首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Membrane-associated ATPase constitutes an essential element common to all secretion machineries in Gram-negative bacteria. How ATP hydrolysis by these ATPases is coupled to secretion process remains unclear. Here we identified R286 as a key residue in the type II secretion system (T2SS) ATPase XpsE of Xanthomonas campestris that plays a pivotal role in coupling ATP hydrolysis to protein translocation. Mutation of R286 to alanine made XpsE hydrolyse ATP at a rate five times that of the wild-type XpsE. Yet the mutant XpsE(R286A) is non-functional in protein secretion via T2SS. Detailed analyses indicated that the mutant XpsE(R286A) lost the ability co-ordinating the N- and C-domain of XpsE. Without significantly influencing XpsE binding affinity with ATP or its oligomerization, R286A mutation however, caused XpsE lose the ability to associate with the cytoplasmic membrane via XpsL(N). As a consequence, ATP hydrolysis by XpsE was uncoupled from protein secretion. Because R286 is highly conserved among members of the secretion NTPase superfamily, we speculate that its equivalent in other homologues may also play a critical energy coupling role for T2SS, type IV pilus assembly and type IV secretion system.  相似文献   

2.
Secretion of fully folded extracellular proteins across the outer membrane of Gram-negative bacteria is mainly assisted by the ATP-dependent type II secretion system (T2SS). Depending on species, 12-15 proteins are usually required for the function of T2SS by forming a trans-envelope multiprotein secretion complex. Here we report crystal structures of an essential component of the Xanthomonas campestris T2SS, the 21-kDa N-terminal domain of cytosolic secretion ATPase XpsE (XpsEN), in two conformational states. By mediating interaction between XpsE and the cytoplasmic membrane protein XpsL, XpsEN anchors XpsE to the membrane-associated secretion complex to allow the coupling between ATP utilization and exoprotein secretion. The structure of XpsEN observed in crystal form P4(3)2(1)2 is composed of a 90-residue alpha/beta sandwich core domain capped by a 62-residue N-terminal helical region. The core domain exhibits structural similarity with the NifU-like domain, suggesting that XpsE(N) may be involved in the regulation of XpsE ATPase activity. Surprisingly, although a similar core domain structure was observed in crystal form I4(1)22, the N-terminal 36 residues of the helical region undergo a large structural rearrangement. Deletion analysis indicates that these residues are required for exoprotein secretion by mediating the XpsE/XpsL interaction. Site-directed mutagenesis study further suggests the more compact conformation observed in the P4(3)2(1)2 crystal likely represents the XpsL binding-competent state. Based on these findings, we speculate that XpsE might function in T2SS by cycling between two conformational states. As a closely related protein to XpsE, secretion ATPase PilB may function similarly in the type IV pilus assembly.  相似文献   

3.
Py B  Loiseau L  Barras F 《EMBO reports》2001,2(3):244-248
The type II secretion machinery allows most Gram-negative bacteria to deliver virulence factors into their surroundings. We report that in Erwinia chrysanthemi, GspE (the putative NTPase), GspF, GspL and GspM constitute a complex in the inner membrane that is presumably used as a platform for assembling other parts of the secretion machinery. The GspE–GspF–GspL–GspM complex was demonstrated by two methods: (i) co-immunoprecipitation of GspE–GspF–GspL with antibodies raised against either GspE or GspF; (ii) interactions in the yeast two-hybrid system between GspF and GspE, GspF and GspL, GspL and GspM. GspL was found to have an essential role in complex formation. We propose a model in which the GspE–GspF–GspL–GspM proteins constitute a building block within the secretion machinery on top of which another building block, referred to as a pseudopilus, assembles. By analogy, we predict that a similar platform is required for the biogenesis of the type IV pilus.  相似文献   

4.
The type II secretion system is a multi-protein complex that spans the cell envelope of Gram-negative bacteria and promotes the secretion of proteins, including several virulence factors. This system is homologous to the type IV pilus biogenesis machinery and contains five proteins, EpsG-K, termed the pseudopilins that are structurally homologous to the type IV pilins. The major pseudopilin EpsG has been proposed to form a pilus-like structure in an energy-dependent process that requires the ATPase, EpsE. A key remaining question is how the membrane-bound EpsG interacts with the cytoplasmic ATPase, and if this is a direct or indirect interaction. Previous studies have established an interaction between the bitopic inner membrane protein EpsL and EpsE; therefore, in this study we used in vivo cross-linking to test the hypothesis that EpsG interacts with EpsL. Our findings suggest that EpsL may function as a scaffold to link EpsG and EpsE and thereby transduce the energy generated by ATP hydrolysis to support secretion. The recent discovery of structural homology between EpsL and a protein in the type IV pilus system implies that this interaction may be conserved and represent an important functional interaction for both the type II secretion and type IV pilus systems.  相似文献   

5.
Type IV pili (T4Ps) are long cell surface filaments, essential for microcolony formation, tissue adherence, motility, transformation, and virulence by human pathogens. The enteropathogenic Escherichia coli bundle-forming pilus is a prototypic T4P assembled and powered by BfpD, a conserved GspE secretion superfamily ATPase held by inner-membrane proteins BfpC and BfpE, a GspF-family membrane protein. Although the T4P assembly machinery shares similarity with type II secretion (T2S) systems, the structural biochemistry of the T4P machine has been obscure. Here, we report the crystal structure of the two-domain BfpC cytoplasmic region (N-BfpC), responsible for binding to ATPase BfpD and membrane protein BfpE. The N-BfpC structure reveals a prominent central cleft between two α/β-domains. Despite negligible sequence similarity, N-BfpC resembles PilM, a cytoplasmic T4P biogenesis protein. Yet surprisingly, N-BfpC has far greater structural similarity to T2S component EpsL, with which it also shares virtually no sequence identity. The C-terminus of the cytoplasmic domain, which leads to the transmembrane segment not present in the crystal structure, exits N-BfpC at a positively charged surface that most likely interacts with the inner membrane, positioning its central cleft for interactions with other Bfp components. Point mutations in surface-exposed N-BfpC residues predicted to be critical for interactions among BfpC, BfpE, and BfpD disrupt pilus biogenesis without precluding interactions with BfpE and BfpD and without affecting BfpD ATPase activity. These results illuminate the relationships between T4P biogenesis and T2S systems, imply that subtle changes in component residue interactions can have profound effects on function and pathogenesis, and suggest that T4P systems may be disrupted by inhibitors that do not preclude component assembly.  相似文献   

6.
TrwD, the VirB11 homologue in conjugative plasmid R388, is a member of the large secretion ATPase superfamily, which includes ATPases from bacterial type II and type IV secretion systems, type IV pilus, and archaeal flagellae assembly. Based on structural studies of the VirB11 homologues in Helicobacter pylori and Brucella suis and the archaeal type II secretion ATPase GspE, a unified mechanism for the secretion ATPase superfamily has been proposed. Here, we have found that the ATP turnover of TrwD is down-regulated by physiological concentrations of magnesium. This regulation is exerted by increasing the affinity for ADP, hence delaying product release. Circular dichroism and limited proteolysis analysis indicate that magnesium induces conformational changes in the protein that promote a more rigid, but less active, form of the enzyme. The results shown here provide new insights into the catalytic mechanism of the secretion ATPase superfamily.  相似文献   

7.
Type IV pili are surface-exposed filaments, which extend from a variety of bacterial pathogens and play a major role in pathogenesis, motility, and DNA uptake. Here, we present the crystal structure of a complex between a cytoplasmic component of the type IV pilus biogenesis system from Thermus thermophilus, PilM, in complex with a peptide derived from the cytoplasmic portion of the inner membrane protein PilN. PilM also binds ATP, and its structure is most similar to the actin-like protein FtsA. PilN binds in a narrow channel between the 1A and 1C subdomains in PilM; the binding site is well conserved in other gram-negative bacteria, notably Neisseria meningitidis, Pseudomonas aeruginosa, and Vibrio cholerae. We find no evidence for the catalysis of ATP hydrolysis by PilM; fluorescence data indicate that the protein is likely to be saturated by ATP at physiological concentrations. In addition, binding of the PilN peptide appears to influence the environment of the ATP binding site. This is the first reported structure of a complex between two type IV pilus biogenesis proteins. We propose a model in which PilM binds ATP and then PilN as one of the first steps in the formation of the inner membrane platform of the type IV pilus biogenesis complex.  相似文献   

8.
PilT is a hexameric ATPase required for bacterial type IV pilus retraction and surface motility. Crystal structures of ADP- and ATP-bound Aquifex aeolicus PilT at 2.8 and 3.2 A resolution show N-terminal PAS-like and C-terminal RecA-like ATPase domains followed by a set of short C-terminal helices. The hexamer is formed by extensive polar subunit interactions between the ATPase core of one monomer and the N-terminal domain of the next. An additional structure captures a nonsymmetric PilT hexamer in which approach of invariant arginines from two subunits to the bound nucleotide forms an enzymatically competent active site. A panel of pilT mutations highlights the importance of the arginines, the PAS-like domain, the polar subunit interface, and the C-terminal helices for retraction. We present a model for ATP binding leading to dramatic PilT domain motions, engagement of the arginine wire, and subunit communication in this hexameric motor. Our conclusions apply to the entire type II/IV secretion ATPase family.  相似文献   

9.
The secretion superfamily ATPases are conserved motors in key microbial membrane transport and filament assembly machineries, including bacterial type II and IV secretion, type IV pilus assembly, natural competence, and archaeal flagellae assembly. We report here crystal structures and small angle X-ray scattering (SAXS) solution analyses of the Archaeoglobus fulgidus secretion superfamily ATPase, afGspE. AfGspE structures in complex with ATP analogue AMP-PNP and Mg(2+) reveal for the first time, alternating open and closed subunit conformations within a hexameric ring. The closed-form active site with bound Mg(2+) evidently reveals the catalytically active conformation. Furthermore, nucleotide binding results and SAXS analyses of ADP, ATPgammaS, ADP-Vi, and AMP-PNP-bound states in solution showed that asymmetric assembly involves ADP binding, but clamped closed conformations depend on both ATP gamma-phosphate and Mg(2+) plus the conserved motifs, arginine fingers, and subdomains of the secretion ATPase superfamily. Moreover, protruding N-terminal domain shifts caused by the closed conformation suggest a unified piston-like, push-pull mechanism for ATP hydrolysis-dependent conformational changes, suitable to drive diverse microbial secretion and assembly processes by a universal mechanism.  相似文献   

10.
11.
Agrobacterium tumefaciens VirB10 couples inner membrane (IM) ATP energy consumption to substrate transfer through the VirB/D4 type IV secretion (T4S) channel and also mediates biogenesis of the virB -encoded T pilus. Here, we determined the functional importance of VirB10 domains denoted as the: (i) N-terminal cytoplasmic region, (ii) transmembrane (TM) α-helix, (iii) proline-rich region (PRR) and (iv) C-terminal β-barrel domain. Mutations conferring a transfer- and pilus-minus (Tra-, Pil-) phenotype included PRR deletion and β-barrel substitution mutations that prevented VirB10 interaction with the outer membrane (OM) VirB7–VirB9 channel complex. Mutations permissive for substrate transfer but blocking pilus production (Tra+, Pil-) included a cytoplasmic domain deletion and TM domain insertion mutations. Another class of Tra+ mutations also selectively disrupted pilus biogenesis but caused release of pilin monomers to the milieu; these mutations included deletions of α-helical projections extending from the β-barrel domain. Our findings, together with results of Cys accessibility studies, indicate that VirB10 stably integrates into the IM, extends via its PRR across the periplasm, and interacts via its β-barrel domain with the VirB7–VirB9 channel complex. The data further support a model that distinct domains of VirB10 regulate formation of the secretion channel or the T pilus.  相似文献   

12.
The tad (tight adherence) locus encodes a protein translocation system that produces a novel variant of type IV pili. The pilus assembly protein TadZ (called CpaE in Caulobacter crescentus) is ubiquitous in tad loci, but is absent in other type IV pilus biogenesis systems. The crystal structure of TadZ from Eubacterium rectale (ErTadZ), in complex with ATP and Mg2+, was determined to 2.1 Å resolution. ErTadZ contains an atypical ATPase domain with a variant of a deviant Walker‐A motif that retains ATP binding capacity while displaying only low intrinsic ATPase activity. The bound ATP plays an important role in dimerization of ErTadZ. The N‐terminal atypical receiver domain resembles the canonical receiver domain of response regulators, but has a degenerate, stripped‐down ‘active site’. Homology modelling of the N‐terminal atypical receiver domain of CpaE indicates that it has a conserved protein–protein binding surface similar to that of the polar localization module of the social mobility protein FrzS, suggesting a similar function. Our structural results also suggest that TadZ localizes to the pole through the atypical receiver domain during an early stage of pili biogenesis, and functions as a hub for recruiting other pili components, thus providing insights into the Tad pilus assembly process.  相似文献   

13.
EpsE is a cytoplasmic component of the type II secretion system in Vibrio cholerae. Through ATP hydrolysis and an interaction with the cytoplasmic membrane protein EpsL, EpsE supports secretion of cholera toxin across the outer membrane. In this study, we have determined the effect of the cytoplasmic domain of EpsL (cyto-EpsL) and purified phospholipids on the ATPase activity of EpsE. Acidic phospholipids, specifically cardiolipin, bound the copurified EpsE/cyto-EpsL complex and stimulated its ATPase activity 30-130-fold, whereas the activity of EpsE alone was unaffected. Removal of the last 11 residues (residues 243-253) from cyto-EpsL prevented cardiolipin binding as well as stimulation of the ATPase activity of EpsE. Further mutagenesis of the C-terminal region of the EpsL cytoplasmic domain adjacent to the predicted transmembrane helix suggested that this region participates in fine tuning the interaction of EpsE with the cytoplasmic membrane and influences the oligomerization state of EpsE thereby stimulating its ATPase activity and promoting extracellular secretion in V. cholerae.  相似文献   

14.
Aeromonas salmonicida expresses a large number of proven and suspected virulence factors including bacterial surface proteins, extracellular degradative enzymes, and toxins. We report the isolation and characterization of a 4-gene cluster, tapABCD, from virulent A. salmonicida A450 that encodes proteins homologous to components required for type IV pilus biogenesis. One gene, tapA, encodes a protein with high homology to type IV pilus subunit proteins from many gram-negative bacterial pathogens, including Aeromonas hydrophila, Pseudomonas aeruginosa, and Vibrio vulnificus. A survey of A. salmonicida isolates from a variety of sources shows that the tapA gene is as ubiquitous in this species as it is in other members of the Aeromonads. Immunoblotting experiments demonstrate that it is expressed in vitro and is antigenically conserved among the A. salmonicida strains tested. A mutant A. salmonicida strain defective in expression of TapA was constructed by allelic exchange and found to be slightly less pathogenic for juvenile Oncorhynchus mykiss (rainbow trout) than wild type when delivered by intraperitoneal injection. In addition, fish initially challenged with a high dose of wild type were slightly more resistant to rechallenge with wild type than those initially challenged with the tapA mutant strain, suggesting that presence of TapA contributes to immunity. Two of the other three genes identified, tapB and tapC, encode proteins with homology to factors known to be required for type IV pilus assembly in P. aeruginosa, but in an as yet unidentified manner. TapB is a member of the ABC-transporter family of proteins that contain characteristic nucleotide-binding regions, and which may provide energy for type IV pilus assembly through the hydrolysis of ATP. TapC homologs are integral cytoplasmic membrane proteins that may play a role in pilus anchoring or initiation of assembly. The fourth gene, tapD, encodes a product that shares homology with a family of proteins with a known biochemical function, namely, the type IV prepilin leader peptidases. These bifunctional enzymes proteolytically cleave the leader peptide from the pilin precursor (prepilin) and then N-methylate the newly exposed N-terminal amino acid prior to assembly of the subunits into the pilus structure. We demonstrate that A. salmonicida TapD is able to restore type IV pilus assembly and type II secretion in a P. aeruginosa strain carrying a mutation in its type IV peptidase gene, suggesting that it plays the same role in A. salmonicida.  相似文献   

15.
Pilus biogenesis on the surface of uropathogenic Escherichia coli requires the chaperone/usher pathway, a terminal branch of the general secretory pathway. In this pathway, periplasmic chaperone-subunit complexes target an outer membrane (OM) usher for subunit assembly into pili and secretion to the cell surface. The molecular mechanisms of protein secretion across the OM are not well understood. Mutagenesis of the P pilus usher PapC and the type 1 pilus usher FimD was undertaken to elucidate the initial stages of pilus biogenesis at the OM. Deletion of residues 2 to 11 of the mature PapC N terminus abolished the targeting of the usher by chaperone-subunit complexes and rendered PapC nonfunctional for pilus biogenesis. Similarly, an intact FimD N terminus was required for chaperone-subunit binding and pilus biogenesis. Analysis of PapC-FimD chimeras and N-terminal fragments of PapC localized the chaperone-subunit targeting domain to the first 124 residues of PapC. Single alanine substitution mutations were made in this domain that blocked pilus biogenesis but did not affect targeting of chaperone-subunit complexes. Thus, the usher N terminus does not function simply as a static binding site for chaperone-subunit complexes but also participates in subsequent pilus assembly events.  相似文献   

16.
The gram-negative bacterium Kingella kingae is a leading cause of osteoarticular infections in young children and initiates infection by colonizing the oropharynx. Adherence to respiratory epithelial cells represents an initial step in the process of K. kingae colonization and is mediated in part by type IV pili. In previous work, we observed that elimination of the K. kingae PilC1 and PilC2 pilus-associated proteins resulted in non-piliated organisms that were non-adherent, suggesting that PilC1 and PilC2 have a role in pilus biogenesis. To further define the functions of PilC1 and PilC2, in this study we eliminated the PilT retraction ATPase in the ΔpilC1ΔpilC2 mutant, thereby blocking pilus retraction and restoring piliation. The resulting strain was non-adherent in assays with cultured epithelial cells, supporting the possibility that PilC1 and PilC2 have adhesive activity. Consistent with this conclusion, purified PilC1 and PilC2 were capable of saturable binding to epithelial cells. Additional analysis revealed that PilC1 but not PilC2 also mediated adherence to selected extracellular matrix proteins, underscoring the differential binding specificity of these adhesins. Examination of deletion constructs and purified PilC1 and PilC2 fragments localized adhesive activity to the N-terminal region of both PilC1 and PilC2. The deletion constructs also localized the twitching motility property to the N-terminal region of these proteins. In contrast, the deletion constructs established that the pilus biogenesis function of PilC1 and PilC2 resides in the C-terminal region of these proteins. Taken together, these results provide definitive evidence that PilC1 and PilC2 are adhesins and localize adhesive activity and twitching motility to the N-terminal domain and biogenesis to the C-terminal domain.  相似文献   

17.
FimX is a multidomain signaling protein required for type IV pilus biogenesis and twitching motility in the opportunistic pathogen Pseudomonas aeruginosa. FimX is localized to the single pole of the bacterial cell, and the unipolar localization is crucial for the correct assembly of type IV pili. FimX contains a non-catalytic EAL domain that lacks cyclic diguanylate (c-di-GMP) phosphodiesterase activity. It was shown that deletion of the EAL domain or mutation of the signature EVL motif affects the unipolar localization of FimX. However, it was not understood how the C-terminal EAL domain could influence protein localization considering that the localization sequence resides in the remote N-terminal region of the protein. Using hydrogen/deuterium exchange-coupled mass spectrometry, we found that the binding of c-di-GMP to the EAL domain triggers a long-range (∼ca. 70 Å) conformational change in the N-terminal REC domain and the adjacent linker. In conjunction with the observation that mutation of the EVL motif of the EAL domain abolishes the binding of c-di-GMP, the hydrogen/deuterium exchange results provide a molecular explanation for the mediation of protein localization and type IV pilus biogenesis by c-di-GMP through a remarkable allosteric regulation mechanism.  相似文献   

18.
The Escherichia coli toxin exporter HlyB comprises an integral membrane domain fused to a cytoplasmic domain of the ATP-binding casette (ABC) super-family, and it directs translocation of the 110kDa haemolysin protein out of the bacterial cell without using an N-terminal secretion signal peptide. We have exploited the ability to purify the soluble HlyB ABC domain as a fusion with glutathione S-transferase to obtain a direct correlation of the in vivo export of protein by HlyB with the degree of ATP binding and hydrolysis measured in vitro. Mutations in residues that are invariant or highly conserved in the ATP-binding fold and glycine-rich linker peptide of prokaryotic and eukaryotic ABC transporters caused a complete less of both HlyB exporter function and ATPase activity in proteins still able to bind ATP effectively and undergo ATP-induced conformational change. Mutation of less-conserved residues caused reduced export and ATP hydrolysis, but not ATP binding, whereas substitutions of poorly conserved residues did not impair activity either in vivo or in vitro. The data show that protein export by HlyB has an absolute requirement for the hydrolysis of ATP bound by its cytoplasmic domain and indicate that comparable mutations that disable other prokaryotic and eukaryotic ABC transporters also cause a specific loss of enzymatic activity.  相似文献   

19.
Hsp90 is an abundant molecular chaperone involved in a variety of cellular processes ranging from signal transduction to viral replication. The function of Hsp90 has been shown to be dependent on its ability to hydrolyze ATP, and in vitro studies suggest that the dimeric nature of Hsp90 is critical for this activity. ATP binding occurs at the N-terminal domains of the Hsp90 dimer, whereas the main dimerization site resides in the very C-terminal domain. ATP hydrolysis is performed in a series of conformational changes. These include the association of the two N-terminal domains, which has been shown to stimulate the hydrolysis reaction. In this study, we set out to identify regions in the N-terminal domain that are important for this interaction. We show that N-terminal deletion variants of Hsp90 are severely impaired in their ability to hydrolyze ATP. However, nucleotide binding of these constructs is similar to that of the wild type protein. Heterodimers of the Hsp90 deletion mutants with wild type protein showed that the first 24 amino acids play a crucial role during the ATPase reaction, because their deletion abolishes the trans-activation between the two N-terminal domains. We propose that the turnover rate of Hsp90 is decisively controlled by intermolecular interactions between the N-terminal domains.  相似文献   

20.
The Hsp90 dimer is a molecular chaperone with an unusual N-terminal ATP binding site. The structure of the ATP binding site makes it a member of a new class of ATP-hydrolyzing enzymes, known as the GHKL family. While for some of the family members structural data on conformational changes occurring after ATP binding are available, these are still lacking for Hsp90. Here we set out to investigate the correlation between dimerization and ATP hydrolysis by Hsp90. The dimerization constant of wild type (WT) Hsp90 was determined to be 60 nm. Heterodimers of WT Hsp90 with fragments lacking the ATP binding domain form readily and exhibit dimerization constants similar to full-length Hsp90. However, the ATPase activity of these heterodimers was significantly lower than that of the wild type protein, indicating cooperative interactions in the N-terminal part of the protein that lead to the activation of the ATPase activity. To further address the contribution of the N-terminal domains to the ATPase activity, we used an Hsp90 point mutant that is unable to bind ATP. Since heterodimers between the WT protein and this mutant showed WT ATPase activity, this mutant, although unable to bind ATP, still has the ability to stimulate the activity in its WT partner domain. Thus, contact formation between the N-terminal domains might not depend on ATP bound to both domains. Together, these results suggest a mechanism for coupling the hydrolysis of ATP to the opening-closing movement of the Hsp90 molecular chaperone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号