首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Asia is the major consumer of fertilizer nitrogen and energy in the world, and consequently shares a considerable proportion of the world creation of reactive nitrogen (Nr). However, if estimated on per capita basis, Asia is characterized by a lower arable land area, fertilizer nitrogen consumption, energy consumption, and gross domestic product, as well as lower daily protein intake. To meet the increasing needs for food and energy for the growing population combined with the improvement of living standards, Nr will inevitably increase. The present study estimates the creation of Nr and the emissions of various N compounds into environment in Asia currently and in 2030. In comparison with the world averages, the lower fertilizer nitrogen and energy use efficiencies, and the lower use of animal wastes for agriculture imply that there is potential for moderating the increase in Nr and its impacts on the environment. Strategies for moderating the increase are discussed.  相似文献   

2.
Asia is the major consumer of fertilizer nitrogen and energy in the world, and consequently shares a considerable proportion of the world creation of reactive nitrogen (Nr). However, if estimated on per capita basis, Asia is characterized by a lower arable land area, fertilizer nitrogen consumption, energy consumption, and gross domestic product, as well as lower daily protein intake. To meet the increasing needs for food and energy for the growing population combined with the improvement of living standards, Nr will inevitably increase. The present study estimates the creation of Nr and the emissions of various N compounds into environment in Asia currently and in 2030. In comparison with the world averages, the lower fertilizer nitrogen and energy use efficiencies, and the lower use of animal wastes for agriculture imply that there is potential for moderating the increase in Nr and its impacts on the environment. Strategies for moderating the increase are discussed.  相似文献   

3.
While the amount of reactive nitrogen circulating at the global level has increased markedly in the last century, the effects of this increase are largely seen at the regional level due to interacting ecological and socio-economic factors. In contrast with most other regions of the world, Latin America and the Caribbean (LA-Ca) stand out due to the fact that the major input of reactive nitrogen (Nr) still occurs naturally via biological nitrogen fixation (BNF) in natural ecosystems as opposed to anthropogenic inputs of synthetic fertilizer, fossil fuel combustion and cropping with leguminous species. Largely due to economic reasons, the consumption of fertilizer N in the LA-Ca region is still low in comparison with the average consumption of the world. However, the fertilizer N consumption is increasing at a much faster rate than that in developed regions of the world, like USA and Canada. The Nr production through BNF in cultivated plants that fix nitrogen (C-BNF) is 5 times lower than that occurring naturally in Latin America, but is still equivalent to 16% of the world C-BNF. The cultivation of nitrogen-fixing crop species in the LA-Ca region is also increasing, almost entirely due to the expansion of soybean fields in the central and northern regions of Brazil and the Pampa region of Argentina. Other anthropogenic activities in the region that contribute to an increase in the circulation of reactive nitrogen include the impact of biomass burning and urbanization. In the last decade, an average of 47,000 km2 per year of forests was burned in the LA-Ca region. The environmental impact of urban centers in the LA-Ca region has become very important, since an intense urbanization process is occurring in this region, at an intensity that far exceeds urban development in the northern hemisphere. The consequences of increased urbanization include increased emissions of NO x to the atmosphere due to the fossil fuel combustion, and the lack of sewage treatment facilities in most cities of the LA-Ca result in a large volume of untreated sewage discharged into surface waters, creating serious environmental problems. The combination of rapid urbanization and agricultural intensification in this region suggest that concern is warranted for the potential for increase in the circulation of reactive nitrogen in the very near future. At the same time, the opportunity still exists to mitigate some of the consequences of human impact on the nitrogen cycle in a region that still maintains a large fraction of its natural ecosystems intact.  相似文献   

4.
赵永强  田冬  刘伟 《生态学报》2023,43(12):5162-5172
人类生活消费是陆地生态系统氮素流动的主要驱动力。定量核算和评估农村居民生活消费氮产生(NRUR)及其活性氮(Nr)排放特征,对农村氮的可持续管理和生态环境改善具有重要的指导意义。以中国为例(2000—2020年),建立了NRUR的产生及其活性氮排放核算框架。结果表明:20年来NRUR上升了36.7%,年均5.62 Tg/a,食物消费氮是最大的贡献源(43.2%),工业日用品和家庭生活燃料消费氮分别占31.5%和25.3%;Nr排放量占NRUR的25.4%(年均1.43 Tg/a),其以年均1.3%速率下降;NH3挥发是最大的Nr排放源(50.1%),其次为排入地表水的Nr(31.0%)、NOx(15.8%)和N2O(2.0%),排入地下水的Nr仅占1.1%。加大人类粪尿排泄物的处置能力,减少秸秆燃料的使用比例、优化农村居民生活能源消费结构对农村居民生活消费Nr减排至关重要。  相似文献   

5.
Reactive nitrogen (Nr) emissions aggravate air and water pollution across the world. The factors influencing Nr emissions have not been clearly uncovered, especially for regions under rapid economic growth. Here we modeled total Nr emissions in mainland China and analyzed factors driving their growth during the decade (2000–2010) of fastest socioeconomic development. Results show that total Nr emissions increased from 24.9 terrogram (Tg) to 35.2 Tg, a 41.7% increase with an average annual growth rate of 3.5%. Agricultural activities, including crop planting and livestock and poultry breeding, together took a substantial but decreasing share, from 75.2% in 2000 to 61.4% in 2010. Industrial wastewater discharge, energy use, and crop production are the three largest sources contributing to the Nr emissions growth. Factors related to scale (e.g., the amount of industrial energy use) led to a growth in Nr emissions, and factors related to efficiency (e.g., industrial energy use per unit of economic output) contributed to reduction. The decreasing effect of efficiency gains, however, was still unable to overcome the increasing effect of the activity scale. More in-depth research studies on mitigation strategies are required, to inform the decoupling between socioeconomic development and Nr emissions.  相似文献   

6.
At a global scale, cereal yields and fertilizer N consumption have increased in a near-linear fashion during the past 40 years and are highly correlated with one another. However, large differences exist in historical trends of N fertilizer usage and nitrogen use efficiency (NUE) among regions, countries, and crops. The reasons for these differences must be understood to estimate future N fertilizer requirements. Global nitrogen needs will depend on: (i) changes in cropped cereal area and the associated yield increases required to meet increasing cereal demand from population and income growth, and (ii) changes in NUE at the farm level. Our analysis indicates that the anticipated 38% increase in global cereal demand by 2025 can be met by a 30% increase in N use on cereals, provided that the steady decline in cereal harvest area is halted and the yield response to applied N can be increased by 20%. If losses of cereal cropping area continue at the rate of the past 20 years (?0.33% per year) and NUE cannot be increased substantially, a 60% increase in global N use on cereals would be required to meet cereal demand. Interventions to increase NUE and reduce N losses to the environment must be accomplished at the farm-or field-scale through a combination of improved technologies and carefully crafted local policies that contribute to the adoption of improved N management; uniform regional or national directives are unlikey to be effective at both sustaining yield increases and improving NUE. Examples from several countries show that increases in NUE at rates of 1% per year or more can be achieved if adequate investments are made in research and extension. Failure to arrest the decrease in cereal crop area and to improve NUE in the world’s most important agricultural systems will likely cause severe damage to environmental services at local, regional, and global scales due to a large increase in reactive N load in the environment.  相似文献   

7.
Agricultural yields are limited by acute deficiencies of at least one major nutrient in those parts of the world where most people live. Crop responses to fertilizer are invariably considerable and average yields per ha of cereals (the main component of man's food) in the major countries are nearly proportional to the amounts of N+P2O5+K2O applied as fertilizer. Often responses to nitrogen fertilizer are restricted by shortage of some other nutrient, but in West Europe where the soils are well endowed with phosphorus, potassium and sulphur average yields of wheat per country are almost directly proportional to the level of N-fertilizer applied. Much N-fertilizer is wasted because of difficulties in forecasting levels and methods of application for different conditions. Predictions based on simple statistical interpretation of the results of field trials have proved to be unsatisfactory. The new mechanistic modelling approaches that take far greater account of existing principles about key processes have been more successful. Nitrogen recycling is small in existing agriculture and there is much scope for improvement. Biological fixation provides much nitrogen for world agriculture. Under the right conditions legumes can fix at least 300 kg N ha?1 yr?1, which is more than sufficient for maximum growth. A major drawback of legumes, however, is that grain yields are inherently much lower than those of cereals. Sufficient N-fertilizer to grow all the food required for mankind can be synthesised from only 2% of the present world consumption of fossil fuel. Despite massive increases in oil prices, the cost of nitrogen fertilizer relative to that of food has remained virtually unchanged. It is still very profitable to apply nitrogen fertilizer in most parts of the world. Serious problems in the future are likely to result from essential resources (energy and minerals) being very unevenly distributed in relation to where they are needed to grow food.  相似文献   

8.
For the foreseeable future a majority of the population, and almost all the mal- and under-nourished, will continue to be found in the tropics and subtropics. Food security in these parts of the world will have to be met largely from local resources. The productivity of the land is to a large extent determined by the fertlity of the soil, which in turn is mostly determined by its organic matter content and stored nutrients. Soil organic matter is readily lost when organic matter inputs are reduced upon cultivation and more so upon intensification. The concomitant loss of topsoil and possible exposure of subsoil acidity may cause further soil degradation.<br>Plant nutrients to replenish what is yearly taken from the soil to meet the demands for food and fibre amount to 230 million tonnes (Mt). Current fertilizer consumption stands at about 130 Mt of N, P2O5,and K2O, supplemented by an estimated 90 Mt of N from biological nitrogen fixation worldwide. Although 80 per cent of the population lives in the developing world, only half the world''s fertilizer is consumed there. Yet, as much as 50% of the increase in agricultural productivity in the developing world is due to the adoption of fertilizers. World population growth will cause a doubling in these nutrients requirements for the developing world by 2020, which, in the likely case of inadequate production, will need to be met from soil reserves. Because expansion of the cultivable land area is reaching its limits, the reliance on nutrient inputs and their efficient use is bound to grow.<br>With current urban expansion, nutrients in harvested products are increasingly lost from the rural environment as a whole. Estimates of soil nutrient depletion rates for sub-Saharan Africa (SSA) are alarmingly high. The situation may be more favourable in Latin America and Asia where fertilizer inputs are tenfold those of SSA. Closing the nutrient cycle at a community level in rural areas may be tedious; on an inter-regional level it is associated with considerable costs of collection, detoxification and transportation to the farms. Yet, at the rate at which some of the non-renewable resources such as phosphorus and potassium are being exploited, recycling of these nutrients will soon be required. <br>  相似文献   

9.
施肥方式不当是半干旱区全膜双垄沟播玉米水肥利用率低的主要原因之一,研究氮肥减量后移和有机肥替代对玉米水肥利用效率和产量的影响,可为该区玉米水肥高效管理提供理论依据。依托4年大田定位试验,设置3个处理,即肥料全部基施(CK)、减氮15%且在抽雄期追施(RN)、30%的化肥以有机肥替代且在抽雄期追施(RNM),研究不同施肥模式对玉米耗水特性、生长发育和水肥利用效率的影响。结果表明: 施肥方式对玉米水肥利用效率和产量有显著调控作用,并与降雨年型密切相关。欠水年和平水年,RN花前耗水量较CK降低16.1%~18.8%,花后耗水量提高18.0%~22.2%;RNM花前、花后耗水量均与CK差异不显著。丰水年,RN和RNM花前耗水量分别较CK降低16.7%和6.3%,花后耗水量分别增加11.4%和29.7%。与CK相比,RN显著提高了追肥后玉米叶片叶绿素相对含量(SPAD值),花后生物量增加15.6%~44.9%,穗长、穗粒数、穗粒重和百粒重显著提高,产量增加9.8%~17.0%,水分利用效率(WUE)提高6.3%~21.4%,肥料偏生产力(PEPT)、氮素偏生产力(PEPTN)、磷素偏生产力(PEPTP)和钾素偏生产力(PEPTK)均显著提高。综上,RN能显著提高不同降水年型下玉米花后耗水量和SPAD值,增加花后生物量,优化穗部性状,使产量、水肥利用效率显著提高,为半干旱区全膜双垄沟播玉米水肥高效利用的有效肥料管理模式。  相似文献   

10.
Knowledge‐based nitrogen (N) management, which is designed for a better synchronization of crop N demand with N supply, is critical for global food security and environmental sustainability. Yet, a comprehensive assessment on how these N management practices affect food production, greenhouse gas emission (GHG), and N pollution in China is lacking. We compiled the results of 376 studies (1166 observations) to evaluate the overall effects of seven knowledge‐based N management practices on crop productivity, nitrous oxide (N2O) emission, and major reactive N (Nr) losses (ammonia, NH3; N leaching and runoff), for staple grain (rice, wheat, and corn) production in China. These practices included the application of controlled‐release N fertilizer, nitrification inhibitor (NI) and urease inhibitor (UI), higher splitting frequency of fertilizer N application, lower basal N fertilizer (BF) proportion, deep placement of N fertilizer, and optimal N rate based on soil N test. Our results showed that, compared to traditional N management, these knowledge‐based N practices significantly increased grain yields by 1.3–10.0%, which is attributed to the higher aboveground N uptake (5.1–12.1%) and N use efficiency in grain (8.0–48.2%). Moreover, these N management practices overall reduced GHG emission and Nr losses, by 5.4–39.8% for N2O emission, 30.7–61.5% for NH3 emission (except for the NI application), 13.6–37.3% for N leaching, and 15.5–45.0% for N runoff. The use of NI increased NH3 emission by 27.5% (9.0–56.0%), which deserves extra‐attention. The cost and benefit analysis indicated that the yield profit of these N management practices exceeded the corresponding input cost, which resulted in a significant increase of the net economic benefit by 2.9–12.6%. These results suggest that knowledge‐based N management practice can be considered an effective way to ensure food security and improve environmental sustainability, while increasing economic return.  相似文献   

11.
氮肥的不合理施用导致氮肥利用率低下,大量氮素通过径流、淋溶、氨挥发、硝化-反硝化作用等途径损失到环境中,从而对水体、大气造成污染,带来严重的环境问题,影响人类健康.施氮量、施肥时间和方式,以及肥料种类对氮素流失量的影响显著.土壤氮素浓度过饱和是导致氮素大量流失的最根本原因,充分利用环境供氮量,减少化学氮肥施用量,采用深施等技术,以及配合施用有机肥,可以有效降低氮素的损失,提高氮素利用率.在开发应用新型高效氮肥和强化氮肥高效管理技术研究的同时,加强环境氮素的监测和利用力度,是实现减氮增效的有力手段.  相似文献   

12.
Nitrogen fixation in rice systems: state of knowledge and future prospects   总被引:9,自引:1,他引:8  
Ladha  J. K.  Reddy  P. M. 《Plant and Soil》2003,252(1):151-167
Rice is the most important cereal crop. In the next three decades, the world will need to produce about 60% more rice than today's global production to feed the extra billion people. Nitrogen is the major nutrient limiting rice production. Development of fertilizer-responsive varieties in the Green Revolution, coupled with the realization by farmers of the importance of nitrogen, has led to high rates of N fertilizer use on rice. Increased future demand for rice will entail increased application of fertilizer N. Awareness is growing, however, that such an increase in agricultural production needs to be achieved without endangering the environment. To achieve food security through sustainable agriculture, the requirement for fixed nitrogen must increasingly met by biological nitrogen fixation (BNF) rather than by using nitrogen fixed industrially. It is thus imperative to improve existing BNF systems and develop N2-fixing non-leguminous crops such as rice. Here we review the potentials and constraints of conventional BNF systems in rice agriculture, as well as the prospects of achieving in planta nitrogen fixation in rice.  相似文献   

13.
At a global scale, cereal yields and fertilizer N consumption have increased in a near-linear fashion during the past 40 years and are highly correlated with one another. However,large differences exist in historical trends of N fertilizer usage and nitrogen use efficiency (NUE)among regions, countries, and crops. The reasons for these differences must be understood to estimate future N fertilizer requirements. Global nitrogen needs will depend on: (i) changes in cropped cereal area and the associated yield increases required to meet increasing cereal demand from population and income growth, and (ii) changes in NUE at the farm level. Our analysis indicates that the anticipated 38% increase in global cereal demand by 2025 can be met by a 30% increase in N use on cereals, provided that the steady decline in cereal harvest area is halted and the yield response to applied N can be increased by 20%. If losses of cereal cropping area continue at the rate of the past 20 years (-0.33% per year) and NUE cannot be increased substantially, a 60% increase in global N use on cereals would be required to meet cereal demand. Interventions to increase NUE and reduce N losses to the environment must be accomplished at the farm- or field-scale through a combination of improved technologies and carefully crafted local policies that contribute to the adoption of improved N management; uniform regional or national directives are unlikey to be effective at both sustaining yield increases and improving NUE. Examples from several countries show that increases in NUE at rates of 1% per year or more can be achieved if adequate investments are made in research and extension. Failure to arrest the decrease in cereal crop area and to improve NUE in the world's most important agricultural systems will likely cause severe damage to environmental services at local, regional, and global scales due to a large increase in reactive N load in the environment.  相似文献   

14.
At a global scale, cereal yields and fertilizer N consumption have increased in a near-linear fashion during the past 40 years and are highly correlated with one another. However, large differences exist in historical trends of N fertilizer usage and nitrogen use efficiency (NUE) among regions, countries, and crops. The reasons for these differences must be understood to estimate future N fertilizer requirements. Global nitrogen needs will depend on: (i) changes in cropped cereal area and the associated yield increases required to meet increasing cereal demand from population and income growth, and (ii) changes in NUE at the farm level. Our analysis indicates that the anticipated 38% increase in global cereal demand by 2025 can be met by a 30% increase in N use on cereals, provided that the steady decline in cereal harvest area is halted and the yield response to applied N can be increased by 20%. If losses of cereal cropping area continue at the rate of the past 20 years (-0.33% per year) and NUE cannot be increased substantially, a 60% increase in global N use on cereals would be required to meet cereal demand. Interventions to increase NUE and reduce N losses to the environment must be accomplished at the farm- or field-scale through a combination of improved technologies and carefully crafted local policies that contribute to the adoption of improved N management; uniform regional or national directives are unlikey to be effective at both sustaining yield increases and improving NUE. Examples from several countries show that increases in NUE at rates of 1% per year or more can be achieved if adequate investments are made in research and extension. Failure to arrest the decrease in cereal crop area and to improve NUE in the world's most important agricultural systems will likely cause severe damage to environmental services at local, regional, and global scales due to a large increase in reactive N load in the environment.  相似文献   

15.
Human actions have both intentionally and unintentionally altered the global economy of nitrogen (N), with both positive and negative consequences for human health and welfare, the environment and climate change. Here we examine long-term trends in reactive N (Nr) creation and efficiencies of Nr use within the continental US. We estimate that human actions in the US have increased Nr inputs by at least ~5 times compared to pre-industrial conditions. Whereas N2 fixation as a by-product of fossil fuel combustion accounted for ~1/4 of Nr inputs from the 1970s to 2000 (or ~7 Tg N year?1), this value has dropped substantially since then (to <5 Tg N year?1), owing to Clean Air Act amendments. As of 2007, national N use efficiency (NUE) of all combined N inputs was equal to ~40 %. This value increases to 55 % when considering intentional N inputs alone, with food, industrial goods, fuel and fiber production accounting for the largest Nr sinks, respectively. We estimate that 66 % of the N lost during the production of goods and services enters the air (as NO x , NH3, N2O and N2), with the remaining 34 % lost to various waterways. These Nr losses contribute to smog formation, acid rain, eutrophication, biodiversity declines and climate change. Hence we argue that an improved national NUE would: (i) benefit the US economy on the production side; (ii) reduce social damage costs; and (iii) help avoid some major climate change risks in the future.  相似文献   

16.
《Harmful algae》2009,8(1):14-20
The past few decades have seen a massive increase in coastal eutrophication globally, leading to widespread hypoxia and anoxia, habitat degradation, alteration of food-web structure, loss of biodiversity, and increased frequency, spatial extent, and duration of harmful algal blooms. Much of this eutrophication is due to increased inputs of nitrogen to coastal oceans. Before the advent of the industrial revolution and the green revolution, the rate of supply of nitrogen on Earth was limited to the rate of bacterial nitrogen fixation, but human activity now has roughly doubled the rate of creation of reactive, biologically available nitrogen on the land masses of the Earth. Regional variation in this increase is great, and some regions of the Earth have seen little change, while in other areas, nitrogen fluxes through the atmosphere and through rivers have increased by 10–15-fold or more. Much of this increase has occurred over the past few decades. Increased use of synthetic nitrogen fertilizer and increased intensity of meat production has led the change globally and in many regions, and agricultural sources are the largest source of nitrogen pollution to many of the planet’s coastal marine ecosystems. The rate of change in nitrogen use in agriculture is incredible, and over half of the synthetic nitrogen fertilizer ever produced has been used in the past 15 years. Atmospheric deposition of nitrogen from fossil fuel combustion also contributes to the global budget for reactive nitrogen and is the largest single source of nitrogen pollution in some regions. Technical solutions for reducing nitrogen pollution exist at reasonable cost, but implementation has been poor in many regions.  相似文献   

17.
In this review, recent developments and future prospects of obtaining a better understanding of the regulation of nitrogen use efficiency in the main crop species cultivated in the world are presented. In these crops, an increased knowledge of the regulatory mechanisms controlling plant nitrogen economy is vital for improving nitrogen use efficiency and for reducing excessive input of fertilizers, while maintaining an acceptable yield. Using plants grown under agronomic conditions at low and high nitrogen fertilization regimes, it is now possible to develop whole-plant physiological studies combined with gene, protein, and metabolite profiling to build up a comprehensive picture depicting the different steps of nitrogen uptake, assimilation, and recycling to the final deposition in the seed. A critical overview is provided on how understanding of the physiological and molecular controls of N assimilation under varying environmental conditions in crops has been improved through the use of combined approaches, mainly based on whole-plant physiology, quantitative genetics, and forward and reverse genetics approaches. Current knowledge and prospects for future agronomic development and application for breeding crops adapted to lower fertilizer input are explored, taking into account the world economic and environmental constraints in the next century.  相似文献   

18.
The agriculture sector has historically been a major source of greenhouse gas (GHG) emissions into the atmosphere. Although the use of synthetic fertilizers is one of the most common widespread agricultural practices, over-fertilization can lead to negative economic and environmental consequences, such as high production costs, depletion of energy resources, and increased GHG emissions. Here, we provide an analysis to understand the evolution of cereal production and consumption of nitrogen (N) fertilizers in Brazil and to correlate N use efficiency (NUE) with economic and environmental losses as N2O emissions. Our results show that the increased consumption of N fertilizers is associated with a large decrease in NUE in recent years. The CO2 eq. of N2O emissions originating from N fertilization for cereal production were approximately 12 times higher in 2011 than in 1970, indicating that the inefficient use of N fertilizers is directly related to environmental losses. The projected N fertilizer forecasts are 2.09 and 2.37 million ton for 2015 and 2023, respectively. An increase of 0.02% per year in the projected NUE was predicted for the same time period. However, decreases in the projected CO2 eq. emissions for future years were not predicted. In a hypothetical scenario, a 2.39% increase in cereal NUE would lead to $ 21 million savings in N fertilizer costs. Thus, increases in NUE rates would lead not only to agronomic and environmental benefits but also to economic improvement.  相似文献   

19.
Anthropogenic addition of reactive nitrogen (Nr) to the biosphere is increasing globally and some terrestrial ecosystems are suffering from a state of excess Nr for biological nitrogen (N) demand, termed N saturation. Here, we review the ecological risks in relation to N saturation and prospective responses to N saturation. Excess Nr increases the risks of local extinction of rare plant species, encouragement of exotic plant species, disturbance of nutrient balance in plant organs, and increase of herbivory in plant communities. On the ecosystem scale, excess bioavailable N induces forest decline, disturbance of nutrient cycling within ecosystems, depending on vegetation, soil, land-use, and N-loading history. These Nr risks will increase in the Asian region, where impacts of Nr in natural terrestrial ecosystems have been scarcely studied. Whether much of the terrestrial ecosystems on a global level are in the sate of N saturation or not is still controversial, but the potential risks of excess Nr seem to be increasing. The fundamental ways to mitigate Nr risks are to reduce Nr production, prevent Nr translocation, and promote conversion of Nr to N2. Temporal, but promising actions against ecological N risks may include management of forests and riparian zones, and carbon addition in grassland.  相似文献   

20.
氮肥运筹对小麦产量、氮素利用效率和光能利用率的影响   总被引:3,自引:0,他引:3  
连续2年在西南冬麦区的重庆、仁寿、广汉、西昌4个地点,开展3种施氮水平(每公顷纯氮0、120、180 kg,简写为N0、N120、N180)和3种氮肥分配模式(NA:底肥100%;NB:底肥70%+苗肥30%;NC:底肥60%+拔节肥40%)的田间试验,监测小麦花后冠层叶片SPAD值、群体光合速率(CAP)、光能利用等生理参数和籽粒产量,计算氮素利用效率、光能利用率等.结果表明: 随施氮水平增加,小麦上三叶SPAD值、CAP、光合有效辐射(PAR)截获率和产量均呈增加趋势,而氮肥农学利用效率、生产效率、吸收效率和利用效率呈降低趋势.氮肥后移的增效作用因施氮水平而异,SPAD于N180增效明显,而CAP于N120增效明显,不同氮肥管理模式的光能利用率因地点而异.氮肥后移能明显提高小麦氮肥农学效率、生产效率、吸收效率和氮素表观回收率,但氮肥利用效率则略有减少.氮肥后移效果NC总体优于NB处理.不同地点比较,广汉的SPAD值、CAP、PAR截获率、氮肥利用参数较高,其产量也相应最高;西昌的产量、SPAD值及氮素利用效率较高,但其光能利用率和CAP较低;重庆和仁寿的SPAD值、光能利用率及氮素利用效率均较低,其产量也最低.小麦生物产量与各地点的籽粒产量、CAP、SPAD值和PAR累积截获量均呈显著或极显著的正相关关系.表明不同生态区域增施氮肥都能促进小麦增产,氮肥后移可进一步优化产量结构、改善氮肥和光能利用效率,但存在年份和地点差异,各地需要制定有针对性的氮肥管理模式.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号