首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A fluorometric assay was used to study the DNA unwinding kinetics induced by Escherichiacoli RecQ helicase.This assay was based on fluorescence resonance energy transfer and carried out onstopped-flow,in which DNA unwinding was monitored by fluorescence emission enhancement of fluoresceinresulting from helicase-catalyzed DNA unwinding.By this method,we determined the DNA unwinding rateof RecQ at different enzyme concentrations.We also studied the dependences of DNA unwinding magnitudeand rate on magnesium ion concentration.We showed that this method could be used to determine thepolarity of DNA unwinding.This assay should greatly facilitate further study of the mechanism for RecQ-catalyzed DNA unwinding.  相似文献   

2.
Helicase-catalyzed disruption of double-stranded nucleic acid is vital to DNA replication, recombination, and repair in all forms of life. The relative influence of specific chemical interactions between helicase and the substrate over a series of multistep catalytic events is still being defined. To this end, three modified DNA oligonucleotides were designed to serve as substrates for the bacteriophage T4 helicase, Dda. A 5'-DNA-PNA-DNA-3' chimera was synthesized, thereby, conferring both a loss of charge and altering the conformational flexibility of the oligonucleotide. The second modified oligonucleotide possessed a single methylphosphonate replacement on the phosphate backbone, creating a gap in the charge distribution of the substrate. The third modification introduced an abasic site into the oligonucleotide sequence. This abasic site retains the charge distribution of the normal DNA substrate yet alters the conformational flexibility of the oligonucleotide. The loss of a base also serves to disrupt the hydrogen-bonding lattice, the intramolecular base-stacking interactions, as well as the intermolecular base-stacking interactions between aromatic amino acid side chains and the substrate. Our results indicate that a gap in the charge distribution along the backbone of the substrate has a more pronounced effect upon helicase-catalyzed unwinding than does the loss of a single base. While all three substrates exhibited some degree of inhibition, analysis of both pre-steady-state and excess enzyme experiments places a greater value upon the electrostatic interactions between helicase and the substrate.  相似文献   

3.
The hepatitis C virus (HCV) NS3 protein is a helicase capable of unwinding duplex RNA or DNA. This study uses a newly developed molecular-beacon-based helicase assay (MBHA) to investigate how nucleoside triphosphates (NTPs) fuel HCV helicase-catalyzed DNA unwinding. The MBHA monitors the irreversible helicase-catalyzed displacement of an oligonucleotide-bound molecular beacon so that rates of helicase translocation can be directly measured in real time. The MBHA reveals that HCV helicase unwinds DNA at different rates depending on the nature and concentration of NTPs in solution, such that the fastest reactions are observed in the presence of CTP followed by ATP, UTP, and GTP. 3′-Deoxy-NTPs generally support faster DNA unwinding, with dTTP supporting faster rates than any other canonical (d)NTP. The presence of an intact NS3 protease domain makes HCV helicase somewhat less specific than truncated NS3 bearing only its helicase region (NS3h). Various NTPs bind NS3h with similar affinities, but each NTP supports a different unwinding rate and processivity. Studies with NTP analogs reveal that specificity is determined by the nature of the Watson-Crick base-pairing region of the NTP base and the nature of the functional groups attached to the 2′ and 3′ carbons of the NTP sugar. The divalent metal bridging the NTP to NS3h also influences observed unwinding rates, with Mn2+ supporting about 10 times faster unwinding than Mg2+. Unlike Mg2+, Mn2+ does not support HCV helicase-catalyzed ATP hydrolysis in the absence of stimulating nucleic acids. Results are discussed in relation to models for how ATP might fuel the unwinding reaction.  相似文献   

4.
Helicases unwind dsDNA during replication, repair and recombination in an ATP-dependent reaction. The mechanism for helicase activity can be studied using oligonucleotide substrates to measure formation of single-stranded (ss) DNA from double-stranded (ds) DNA. This assay provides an 'all-or-nothing' readout because partially unwound intermediates are not detected. We have determined conditions under which an intermediate in the reaction cycle of Dda helicase can be detected by trapping a partially unwound substrate. The appearance of this intermediate supports a model in which each ssDNA product interacts with the helicase after unwinding has occurred. Kinetic analysis indicates that the intermediate appears during a slow step in the reaction cycle that is flanked by faster steps for unwinding. These observations demonstrate a complex mechanism containing nonuniform steps for a monomeric helicase. The potential biological significance of such a mechanism is discussed.  相似文献   

5.
The RecQ family helicases catalyze the DNA unwinding reaction in an ATP hydrolysis-dependent manner. We investigated the mechanism of DNA unwinding by the Escherichia coli RecQ helicase using a new sensitive helicase assay based on fluorescence cross-correlation spectroscopy (FCCS) with two-photon excitation. The FCCS-based assay can be used to measure the unwinding activity under both single and multiple turnover conditions with no limitation related to the size of the DNA strands constituting the DNA substrate. We found that the monomeric helicase was sufficient to perform the unwinding of short DNA substrates. However, a significant increase in the activity was observed using longer DNA substrates, under single turnover conditions, originating from the simultaneous binding of multiple helicase monomers to the same DNA molecule. This functional cooperativity was strongly dependent on several factors, including DNA substrate length, the number and size of single-stranded 3′-tails, and the temperature. Regarding the latter parameter, a strong cooperativity was observed at 37 °C, whereas only modest or no cooperativity was observed at 25 °C regardless of the nature of the DNA substrate. Consistently, the functional cooperativity was found to be tightly associated with a cooperative DNA binding mode. We also showed that the cooperative binding of helicase to the DNA substrate indirectly accounts for the sigmoidal dependence of unwinding activity on ATP concentration, which also occurs only at 37 °C but not at 25 °C. Finally, we further examined the influences of spontaneous DNA rehybridization (after helicase translocation) and the single-stranded DNA binding property of helicase on the unwinding activity as detected in the FCCS assay.  相似文献   

6.
Measurement of steady-state rates of unwinding of double-stranded oligonucleotides by helicases is hampered due to rapid reannealing of the single-stranded DNA products. Including an oligonucleotide in the reaction mixture which can hybridize with one of the single strands can prevent reannealing. However, helicases bind to single-stranded DNA, therefore the additional oligonucleotide can sequester the enzyme, leading to slower observed rates for unwinding. To circumvent this problem, the oligonucleotide that serves as a trap was replaced with a strand of peptide nucleic acid (PNA). Fluorescence polarization was used to determine that a 15mer PNA strand does not bind to the bacteriophage T4 Dda helicase. Steady-state kinetic parameters of unwinding catalyzed by Dda were determined by using PNA as a trapping strand. The substrate consisted of a partial duplex with 15 nt of single-stranded DNA and 15 bp. In the presence of 250 nM substrate and 1 nM Dda, the rate of unwinding in the presence of the DNA trapping strand was 0.30 nM s–1 whereas the rate was 1.34 nM s–1 in the presence of the PNA trapping strand. PNA prevents reannealing of single-stranded DNA products, but does not sequester the helicase. This assay will prove useful in defining the complete kinetic mechanism for unwinding of oligonucleotide substrates by this helicase.  相似文献   

7.
The biochemical activities of a series of transformation-competent, replication-defective large T-antigen point mutants were examined. The assays employed reflect partial reactions required for the in vitro replication of simian virus 40 (SV40) DNA. Mutants which failed to bind specifically to SV40 origin sequences bound efficiently to single-stranded DNA and exhibited nearly wild-type levels of helicase activity. A mutation at proline 522, however, markedly reduced ATPase, helicase, and origin-specific unwinding activities. This mutant bound specifically to the SV40 origin of replication, but under certain conditions it was defective in binding to both single-stranded DNA and the partial duplex helicase substrate. This suggests that additional determinants outside the amino-terminal-specific DNA-binding domain may be involved in nonspecific binding of T antigen to single-stranded DNA and demonstrates that origin-specific DNA binding can be separated from binding to single-stranded DNA. A mutant containing a lesion at residue 224 retained nearly wild-type levels of helicase activity and recognized SV40 origin sequences, yet it failed to function in an origin-specific unwinding assay. This provides evidence that origin recognition and helicase activities are not sufficient for unwinding to occur. The distribution of mutant phenotypes reflects the complex nature of the initiation reaction and the multiplicity of functions provided by large T antigen.  相似文献   

8.
T7 phage DNA eroded with lambda exonuclease (to create 3'-protruding strands) or exonuclease III (to create 5'-protruding strands) was treated under unwinding assay conditions with DNA helicase II. Single-stranded DNA-binding protein (of Escherichia coli or phage T4) was added to disentangle the denatured DNA and the complexes were examined in the electron microscope. DNA helicase II complexes filtered through a gel column before assay retain the ability to generate forks suggesting that DNA helicase II unwinds in a preformed complex by translocating along the bound DNA strand. The enzyme initiates preferentially at the ends of the lambda-exonuclease-treated duplexes and is found at a fork on the initially protruding strand. It also initiates at the ends of the exonuclease-III-treated duplexes where, as with approximately 5% of the forks traceable back to a single-stranded gap, it is found on the initially recessed strand. The results are consistent with the view that DNA helicase II unwinds in the 3'-5' direction relative to the bound strand. They also confirm that the enzyme can initiate at the end of a fully base-paired strand. At a fork, DNA helicase II is bound as a tract of molecules of approximately 110 nm in length. Tracts of enzyme assemble from non-cooperatively bound molecules in the presence of ATP. During unwinding, DNA helicase II apparently can translocate to the displaced strand which conceivably can deplete the leading strand of the enzyme. Continued adsorption of enzyme to DNA might replenish forks arrested by strand switch of the unwinding enzyme.  相似文献   

9.
We have developed a new helicase assay that overcomes many limitations of other assays used to measure this activity. This continuous, kinetic assay is based on the displacement of fluorescent dyes from dsDNA upon DNA unwinding. These ligands exhibit significant fluorescence enhancement when bound to duplex nucleic acids and serve as the reporter molecules of DNA unwinding. We evaluated the potential of several dyes [acridine orange, ethidium bromide, ethidium homodimer, bis-benzimide (DAPI), Hoechst 33258 and thiazole orange] to function as suitable reporter molecules and demonstrate that the latter three dyes can be used to monitor the helicase activity of Escherichia coli RecBCD enzyme. Both the binding stoichiometry of RecBCD enzyme for the ends of duplex DNA and the apparent rate of unwinding are not significantly perturbed by two of these dyes. The effects of temperature and salt concentration on the rate of unwinding were also examined. We propose that this dye displacement assay can be readily adapted for use with other DNA helicases, with RNA helicases, and with other enzymes that act on nucleic acids.  相似文献   

10.
Pea DNA helicase 45 (PDH45) is an ATP-dependent DNA unwinding enzyme, with intrinsic DNA-dependent ATPase activity [Plant J. 24 (2000) 219]. We have determined the effect of various DNA-binding agents, such as daunorubicin, ethidium bromide, ellipticine, cisplatin, nogalamycin, actinomycin C1, and camptothecin on the DNA unwinding and ATPase activities of the plant nuclear DNA helicase PDH45. The results show that all the agents except actinomycin C1, and camptothecin inhibited the helicase (apparent K(i) values ranging from 1.5 to 7.0 microM) and ATPase (apparent K(i) values ranging from 2.5 to 11.9 microM) activities. This is the first study to show the effect of various DNA-binding agents on the plant nuclear helicase and also first to demonstrate inhibition of any helicase by cisplatin. Another striking finding that the actinomycin C1 and ellipticine act differentially on PDH45 as compared to pea chloroplast helicase suggests that the mechanism of DNA unwinding could be different in nucleus and chloroplast. These results suggest that the intercalation of the inhibitors into duplex DNA generates a complex that impedes translocation of PDH45, resulting in both the inhibitions of unwinding activity and ATP hydrolysis. This study would be useful to obtain a better understanding of the mechanism of plant nuclear DNA helicase unwinding and the mechanism by which these agents can disturb genome integrity.  相似文献   

11.
Electron microscopy was used to characterize the DNA-unwinding reaction catalysed by Escherichia coli DNA helicase I. Linear DNA with 5'-protruding strands as well as single-stranded gaps was incubated, under unwinding assay conditions, with the helicase. E. coli single-stranded-DNA-binding protein (SSB) was added to order the denatured DNA. Up to 70% of the sites of SSB-complexed DNA were observed as forks. The position of the strand-separating enzyme was indicated by a gap in the complex between fork and SSB on that arm which initially provided the binding site. The complex between DNA and helicase varied in length although in all cases it was long enough to comprise several helicase I molecules. A mutant helicase I (helicase I del29) which, unlike the wild-type enzyme, fails to show cooperative DNA-binding behaviour was found to prevent an abnormally short stretch of DNA near the fork from binding SSB. Apparently, one or very few helicase molecules would be sufficient for the opening of a DNA duplex although, typically, the fork is shifted by a tract of helicase I molecules. SSB displaces helicase I from single-stranded DNA but fails to do so from a fork or a single-strand/double-strand junction. The difference is consistent with the observation that SSB does not inhibit the unwinding reaction despite its rapid association with the separated strands. Helicase I unwinds in the 5'-3' direction of the bound strand. Observations so far indicate that the enzyme exploits the single strand at the initial DNA-binding site for orienting its action, and not the complementary, completely base-paired strand.  相似文献   

12.
Lo YH  Liu SW  Sun YJ  Li HW  Hsiao CD 《PloS one》2011,6(12):e29016
Replicative helicases are essential molecular machines that utilize energy derived from NTP hydrolysis to move along nucleic acids and to unwind double-stranded DNA (dsDNA). Our earlier crystal structure of the hexameric helicase from Geobacillus kaustophilus HTA426 (GkDnaC) in complex with single-stranded DNA (ssDNA) suggested several key residues responsible for DNA binding that likely play a role in DNA translocation during the unwinding process. Here, we demonstrated that the unwinding activities of mutants with substitutions at these key residues in GkDnaC are 2-4-fold higher than that of wild-type protein. We also observed the faster unwinding velocities in these mutants using single-molecule experiments. A partial loss in the interaction of helicase with ssDNA leads to an enhancement in helicase efficiency, while their ATPase activities remain unchanged. In strong contrast, adding accessory proteins (DnaG or DnaI) to GkDnaC helicase alters the ATPase, unwinding efficiency and the unwinding velocity of the helicase. It suggests that the unwinding velocity of helicase could be modulated by two different pathways, the efficiency of ATP hydrolysis or protein-DNA interaction.  相似文献   

13.
F factor TraI is a helicase and a single-stranded DNA nuclease ("relaxase") essential for conjugative DNA transfer. A TraI domain containing relaxase activity, TraI36, was generated previously. Substituting Ala for Arg150 (R150A) of TraI36 reduces in vitro relaxase activity. The mutant has reduced affinity, relative to wild type, for a 3'-TAMRA-labeled 22-base single-stranded oligonucleotide. While both R150A and wild-type TraI36 bind oligonucleotide, only wild type increases steady-state fluorescence anisotropy of the labeled 22-base oligonucleotide upon binding. In contrast, binding by either protein increases steady-state anisotropy of a 3'-TAMRA-labeled 17-base oligonucleotide. Time-resolved intensity data for both oligonucleotides, bound and unbound, require three lifetimes for adequate fits, at least one more than the fluorophore alone. The preexponential amplitude for the longest lifetime increases upon binding. Time-resolved anisotropy data for both oligonucleotides, bound and unbound, require two rotational correlation times for adequate fits. The longer correlation time increases upon protein binding. Correlation times for the protein-bound 17-base oligonucleotide are similar for both proteins, with the longer correlation time in the range of molecular tumbling of the protein-DNA complex. In contrast, protein binding causes less dramatic increases in correlation times for the 22-base oligonucleotide relative to the 17-base oligonucleotide. Binding studies indicate that R150 contributes to recognition of bases immediately 3' to the DNA cleavage site, consistent with the apparent proximity of R150 and the 3' oligonucleotide end. Models in which the R150A substitution alters single-stranded DNA flexibility at the oligonucleotide 3' end or affects fluorophore-DNA or fluorophore-protein interactions are discussed.  相似文献   

14.
M C Whitby  S D Vincent    R G Lloyd 《The EMBO journal》1994,13(21):5220-5228
The product of the recG gene of Escherichia coli is needed for normal recombination and DNA repair in E. coli and has been shown to help process Holliday junction intermediates to mature products by catalysing branch migration. The 76 kDa RecG protein contains sequence motifs conserved in the DExH family of helicases, suggesting that it promotes branch migration by unwinding DNA. We show that RecG does not unwind blunt ended duplex DNA or forked duplexes with short unpaired single-strand ends. It also fails to unwind a partial duplex (52 bp) classical helicase substrate containing a short oligonucleotide annealed to circular single-stranded DNA. However, unwinding activity is detected when the duplex region is reduced to 26 bp or less, although this requires high levels of protein. The unwinding proceeds with a clear 3' to 5' polarity with respect to the single strand bound by RecG. Substantially higher levels of unwinding are observed with substrates containing a three-way duplex branch. This is attributed to RecG's particular affinity for junction DNA which we demonstrate would be heightened by single-stranded DNA binding protein in vivo. Reaction requirements for unwinding are the same as for branch migration of Holliday junctions, with a strict dependence on hydrolysis of ATP. These results define RecG as a new class of helicase that has evolved to catalyse the branch migration of Holliday junctions.  相似文献   

15.
Helicases are molecular motors that unwind double-stranded DNA or RNA. In addition to unwinding nucleic acids, an important function of these enzymes seems to be the disruption of protein-nucleic acid interactions. Bacteriophage T4 Dda helicase can displace proteins bound to DNA, including streptavidin bound to biotinylated oligonucleotides. We investigated the mechanism of streptavidin displacement by varying the length of the oligonucleotide substrate. We found that a monomeric form of Dda catalyzed streptavidin displacement; however, the activity increased when multiple helicase molecules bound to the biotinylated oligonucleotide. The activity does not result from cooperative binding of Dda to the oligonucleotide. Rather, the increase in activity is a consequence of the directional bias in translocation of individual helicase monomers. Such a bias leads to protein-protein interactions when the lead monomer stalls owing to the presence of the streptavidin block.  相似文献   

16.
The NS3 protein of hepatitis C virus (HCV) is a bifunctional protein containing a serine protease in the N-terminal one-third, which is stimulated upon binding of the NS4A cofactor, and an RNA helicase in the C-terminal two-thirds. In this study, a C-terminal hexahistidine-tagged helicase domain of the HCV NS3 protein was expressed in Escherichia coli and purified to homogeneity by conventional chromatography. The purified HCV helicase domain has a basal ATPase activity, a polynucleotide-stimulated ATPase activity, and a nucleic acid unwinding activity and binds efficiently to single-stranded polynucleotide. Detailed characterization of the purified HCV helicase domain with regard to all four activities is presented. Recently, we published an X-ray crystallographic structure of a binary complex of the HCV helicase with a (dU)(8) oligonucleotide, in which several conserved residues of the HCV helicase were shown to be involved in interactions between the HCV helicase and oligonucleotide. Here, site-directed mutagenesis was used to elucidate the roles of these residues in helicase function. Four individual mutations, Thr to Ala at position 269, Thr to Ala at position 411, Trp to Leu at position 501, and Trp to Ala at position 501, produced a severe reduction of RNA binding and completely abolished unwinding activity and stimulation of ATPase activity by poly(U), although the basal ATPase activity (activity in the absence of polynucleotide) of these mutants remained intact. Alanine substitution at Ser-231 or Ser-370 resulted in enzymes that were indistinguishable from wild-type HCV helicase with regard to all four activities. A mutant bearing Phe at Trp-501 showed wild-type levels of basal ATPase, unwinding activity, and single-stranded RNA binding activity. Interestingly, ATPase activity of this mutant became less responsive to stimulation by poly(U) but not to stimulation by other polynucleotides, such as poly(C). Given the conservation of some of these residues in other DNA and RNA helicases, their role in the mechanism of unwinding of double-stranded nucleic acid is discussed.  相似文献   

17.
Pre-steady-state chemical quenched-flow techniques were used to study DNA unwinding catalyzed by Escherichia coli UvrD helicase (helicase II), a member of the SF1 helicase superfamily. Single turnover experiments, with respect to unwinding of a DNA oligonucleotide, were used to examine the DNA substrate and UvrD concentration requirements for rapid DNA unwinding by pre-bound UvrD helicase. In excess UvrD at low DNA concentrations (1 nM), the bulk of the DNA is unwound rapidly by pre-bound UvrD complexes upon addition of ATP, but with time-courses that display a distinct lag phase for formation of fully unwound DNA, indicating that unwinding occurs in discrete steps, with a "step size" of four to five base-pairs as previously reported. Optimum unwinding by pre-bound UvrD-DNA complexes requires a 3' single-stranded (ss) DNA tail of 36-40 nt, whereas productive complexes do not form readily on DNA with 3'-tail lengths 相似文献   

18.
E. coli Rep protein is a 3' to 5' SF1 superfamily DNA helicase which is monomeric in the absence of DNA, but can dimerize upon binding either single-stranded or duplex DNA. A variety of biochemical studies have led to proposals that Rep dimerization is important for its helicase activity; however, recent structural studies of Bacillus stearothermophilus PcrA have led to suggestions that SF1 helicases, such as E. coli Rep and E. coli UvrD, function as monomeric helicases. We have examined the question of whether Rep oligomerization is important for its DNA helicase activity using pre-steady state stopped-flow and chemical quenched-flow kinetic studies of Rep-catalyzed DNA unwinding. The results from four independent experiments demonstrate that Rep oligomerization is required for initiation of DNA helicase activity in vitro. No DNA unwinding is observed when only a Rep monomer is bound to the DNA substrate, even when fluorescent DNA substrates are used that can detect partial unwinding of the first few base-pairs at the ss-ds-DNA junction. In fact, under these conditions, ATP hydrolysis causes dissociation of the Rep monomer from the DNA, rather than DNA unwinding. These studies demonstrate that wild-type Rep monomers are unable to initiate DNA unwinding in vitro, and that oligomerization is required.  相似文献   

19.
Human DNA helicase V, a novel DNA unwinding enzyme from HeLa cells.   总被引:7,自引:4,他引:3       下载免费PDF全文
Using a strand-displacement assay with 32P labeled oligonucleotide annealed to M13 ssDNA we have purified to apparent homogeneity and characterized a novel DNA unwinding enzyme from HeLa cell nuclei, human DNA helicase V (HDH V). This is present in extremely low abundance in the cells and has the highest turnover rate among other human helicases. From 300 grams of cultured cells only 0.012 mg of pure protein was isolated which was free of DNA topoisomerase, ligase, nicking and nuclease activities. The enzyme also shows ATPase activity dependent on single-stranded DNA and has an apparent molecular weight of 92 kDa by SDS-polyacrylamide gel electrophoresis. Only ATP or dATP hydrolysis supports the unwinding activity. The helicase requires a divalent cation (Mg2+ > Mn2+) at an optimum concentration of 1.0 mM for activity; it unwinds DNA duplexes less than 25 bp long and having a ssDNA stretch as short as 49 nucleotides. A replication fork-like structure is not required to perform DNA unwinding. HDH V cannot unwind either blunt-ended duplex DNA or DNA-RNA hybrids; it unwinds DNA unidirectionally by moving in the 3' to 5' direction along the bound strand, a polarity similar to the previously described human DNA helicases I and III (Tuteja et al. Nucleic Acids Res. 18, 6785-6792, 1990; Tuteja et al. Nucleic Acid Res. 20, 5329-5337, 1992) and opposite to that of human DNA helicase IV (Tuteja et al. Nucleic Acid Res. 19, 3613-3618, 1991).  相似文献   

20.
The Ku autoantigen is a heterodimeric protein of 70- and 83-kDa subunits, endowed with duplex DNA end-binding capacity and DNA helicase activity (Human DNA Helicase II, HDH II). HDH II/Ku is well established as the DNA binding component, the regulatory subunit as well as a substrate for the DNA-dependent protein kinase DNA-PK, a complex involved in the repair of DNA double-strand breaks and in V(D)J recombination in eukaryotes. The effects of phosphorylation by this kinase on the helicase activity of Escherichia coli-produced HDH II/Ku were studied. The rate of DNA unwinding by recombinant HDH II/Ku heterodimer is stimulated at least fivefold upon phosphorylation by DNA-PKcs. This stimulation is due to the effective transfer of phosphate residues to the helicase rather than the mere presence of the complex. In vitro dephosphorylation of HeLa cellular HDH II/Ku caused a significant decrease in the DNA helicase activity of this enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号