首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.

A field experiment was carried out at the Shenyang Experimental Station of Ecology (CAS) in order to study the effects of slow-release urea fertilizers high polymer-coated urea (SRU1), SRU1 mixed with dicyandiamide DCD (SRU2), and SRU1 mixed with calcium carbide CaC2 (SRU3) on urease activity, microbial biomass C and N, and nematode communities in an aquic brown soil during the maize growth period. The results demonstrated that the application of slow-release urea fertilizers inhibits soil urease activity and increases the soil NH4 +-N content. Soil available N increment could promote its immobilization by microorganisms. Determination of soil microbial biomass N indicated that a combined application of coated urea and nitrification inhibitors increased the soil active N pool. The population of predators/omnivores indicated that treatment with SRU2 could provide enough soil NH4 +-N to promote maize growth and increased the food resource for the soil fauna compared with the other treatments.

  相似文献   

2.
A field experiment was carried out at the Shenyang Experimental Station of Ecology (CAS) in order to study the effects of slow-release urea fertilizers high polymer-coated urea (SRU1), SRU1 mixed with dicyandiamide DCD (SRU2), and SRU1 mixed with calcium carbide CaC2 (SRU3) on urease activity, microbial biomass C and N, and nematode communities in an aquic brown soil during the maize growth period. The results demonstrated that the application of slow-release urea fertilizers inhibits soil urease activity and increases the soil NH4+-N content. Soil available N increment could promote its immobilization by microorganisms. Determination of soil microbial biomass N indicated that a combined application of coated urea and nitrification inhibitors increased the soil active N pool. The population of predators/omnivores indicated that treatment with SRU2 could provide enough soil NH4+-N to promote maize growth and increased the food resource for the soil fauna compared with the other treatments.  相似文献   

3.
A field experiment was carried out at the Shenyang Experimental Station of Ecology (CAS) in order to study the effects of slow-release urea fertilizers high polymer-coated urea (SRU1), SRU1 mixed with dicyandiamide DCD (SRU2), and SRU1 mixed with calcium carbide CaC2 (SRU3) on urease activity, microbial biomass C and N, and nematode communities in an aquic brown soil during the maize growth period. The results demonstrated that the application of slow-release urea fertilizers inhibits soil urease activity and increases the soil NH4+-N content.Soil available N increment could promote its immobilization by microorganisms. Determination of soil microbial biomass N indicated that a combined application of coated urea and nitrification inhibitors increased the soil active N pool. The population of predators/omnivores indicated that treatment with SRU2 could provide enough soil NH4+-N to promote maize growth and increased the food resource for the soil fauna compared with the other treatments.  相似文献   

4.
Anthropogenic nitrogen (N) deposition is an expanding problem that affects the functioning and composition of forest ecosystems, particularly the decomposition of forest litters. Legumes play an important role in the nitrogen cycle of forest ecosystems. Two litter types were chosen from Zijin Mountain in China: Robinia pseudoacacia leaves from a leguminous forest (LF) and Liquidambar formosana leaves from a non-leguminous forest (NF). The litter samples were mixed into original forest soils and incubated in microcosms. Then, they were treated by five forms of N addition: NH4 +, NO3 ?, urea, glycine, and a mixture of all four. During a 6-month incubation period, litter mass losses, soil microbial biomass, soil pH, and enzyme activities were investigated. Results showed that mixed N and NO3 ?-N addition significantly accelerated the litter decomposition rates of LF leaves, while mixed N, glycine-N, and urea-N addition significantly accelerated the litter decomposition rates of NF leaves. Litter decomposition rates and soil enzyme activities under mixed N addition were higher than those under single form of N additions in the two forest types. Nitrogen addition had no significant effects on soil pH and soil microbial biomass. The results indicate that nitrogen addition may alter microbial allocation to extracellular enzyme production without affecting soil microbial biomass, and then affected litter decomposition process. The results further reveal that mixed N is a more important factor in controlling litter decomposition process than single form of N, and may seriously affect soil N cycle and the release of carbon stored belowground.  相似文献   

5.
不同施氮措施对旱作玉米地土壤酶活性及CO2排放量的影响   总被引:5,自引:0,他引:5  
对施用速效氮肥(尿素)和缓释氮肥的旱作夏玉米地土壤酶活性及CO2排放量进行分析。结果表明,与不施肥处理比较,不同氮肥种类和施用量均可显著提高土壤脲酶、蔗糖酶、过氧化氢酶活性和CO2的排放量。在整个生育期,尿素与缓释氮肥处理土壤酶活性和土壤CO2排放量表现出相同变化趋势,尿素和缓释氮肥处理土壤CO2平均排放量分别为459.12 mg·m-·2h-1和427.11 mg·m-·2h-1,两者达到显著差异水平(P<0.5)。相关分析表明,土壤脲酶、蔗糖酶和过氧化氢酶活性与土壤CO2排放量呈显著或极显著正相关,相关系数分别为0.79、0.64和0.80。说明相同施氮量缓释氮肥较尿素能有效提高土壤酶活性并降低土壤碳排放量。  相似文献   

6.
Insam  H.  Palojärvi  A. 《Plant and Soil》1995,168(1):75-81
Several boreal and alpine forests are depleted in nutrients due to acidification. Fertilization may be a remedy, but rapidly-soluble salts (N, P, K, Mg) may pose nitrate problems for the groundwater or decrease microbial activity.With the aim to investigate potential nitrogen leaching after fertilization we set up an experiment employing intact soil cores (11 cm diameter, 20–40 cm long) from a mixed forest and a Picea abies stand (soil type Rendsina) in the Northern Calcareous Alps of Austria. The cores were fertilized with a commercial NPK fertilizer or a methylene-urea-apatite-biotite (MuAB) fertilizer at a rate corresponding to 300 kg N ha-1 and incubated for 28 weeks together with unfertilized controls. Both soil water (retrieved 5 cm below the soil surface) and leachate were analyzed for nitrate and ammonium in regular intervals. After the incubation, soil microbial biomass and basal repiration were determined and a nitrogen mineralization assay was performed.For the control, in the soil water and leachate maximum NH4 + and NO3 - concentrations of 5 and 11 mg N L-1, respectively, were found. Compared to that, MuAB fertilizer resulted in a slow increase of NH4 + and NO3 - in the soil water (up to 11 and 35 mg N L-1 respectively) and in the leachate (4 mg NH4 +-N L-1 and 44 mg NO3 --N L-1). Highest nitrogen loads were found for the fast release NPK fertilizer, with NH4 + and NO3 - concentrations up to 170 and 270 mg N L-1, respectively, in the soil water. NH4 +-N levels in the leachate remained below 5, while NO3-N levels were up to 190 mg L-1. Fast- release NPK caused a significant decrease of microbial biomass and basal respiration. These parameters were not affected by MuAB fertilizer.The results suggest that the MuAB fertilizer may be an ecologically appropriate alternative to fast-release mineral fertilizers for improving forest soils.  相似文献   

7.
Measuring nitrogen (N) transformations from organic fertilizers can help in selecting applications rates that provide sufficient soluble N to promote tree growth in short-rotation plantations. The objective of this study was to determine how organic fertilizers (papermill biosolids, liquid pig slurry) affected microbially-mediated N transformations in soils. Soil samples were collected from a hybrid poplar plantation before fertilization, 1 month after fertilizer application and at the end of the growing season. Net N mineralization and nitrification were evaluated during a 28 d laboratory incubation, while gross N transformations were assessed using a 15N isotope dilution technique. Pig slurry application increased soil ammonium (NH4-N) and nitrate (NO3-N) concentrations within 1 month, while papermill biosolids increased soil NH4-N and NO3-N concentrations at the end of the growing season. Gross N consumption rates were greater than gross N production rates. The NH4-N and NO3-N consumption rates were positively correlated with labile carbon and microbial biomass. The gross nitrification rate was 18 to 67% of the gross mineralization rate but 30% or less of the gross NH4-N consumption rate, indicating that NH4 consumption was overestimated by the isotope dilution technique. We conclude that N cycling in this hybrid poplar plantation was characterized by rapid consumption of plant-available N following N mineralization and nitrification.  相似文献   

8.
Cadmium (Cd) and zinc (Zn) phytoavailability and their phytoextraction by Sedum plumbizincicola using different nitrogen fertilizers, nitrification inhibitor (dicyandiamide, DCD) and urease inhibitor (N-(n-Butyl) thiophosphoric triamide, NBPT) were investigated in pot experiments where the soil was contaminated with 0.99 mg kg?1 of Cd and 241 mg kg?1 Zn. The soil solution pH varied between 7.30 and 8.25 during plant growth which was little affected by the type of N fertilizer. The (NH4)2SO4+DCD treatment produced higher NH4+?N concentrations in soil solution than the (NH4)2SO4 and NaNO3 treatment which indicated that DCD addition inhibited the nitrification process. Shoot Cd and Zn concentrations across all treatments showed ranges of 52.9–88.3 and 2691–4276 mg kg?1, respectively. The (NH4)2SO4+DCD treatment produced slightly higher but not significant Cd and Zn concentrations in the xylem sap than the NaNO3 treatment. Plant shoots grown with NaNO3 had higher Cd concentrations than (NH4)2SO4+DCD treatment at 24.0 and 15.4 mg kg?1, respectively. N fertilizer application had no significant effect on shoot dry biomass. Total Cd uptake in the urea+DCD treatment was higher than in the control, urea+NBPT, urea+NBPT+DCD, or urea treatments, by about 17.5, 23.3, 10.7, and 25.1%, respectively.  相似文献   

9.
南亚热带红椎和格木人工幼龄林土壤微生物群落结构特征   总被引:3,自引:0,他引:3  
洪丕征  刘世荣  王晖  于浩龙 《生态学报》2016,36(14):4496-4508
采用氯仿熏蒸浸提法和磷脂脂肪酸法(Phospholipids fatty acid,PLFA)研究了我国南亚热带地区非固氮树种红椎(Castanopsis hystrix)和固氮树种格木(Erythrophleum fordii)人工幼龄林土壤微生物生物量与微生物群落结构特征。结果表明,在旱季和雨季,红椎幼龄林土壤微生物总PLFAs量,细菌PLFAs量、放线菌PLFAs量及丛枝菌根真菌PLFAs量均大于格木幼龄林。红椎幼龄林土壤PLFA Shannon多样性指数(H_(PLFA))在旱季和雨季均大于格木幼龄林。主成分分析表明,土壤微生物群落结构组成受到林分类型和季节的双重影响。冗余分析表明,土壤硝态氮(NO_3~--N)含量、土壤含水量、p H及土壤微生物生物量氮(MBN)与特征磷脂脂肪酸之间呈显著相关关系。以上结果表明固氮树种格木与非固氮树种红椎人工幼龄林对土壤微生物生物量和群落结构的影响存在显著差异。  相似文献   

10.
施用缓/控释尿素对玉米苗期土壤生物学活性的影响   总被引:1,自引:0,他引:1  
采用盆栽试验,模拟田间生态环境,研究了施用不同种缓/控释氮素底肥对玉米苗期土壤硝酸还原酶、脲酶活性及微生物量碳、氮的影响.结果表明,施用硝化抑制剂(双氰胺)和脲酶抑制剂(n-丁基硫代磷酰三胺)涂层大颗粒尿素肥料的土壤硝酸还原酶活性最高;施用大颗粒尿素,脲酶活性最强,微生物量碳、氮最高.施用醋酸酯淀粉包膜大颗粒尿素、包膜双氰胺涂层大颗粒尿素、丙烯酸树脂包膜双氰胺涂层大颗粒尿素与不施氮肥土壤脲酶活性较高;每种处理微生物量碳与氮变化完全一致.施用醋酸酯淀粉包膜硝化和脲酶抑制剂涂层大颗粒尿素肥料,土壤微生物量碳、氮最低.同种膜材料包膜抑制剂涂层大颗粒尿素制成的缓/控释氮肥,对土壤生物学活性的影响效果好于直接包膜大颗粒尿素;丙烯酸树脂包膜大颗粒尿素制成的缓/控释氮肥,对氮素的控释效果明显好于醋酸酯淀粉包膜.  相似文献   

11.
The effect of incorporating cattle slurry in soil, either by mixing or by simulated injection into a hollow in soil, on the ryegrass uptake of total N and 15NH4 +-N was determined in three soils of different texture. The N accumulation in Italian ryegrass (Lolium multiflorum L.) from slurry N and from an equivalent amount of NH4 +-N in (15NH4) SO4 (control) was measured during 6 months of growth in pots. After this period the total recovery of labelled N in the top soil plus herbage was similar in the slurry and the control treatments. This indicated that gaseous losses from slurry NH4 +-N were insignificant. Consequently, the availability of slurry N to plants was mainly influenced by the mineralization-immobilization processes. The apparent utilization of slurry NH4 +-N mixed into soil was 7%, 14% and 24% lower than the utilization of (NH4)2SO4-N in a sand soil, a sandy loam soil and a loam soil, respectively. Thus, the net immobilization of N due to slurry application increased with increasing soil clay content, whereas the recovery in plants of 15N-labelled NH4 +-N from slurry was similar on the three soils. A parallel incubation experiment showed that the immobilization of slurry N occurred within the first week after slurry application. The incorporation of slurry N by simulated injection increased the plant uptake of both total and labelled N compared to mixing the slurry into the soil. The apparent utilization of injected slurry NH4 +-N was 7% higher, 8% lower and 4% higher than the utilization of (NH4)2SO4-N in the sand, the sandy loam and the loam soil, respectively. It is concluded that the spatial distribution of slurry in soil influenced the net mineralization of N to the same degree as did the soil type.  相似文献   

12.
氮素类型和剂量对寒温带针叶林土壤N2O排放的影响   总被引:1,自引:0,他引:1  
大气氮沉降输入会增加森林生态系统氮素有效性,进而改变土壤N_2O产生与排放,然而有关不同氮素离子(氧化态NO_3~--N与还原态NH_4~+-N)沉降对土壤N_2O排放的影响知之甚少。以大兴安岭寒温带针叶林为研究对象,构建了3种类型(NH_4Cl、KNO_3、NH_4NO_3)和4个施氮水平(0、10、20、40 kg N hm~(-2)a~(-1))的增氮控制试验,利用流动化学分析仪和静态箱-气相色谱法4次/月测定凋落物层和矿质层土壤无机氮含量、土壤-大气界面N_2O净交换通量以及相关环境因子,分析施氮类型和剂量对土壤氮素有效性、土壤N_2O通量的影响探讨氮素富集条件下土壤N_2O通量的环境驱动机制。结果表明:施氮类型和剂量均显著影响土壤无机氮含量,土壤NH_4~+-N的积累效应显著高于NO_3~--N。施氮一致增加寒温带针叶林土壤N_2O排放,NH_4NO_3促进效应最为明显,增幅为442%-677%,高于全球平均水平(134%)。土壤N_2O通量与土壤温度、凋落物层NH_4~+-N含量正相关,且随着施氮水平增加而增加。结果表明大气氮沉降短期内不会导致寒温带针叶林土壤NO_3~--N大量流失,但会显著促进土壤N_2O的排放。此外,外源性NH_4~+和NO_3~-输入对土壤N_2O排放的促进作用具有协同效应,在未来森林生态系统氮循环和氮平衡研究中应该区分对待。  相似文献   

13.
NH4 +-fixation by inorganic and organic soil components and crop utilization of fertilier nitrogen was studied in a number of Carbbean soils using15N fertilizers. At moderate rates of nitrogen application, NH4 +-fixation by clays during several-week laboratory incubations was rapid and highly vaiable, ranging from less than 10% to over 70% of the NH4 + added. The 2: 1 lattice types were the most reactive, and the process were almost complete by one week after fertilization. Fixation increased with rate of NH4 +-N application and was higher at elevated temperatures in soils that were allowed to air-dry during incubation. NH4 +-N fixation was more active in the fulvic fractions of the soil organic matter than in the humuc fractions (25–69%vs0–3% of the added NH4 + was fixed in each, respectively). There was little incorporation of fertilizer-N by the N-containing fractions of soil organic matter. Plant uptake of added NH4 +-N in greenhouse pot experiments showed that a greater percentalte of fertilizer-N was taken up by Sudan grass (Sourghum sudanese) at a fertilizer rate of 40 kg NH4 +-N ha?1 than at a rate of 200n kg NH4 +N ha?1. howver, the recovery was low, ranging from 10 to 25 percent of that applied. In field experiments with maize (Zea mays), urea-N was rapidly lost when applied to soils in a wet tropical environment. At normal rates of application (100 kg urea-N ha?1) only about half of the fertilizer was utilized by the crop. Mulches did not significantly affect the fate of added nitrogen; however, mulching did result in increased yields for dry-season cropping, due probably to water conservation effects. There is good indication that for conditions in Trinidad, NH4 +-N is better utilzed and less subject to unidentified losses than is urea. Addition of fertilizer-N resulted in crop uptake of important quantities of native soil nitrogen. The Caribbean Andepts were outstanding in that the showed very little NH4 +-fixation under all experimental conditions and very little tendency for apparent nitrification of added NH4 +-N.  相似文献   

14.
周旋  吴良欢  董春华  贾磊 《生态学报》2019,39(5):1804-1814
揭示尿素类肥料添加生化抑制剂组合后,在黄泥田土壤中硝态氮(NO~-_3-N)和铵态氮(NH~+_4-N)的淋溶损失规律。采用室内土柱淋溶培养试验,研究脲酶抑制剂N-丁基硫代磷酰三胺(NBPT)和硝化抑制剂2-氯-6-(三氯甲基)吡啶(CP)单独添加及配合施用对尿素和尿素硝铵(300 kg N/hm~2)中氮(N)素在土体中淋溶损失的影响。结果表明:尿素和尿素硝铵处理淋溶液中NH~+_4-N和NO~-_3-N浓度均呈先升后降的变化趋势,而出峰时间不一。NH~+_4-N和NO~-_3-N淋失量随着时间的延长,处理间差异逐渐变大。NBPT处理可以减缓尿素水解,有效抑制NH~+_4-N生成,延缓其出峰时间,减少NH~+_4-N流失;CP处理可以有效抑制NH~+_4-N向NO~-_3-N转化,减少NO~-_3-N流失。与单独添加NBPT和CP处理相比,两者配施对N素淋溶损失有明显的协同抑制效果在黄泥田土壤中,既能减缓尿素水解,保持土壤中较高NH~+_4-N含量,又能降低淋溶液中NO~-_3-N浓度。培养结束时(第72天),UAN处理中NO~-_3-N、NH~+_4-N、矿质态N淋失总量及硝化率较U处理高34.39%、5.32%、31.72%和15.71%。U+NBPT、U+CP和U+NBPT+CP处理较U处理分别显著降低NO~-_3-N淋失总量达15.58%、114.77%和73.45%;UAN+NBPT、UAN+CP和UAN+NBPT+CP处理较UAN处理分别显著降低达15.88%、54.87%和37.46%。不同处理NO~-_3-N淋失总量大小表现为:UAN UAN+NBPT U UAN+NBPT+CP U+NBPT UAN+CP U+NBPT+CP U+CP CK。在一定施肥量条件下,NBPT和CP单独施用或配施均可降低黄泥田土壤中NO~-_3-N累积淋失量。对各处理淋溶液中NO~-_3-N淋失量(y)随时间(x)的变化进行拟合,其中以线性方程(y=ax+b)的拟合度较高,且各抑制剂处理a、b值均存在明显差异。总体认为,在黄泥田土壤中施用CP及其与NBPT配施可以显著降低土壤NO~-_3-N淋溶损失,减少N素淋失风险,提高肥料利用率。  相似文献   

15.
通过室内培养法,研究了不同浓度的阿魏酸、对羟基苯甲酸及其混合液对土壤氮素、与氮素转化相关的微生物和酶的影响。结果表明,10-4mol/L阿魏酸和对羟基苯甲酸使土壤铵态氮降低了11.18%和10.87%,硝态氮降低了6.33%和3.95%;10-3mol/L阿魏酸、对羟基苯甲酸及其混合液分别使可溶性有机氮降低了6.59%、10.16%和10.39%。阿魏酸、对羟基苯甲酸及其混合液抑制了氨化细菌、硝化细菌和反硝化细菌的生长,削弱了土壤脲酶与蛋白酶的活性。与对照相比,10-4mol/L混合液降低了26.04%的氨化细菌、30.79%的硝化细菌和16.74%的反硝化细菌。10-3mol/L阿魏酸减少了3.33%的土壤脲酶和20.87%的蛋白酶活性;10-3mol/L对羟基苯甲酸降低了土壤脲酶6.63%,蛋白酶22.94%;10-3mol/L混合液减少了土壤脲酶7.47%和蛋白酶23.79%。混合液对土壤氮素转化的抑制作用最强,表明阿魏酸和对羟基苯甲酸存在协同作用。阿魏酸和对羟基苯甲酸等酚酸类化合物通过抑制土壤氮素转化微生物及其酶活性,从而影响土壤氮素转化。  相似文献   

16.
黄土丘陵区植被恢复对土壤可溶性氮组分的影响   总被引:6,自引:0,他引:6  
为探究黄土丘陵地区人工植被恢复对土壤氮素养分累积与有效性的影响,研究分析了植被恢复15年刺槐、柠条、刺槐侧柏混交、刺槐山桃混交以及荒草地土壤可溶性氮组分含量及其垂直分布特征。结果表明,与耕地相比,植被恢复显著提高了0—30 cm土壤可溶性氮组分含量,这也使0—30 cm土壤可溶性氮组分密度显著增加,可溶性有机氮密度增幅表现为柠条(262.2%)刺槐(232.8%)刺槐山桃混交、刺槐侧柏混交(34.5%)荒草地(-21.5%),硝态氮密度整体表现为柠条刺槐刺槐山桃混交荒草地刺槐侧柏混交,增幅为7.9%—182.8%,铵态氮密度以刺槐山桃混交增幅最大(110.3%),荒草地最小为2.6%。可溶性有机氮、硝态氮占全氮的比例以刺槐最高,分别提升了2.4倍和0.6倍,铵态氮占全氮的比例以刺槐山桃混交最高,提升了1.0倍。可溶性氮组分受微生物量碳氮的影响大于有机质和全氮,微生物量氮与可溶性氮组分的相关性优于微生物量碳,硝态氮对土壤有机质、全氮和微生物量碳氮的变化最为敏感。综上,植被恢复能够提高土壤可溶性氮组分含量、密度及其占全氮比例,增加土壤氮的有效性,以刺槐、柠条提升效果最好。  相似文献   

17.
以科尔沁沙地东南缘沙质草地和不同年龄樟子松(Pinus sylvestris var. mongolica)人工林(15、24和30年生)为对象,研究草地造林对土壤pH,土壤C、N、P含量,无机N(铵态氮、硝态氮)含量,C、N矿化速率,微生物生物量C含量以及土壤酶(脲酶、转化酶和过氧化氢酶)活性的影响.结果表明:草地造林初期,林地土壤C、N、P含量逐渐降低,随着林龄增加而逐渐恢复;与草地相比,24年生樟子松人工林土壤C、N、P含量最低,分别下降29%、34%和33%,而30年生樟子松人工林土壤C和N含量与草地差异不显著.草地造林能够影响土壤无机N存在形式,使土壤铵态氮含量逐渐增加,硝态氮含量下降.草地造林对土壤潜在N矿化速率和硝化速率影响不显著,但能够改变土壤C矿化速率,不同林龄樟子松人工林土壤C矿化速率依次为:24年生>30年生>草地>15年生.草地造林初期,土壤微生物生物量C含量和土壤转化酶活性明显降低,随着林龄的增加又逐渐增加;草地造林对土壤脲酶活性影响不显著,而使土壤过氧化氢酶活性逐渐增加.科尔沁沙地草地造林能够显著改变土壤化学和生物学性状,且随着林龄的变化而有所差异.  相似文献   

18.
长期施肥对土壤微生物量及土壤酶活性的影响   总被引:80,自引:0,他引:80       下载免费PDF全文
 该文以北京国家褐潮土土壤肥力与肥料效益长期监测基地的长期肥料定位试验为平台,研究了长期不同施肥制度对土壤的生物学特性及其土壤酶的影响。主要研究结果:长期撂荒土壤(15年)的有机质和全氮(TN)的含量、微生物量碳(SMB-C)和氮(SMB-N)、土壤的蔗糖酶、磷酸酶和脲酶活性以及SMB-C/SOC(土壤有机碳)和SMB-N/TN比值都高于种植作物的农田土壤;而其代谢商和容重值低于农田土壤。长期施肥的农田(NPK、NPKM 、NPKS和NPKF),其土壤养分含量、微生物量碳和氮以及土壤蔗糖酶、磷酸酶和脲酶活性均高于不施肥的农田(CK);而小麦(Triticum aestivum)-玉米(Zea mays)→小麦-大豆(Glycine max)复种轮作(NPKF)的农田又高于长期复种连作(NPK)的农田;在施肥处理中(NPK、NPKM、NPKS和NPKF),长期化肥与有机肥配合施用的处理(NPKM )的土壤上述指标高于其它施肥处理(NPK、NPKS和NPKF),但其土壤的代谢商、pH值和容重值较低。  相似文献   

19.
This study aims to evaluate the effect of different afforestation models on soil microbial composition in the Loess Plateau in China. In particular, we determined soil physicochemical properties, enzyme activities, and microbial community structures in the top 0 cm to 10 cm soil underneath a pure Hippophae rhamnoides (SS) stand and three mixed stands, namely, H. rhamnoides and Robinia pseucdoacacia (SC), H. rhamnoides and Pinus tabulaeformis (SY), and H. rhamnoides and Platycladus orientalis (SB). Results showed that total organic carbon (TOC), total nitrogen, and ammonium (NH4+) contents were higher in SY and SB than in SS. The total microbial biomass, bacterial biomass, and Gram+ biomass of the three mixed stands were significantly higher than those of the pure stand. However, no significant difference was found in fungal biomass. Correlation analysis suggested that soil microbial communities are significantly and positively correlated with some chemical parameters of soil, such as TOC, total phosphorus, total potassium, available phosphorus, NH4+ content, nitrate content (NH3), and the enzyme activities of urease, peroxidase, and phosphatase. Principal component analysis showed that the microbial community structures of SB and SS could clearly be discriminated from each other and from the others, whereas SY and SC were similar. In conclusion, tree species indirectly but significantly affect soil microbial communities and enzyme activities through soil physicochemical properties. In addition, mixing P. tabulaeformis or P. orientalis in H. rhamnoides plantations is a suitable afforestation model in the Loess Plateau, because of significant positive effects on soil nutrient conditions, microbial community, and enzyme activities over pure plantations.  相似文献   

20.
Fertilization rates and clay fixed ammonium in two Quebec soils   总被引:5,自引:0,他引:5  
Clay fixed NH4 + can provide a significant sink for fertilizer N, as well as a source of N for plant uptake. Knowledge or soil NH4 + fixing capacity and release for crops is necessary to develop long-term fertilizer programs. Field experiments with corn (Zea mays L.) were carried out to investigate soil NH4 + fixing capacity and subsequent release as influenced by fertilizer rates using 15N in a Ste. Rosalie clay (fine, mixed, frigid, Typic Humaquept) and a Chicot sandy clay loam (fine-loamy, mixed, frigid, Typic Hapludalf). With high N rates increased NH4 + fixation occurred only in the Ste. Rosalie soil. At the end of the first growing season, fertilizer N recovery as clay fixed NH4 + for high and normal rates of fertilizer in the Ste. Rosalie soil was 17.8% and 28.7%, respectively and the recovery for the high and normal rates in the Chicot soil was 4.6 and 10.5%, respectively. Significant amounts of clay fixed NH4 +-N were released in the soil profile in the second year after 15N application on the Chicot soil. Recently clay fixed fertilizer NH4 +N was released more rapidly than that of the native fixed NH4 +, from the surface layer of the Ste. Rosalie soil. The fertilizer fixed NH4 + seems to be in a more labile N pool than the native fixed NH4 +-N in the Chicot soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号