identified. Elucidation of the mode of action of TLCK may facilitate the development of novel compounds for insect pest control. Arch. Insect Biochem. Physiol. 39:9–17, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

18.
A series of cysteine diazomethyl- and chloromethyl ketone derivatives has been synthesized and evaluated against human B-lineage (Nalm-6) and T-lineage (Molt-3) acute lymphoblastic leukemia cell lines. The chloromethyl ketone compounds showed potent cytotoxicity against these cell lines, with IC50 values in the low micromolar range. The best compounds were N-acetyl-S-dodecyl-Cys chloromethyl ketone (IC50 = 2.0 microM against Nalm-6, 2.3 microM against Molt-3) and N-acetyl-S-trans,trans-farnesyl-Cys chloromethyl ketone (IC50 = 3.0 microM against Nalm-6 and 1.4 microM against Molt-3).  相似文献   

19.
The human asialoglycoprotein receptor subunit H2a is cotranslationally inserted into the ER membrane. When expressed together with subunit H1 in mouse fibroblasts part forms a hetero-oligomer that is transported to the cell surface, but when expressed alone it is all rapidly degraded. Degradation is insensitive to lysosomotropic agents and the undegraded precursor is last detected in the ER region of the cell. Small amounts of an intermediate 35-kD degradation product can be detected (Amara, J. F., G. Lederkremer, and H. F. Lodish. 1989. J. Cell Biol. 109:3315). We show here that the oligosaccharides on both precursor H2a and the 35-kD fragment are Man6-9GlcNAc2, structures typically found in pre-Golgi compartments. Subcellular fractionation shows that the intermediate degradation product does not cofractionate with the lysosomal enzyme beta-galactosidase, but is found in a part of the ER that contains ribosomes. Thus the intermediate degradation product is localized in the ER, indicating that the initial degradation event does take place in the ER. All degradation of H2a, including the initial endoproteolytic cleavage generating the 35-kD intermediate, is blocked by the protease inhibitors N-tosyl-L-lysine chloromethyl ketone and N-tosyl-L-phenylalanine chloromethyl ketone. These drugs do not inhibit ER-to-Golgi transport of H1. Depleting the cells of ATP or inhibiting protein synthesis allows the initial endoproteolytic cleavage to occur, but blocks further degradation of the 35-kD intermediate; thus we can convert all cellular H2 into the 35-kD intermediate. Approximately 50% of H2b, a splicing variant differing from H2a by a five amino acid deletion, can be transported to the cell surface, and the rest appears to be degraded by the same pathway as H2a, both when expressed alone in fibroblasts and together with H1 in HepG2 cells. Addition of N-tosyl-L-lysine chloromethyl ketone or N-tosyl-L-phenylalanine chloromethyl ketone blocks degradation of the approximately 50% that is not transported, but does not affect the fraction of H2b that moves to the Golgi region. Thus, a protein destined for degradation will not be transported to the Golgi region if degradation is inhibited.  相似文献   

20.
The H2a subunit of the human asialoglycoprotein receptor is rapidly degraded from the endoplasmic reticulum (ER) when expressed in CHO15B cells. We have reconstituted ER degradation of H2a in semipermeable cells. At least the initial step in degradation (a proteolytic cleavage inhibited by N alpha-p-tosyl-L-lysine chloromethyl ketone and L-1-tosylamido-2-phenylethyl chloromethyl ketone) can occur in vitro in the presence of guanosine 5'-3-O-(thio)triphosphate or in the absence of ATP and postnuclear supernatant, conditions that do not allow vesicular transport of subunit H1 from the ER to the Golgi. We conclude that vesicular transport from the ER is not required for ER degradation of H2a to occur and thus that it takes place in the ER itself.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号