首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A procedure is described for the determination of monoacetylputrescine, N1-acetylspermidine and N8-acetylspermidine in human urine. The procedure is based on the high-performance liquid chromatographic separation of the 5-dimethylaminonaphthalene-1-sulfonyl (dansyl) derivatives of these amines using two different chromatographic modes. Monoacetyl-1,6-diaminohexane was used as an internal standard. The amines were extracted from urine using a silica gel cartridge. The dansyl monoacetylpolyamines were separated from the mixture of dansyl derivatives of urinary amines on a bonded-phase CN column using a programmed solvent gradient elution. The dansyl acetylpolyamines were rechromatographed on a silica gel column.This chromatographic procedure was used for the determination of the concentration of N1-acetylspermidine, N8-acetylspermidine and monoacetylputrescine in the urine of healthy volunteers and cancer patients.  相似文献   

2.
In mature hamster epididymis several unknown peaks were observed on our high-performance liquid chromatograms in addition to the common polyamines, putrescine, spermidine and spermine. Three of the peaks were identified as N1-acetylspermidine, N1-acetylspermine and sym-homospermidine by means of thin-layer chromatography, gas chromatography-mass spectrometry and acid hydrolysis. The concentrations of N1-acetylspermidine and sym-homospermidine were highest in the distal caput epididymidis among epididymal regions studied. This is the first report to show that sym-homospermidine occurs in mammalian tissues.  相似文献   

3.
A single intraperitoneal injection of carbon tetrachloride produced a significant increase in the concentration of N1-acetylspermidine in rat liver. The concentration of N1-acetylspermidine was maximal at the same time after injection at which other workers reported maximal conversion of spermidine to putrescine and maximal acetylase activity in liv liver extracts. N1-acetylspermidine was not detectable in livers of untreated animals and at 45 hours after injection with monoacetylation of polyamines precedes their degradation by polyamine oxidases. Spleen, lungs and erythrocytes of untreated animals contained detectable amounts of the monoacetyl polyamines. Treatment with carbon tetrachloride did not produce changes in the concentrations of the monoacetyl polyamines in these tissues.  相似文献   

4.
A sensitive and specific method for the determination of diamines and polyamines by ion-pair high-performance liquid chromatography is described. The 5-dimethylaminonaphthalene-1-sulfonyl derivatives of putrescine, 1,6-diaminohexane, spermidine and spermine are separated on a μBondapak C15 reversed-phase column with 1-heptanesulfonic acid and acetonitrile as the mobile phase. All compounds are eluted within 30 min using a programmed solvent gradient system. The method has a lower detection limit of 1 pmole on column.Because of the simplicity of the method, its application provides a better means for closely monitoring patients undergoing treatment for various types of genito-urinary neoplastic diseases.  相似文献   

5.
Measurements of polyamines, polyamine conjugates and their metabolites in tissues, cells and extracellular fluids are used in biochemistry, (micro)biology, oncology and parasitology. Decarboxylation of ornithine yields putrescine. Aminopropylation of putrescine yields spermidine, and aminopropylation of spermidine yields spermine. Spermidine and spermine are retroconverted to putrescine and spermidine, respectively, by initial N-acetylation and subsequent polyamine oxidation. The intermediate N-acetylputrescine, N1-acetylspermidine and N8-acetylspermidine are the major urinary N-acetylpolyamines. Polyamines and N-acetylpolyamines are terminally degraded to non-α-amino acid metabolites by oxidative deamination and aldehyde dehydrogenation. Chromatography with on-line detection is the most commonly applied profiling method for polyamines, N-acetylpolyamines and their non-α-amino acid metabolites. Cation-exchange and reversed-phase high-performance liquid chromatography require pre- or post-column derivatisation, followed by UV-Vis spectrophotometric or fluorimetric detection. Isolation and derivatisation precedes gas chromatography with flame-ionisation, nitrogen-phosphorus, electron-capture or mass spectrometric detection. High-performance liquid chromatography and gas chromatography of polyamines are not competitive techniques, but rather supplementary.  相似文献   

6.
The isolation of polyamines from urinary hydrolysates in a sufficiently pure state for subsequent analysis by gas chromatography has proved to be difficult. However, by using columns of Porapak-Q and ion-exchange resins, urinary hydrolysates are readily purified and formation of trifluoroacetyl derivatives of polyamines proceeds in high yield without carryover of artifacts in the gas chromatographic elution profile. Good yields from the trifluoroacetylation reaction are not achieved if large quantities of salts or urinary pigments are present. By obtaining the polyamine carbonates in the final stages of the method described, the trifluoroacetylation reaction yields excellent derivatives of nanogram or microgram amounts, particularly after standing over-night at room temperature. The procedure described in detail should permit routine urinary polyamine analysis where rapidity, ease of handling many samples, freedom from complications and artifacts are a consideration. The recent reports by Russell1, 2 that the urinary excretion of polyamines are greatly elevated in cancer patients has stimulated interest in these compounds as possible biological “markers” for the diagnosis of cancer. The polyamines usually considered are: putrescine, 1, 4-diaminobutane; cadaverine, 1, 5-diaminopentane; spermidine, and spermine. An extensive literature has developed over the last 50 years concerning the isolation and determination of polyamines including many excellent reviews. 3–5 However, the isolation and determination of small quantities of polyamines from biological sources has proven to be difficult. This has led to conflicting conclusions among investigators as to which polyamine is the major excretion product in the urine of cancer patients. 2, 6, 7, 8 The following report presents in detail a new procedure of isolation of urinary polyamines in high yield and pure state that facilitates quantitation of these amines by gas chromatography.  相似文献   

7.
Antiserum was produced in rabbits against the polyamine spermidine (Spd) conjugated to bovine serum albumin (BSA). The reactivity of the serum to Spd and a variety of structurally related compounds was quantified by a new immunocytochemical model system incorporating an enzyme-linked immunosorbent assay (ELISA) binding test. This is based on the principle of coupling these compounds to the wells of microtiter plate activated with poly-l-lysine and glutaraldehyde and incubating the wells by the indirect immunoperoxidase method. The antiserum showed a 25% cross reaction with spermine (Spm), putrescine (Put), and cadaverine (Cad), and a 1% cross reaction with 1,3-diaminopropane (Dap), but no cross reaction with monoacetyl polyamines and amino acids. The antibody binding was inhibited most effectively by absorption of the antiserum with N 1-acetylspermidine and Spd in the ELISA inhibition test. Also, immunoblot analysis of the antiserum with nitrocellulose paper gave completely identical results to the ELISA binding tests. Spd-like immunoreactivities in human melanoma BD and neuroblastoma IMR 32 cell lines are presented as examples of the staining pattern obtained with the antiserum. Absorption of the serum with N 1-acetylspermidine and Spd was demonstrated to abolish the immunostaining reaction. The immunohistochemical model is simple: amines and amino acids are bound in the same way as in aldehyde-fixed tissues and, in comparison to immunoblot analysis, the immunoreactivity can be more easily and accurately quantified by assay with the antibody. The model should prove useful in assessing the specificity of other antisera.  相似文献   

8.
1. Five new solvent systems are reported for the separation of 1-dimethylaminonaphthalene-5-sulphonylamino acids by thin-layer chromatography on silica gel. After two-dimensional chromatography with a suitable pair of these solvent systems, most of the 1-dimethylaminonaphthalene-5-sulphonyl derivatives were completely separated and could be located by their intense yellow fluorescence when viewed under u.v. light. 2. These techniques have been used to identify 21 amino acids present in superfusates of cat cerebral cortex, plasma and cerebrospinal fluid. 3. A method for the semiquantitative estimation of amino acids in biological fluids is described in which the fluorescent intensity of their separated 1-dimethylaminonaphthalene-5-sulphonyl derivatives was measured.  相似文献   

9.
Long/branched-chain polyamines are unique polycations found in thermophiles. The hyperthermophilic archaeon Thermococcus kodakarensis contains spermidine and a branched-chain polyamine, N4-bis(aminopropyl)spermidine, as major polyamines. The metabolic pathways associated with branched-chain polyamines remain unknown. Here, we used gas chromatography and liquid chromatography-tandem mass spectrometry analyses to identify a new acetylated polyamine, N4-bis(aminopropyl)-N1-acetylspermidine, from T. kodakarensis; this polyamine was not found in other micro-organisms. The amounts of branched-chain polyamine and its acetylated form increased with temperature, indicating that branched-chain polyamines are important for growth at higher temperatures. The amount of quaternary acetylated polyamine produced was associated with the amount of N4-bis(aminopropyl)spermidine in the cell. The ratio of acetylated to non-acetylated forms was higher in the stationary phase than in the logarithmic growth phase under high-temperature stress condition.  相似文献   

10.
Administration of hepatotoxic doses of carbon tetrachloride to mice produced a 25-fold increase in spermidine/spermine N1-acetyltransferase activity within 6 h, but did not significantly change the activity of polyamine oxidase. The content of acetylated polyamines in the mouse liver was increased more than 100-fold from levels below the limit of detection to 0.6 μmol of N1-acetylspermidine and 0.045 μmol of N1-acetylspermine per gram of tissue. Putrescine levels also rose by 7-fold within 6 h and by 21-fold within 24 h. These results are in contrast to changes in hepatic polyamines brought about in the rat by carbon tetrachloride. Although the hepatotoxin produced a similar increase in spermidine/spermine N1-acetyltransferase in this species, the rise in acetylated polyamines was much smaller and more transient. The content of N1-acetylspermidine was increased only to 0.066 μmol/g and N1-acetylspermine was not detected. However, in the rat putrescine increased 35-fold within 6 h and 64-fold by 16 h. These differences appear to be due to the much higher polyamine oxidase activity which was 20 times greater in the rat than in the mouse liver. This oxidase converts N1-acetylspermine to spermidine and degrades N1-acetylspermidine to putrescine. Spermine content was significantly reduced in both species after exposure to carbon tetrachloride, but only part of this decline could be attributed to the increased acetylation.  相似文献   

11.
In a single, rapid and precise analysis, monoacetylputrescine, N8-acetylspermidine, N1acetylspermidine, putrescine, spermidine, and spermine can be separated using a five-buffer system on an automatic amino acid analyzer. This method allows, for the first time, the separation of all the known acetyl derivatives of putrescine and spermidine as well as the parent compounds in urine and tissues with a single automated procedure. The method has been applied to the analysis of biological samples from normal volunteers, cancer patients and a rat liver supernatant. Mass spectral confirmation was obtained for each compound.  相似文献   

12.
A method for the quantification of acetylpolyamines, N1,N12-diacetylspermine (DiAcSpm), monoacetylspermidine (AcSpd), and N1,N8-diacetylspermidine (DiAcSpd), identifying each compound simultaneously, was developed with the goal of evaluating these acetylpolyamines as potential biomarkers of cancer. The method consists of prepurification of acetylpolyamines in urine with commercially available cartridges and derivatization with heptafluorobutyric (HFB) anhydride. HFB derivatives of acetylpolyamines were determined simultaneously using 15N-labeled acetylpolyamines as internal standards by electrospray ionization and time-of-flight mass spectrometry (ESI-TOF MS). After the method was validated, the urinary acetylpolyamines of 38 cancer patients were quantified with this method. A comparison of the concentrations of DiAcSpm with those measured by a colloidal gold aggregation method demonstrated a correlation coefficient of 0.996, showing that the two methods were equally satisfactory. Analysis of the correlation between DiAcSpd or AcSpd and DiAcSpm, performed for the first time, indicated the usefulness of DiAcSpm as a urinary biomarker of cancer. During the course of this work, two simple methods for the preparation of α,ω-diacetylpolyamines were developed, and a possibility to separate and determine the concentrations of the two isomers, N1-acetylspermidine and N8-acetylspermidine in AcSpd, was shown by tandem mass spectrometry (MS/MS).  相似文献   

13.
A number of years ago, our laboratory published a method for the isolation of small amounts of polyamines from cell culture media using the ion-exchange resin Bio-Rex 70. We have used this technique extensively to study the export of putrescine and cadaverine from cultured mammalian cells. Unfortunately, this method was highly inefficient in isolating the polyamines spermidine and spermine and was incapable of recovering the acetylated polyamine N(1)-acetylspermidine. In response to these shortcomings, we modified our previous protocol to quantitatively isolate the polyamines N(1)-acetylspermidine, putrescine, cadaverine, N(1)-acetylspermine, spermidine, and spermine. The new method, which is much faster to perform and more efficient than the one previously described, employs the use of disposable minicolumns and a single resin washing step using a weak solution of sodium carbonate at pH 9.3. This new protocol also eliminates the column elution step in favor of directly derivatizing the polyamines with dansyl chloride on the ion-exchange resin. High-performance liquid chromatography analysis of the dansylated polyamines isolated by this procedure showed that 75% of N(1)-acetylspermidine and nearly 100% of the other polyamines present in nanomolar levels were recovered from small amounts of cell culture medium. This new protocol is a valuable new tool for the study of the intracellular/extracellular dynamics of polyamine pools in cultured cells. [A detailed laboratory protocol for this procedure (containing all of the information in this paper but in a condensed form) can be requested by e-mailing the authors.]  相似文献   

14.
The influence of catabolic reactions on polyamine excretion.   总被引:10,自引:3,他引:7       下载免费PDF全文
Complete inhibition of polyamine catabolism is possible by combined administration of two compounds. Aminoguanidine (25 mg/kg body wt., intraperitoneally) inhibits all reactions that are catalysed by copper-containing amine oxidases (CuAO). The products of the CuAO-catalysed reactions cannot be reconverted into polyamines (terminal catabolism) and therefore usually escape observation. N1-Methyl-N2-(buta-2,3-dienyl)butane-1,4-diamine (MDL 72521) is a new inhibitor of polyamine oxidase. It inhibits completely the degradation of N1-acetylspermidine and N1-acetylspermine. The enhanced excretion of N1-acetylspermidine in urine after administration of 20 mg of MDL 72521/day per kg body wt. is a measure of the rate of spermidine degradation in vivo to putrescine, and thus of the quantitative significance of the interconversion pathway. From the enhancement of total polyamine excretion by aminoguanidine-treated rats, one can calculate that only about 40% of the polyamines that are destined for elimination are usually observed in the urine, the other 60% being catabolized along the CuAO-catalysed pathways. The normally observed urinary polyamine pattern gives, therefore, an unsatisfactory picture of the actual polyamine elimination. Although aminoguanidine alone is sufficient to block terminal polyamine catabolism, rats that were treated with a combination of aminoguanidine and MDL 72521 excrete more polyamines than those that received aminoguanidine alone. The reason is that a certain proportion of putrescine, which is formed by degradation of spermidine, is normally reutilized for polyamine biosynthesis. In MDL 72521-treated animals this proportion appears in the urine in the form of N1-acetylspermidine. Thus it is possible to determine polyamine interconversion and re-utilization in vivo and to establish a polyamine balance in intact rats by using specific inhibitors of the CuAO and of polyamine oxidase.  相似文献   

15.
We have used High Performance Liquid Chromatography to determine metabolite characteristics of three recent isolates of Acanthamoeba which exhibit cultural characteristics consistent with those of established potential pathogens. Growing amoebae and dormant cysts of these isolates were explored in regard to their qualitative and quantitative intracellular levels of polyamine and S-adenosylmethionine metabolites. The polyamine found in the greatest concentration in the growing cells was 1,3-diaminopropane (DAP), followed by spermidine (SPD). A low level of putrescine was also found in the growing cells. These polyamines significantly decreased in concentration as the amoebae differentiated to cysts. N8-acetylspermidine and acetylspermine were found in both developmental stages while acetylcadaverine was found only in growing amoebae and N1-acetylspermidine only in cysts. Acetylputrescine was present in both stages of two isolates but only in the growing amoebae of the third isolate. Spermine was not detected in any of the isolates.S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) were present in growing amoebae but SAM was undetectable or barely detectable in cysts. SAH also decreased in concentration during encystation of two of the isolates to a level comparable to that of the other isolate.The developmental transition from growing amoebae to dormant cysts is characterized metabolically by a threshold adjustment in concentration of SAM, SAH and of the polyamines (esp., DAP and SPD).  相似文献   

16.
A high-performance liquid chromatographic method is described for the simultaneous determination of N2-(3-aminopropyl)biopterin (oncopterin, a newly found natural pteridine in urine from cancer patients), biopterin, and neopterin in urine. For the detection and quantification of the compounds, fluorometry was used. Using Develosil ODS K-5 and Develosil ODS HG-5 reversed-phase columns and a Nucleosil 100-5SA strong cation-exchange column, oncopterin, biopterin, and neopterin in urine were completely separated and assayed simultaneously by fluorescence detection. Similar values of oncopterin were obtained using each of the three columns, and the Develosil ODS K-5 reversed-phase column gave the most satisfactory separation. The sensitivity was high enough to measure 1 pmol of each pteridine. The HPLC method was highly reproducible. Our preliminary results indicate that oncopterin could be a most sensitive marker for cancer.  相似文献   

17.
Polyamines are small essential polycations involved in many biological processes. Enzymes of polyamine metabolism have been extensively studied and are attractive drug targets. Nevertheless, the reversible acetylation of polyamines remains poorly understood. Although eukaryotic N8-acetylspermidine deacetylase activity has already been detected and studied, the specific enzyme responsible for this activity has not yet been identified. However, a zinc deacetylase from Mycoplana ramosa, acetylpolyamine amidohydrolase (APAH), has been reported to use various acetylpolyamines as substrates. The recently solved crystal structure of this polyamine deacetylase revealed the formation of an ‘L’-shaped active site tunnel at the dimer interface, with ideal dimensions and electrostatic properties for accommodating narrow, flexible, cationic polyamine substrates. Here, we report the design, synthesis, and evaluation of N8-acetylspermidine analogues bearing different zinc binding groups as potential inhibitors of APAH. Most of the synthesized compounds exhibit modest potency, with IC50 values in the mid-micromolar range, but compounds bearing hydroxamate or trifluoromethylketone zinc binding groups exhibit enhanced inhibitory potency in the mid-nanomolar range. These inhibitors will enable future explorations of acetylpolyamine function in both prokaryotes and eukaryotes.  相似文献   

18.
A fast and sensitive method for the determination of putrescine, spermidine, spermine and ammonia by high-performance liquid chromatography (HPLC) with dabsyl chloride is described. These compounds are converted to their chromophoric dabsyl derivatives and are separated by a normal-phase chromatographic column (μPorasil, 10 μm) with 2% acetone in chloroform as isocratic mobile phase. The sensitivity of the method is 20 pmoles. The present method was shown to be a straightforward procedure for estimating polyamines in various rat tissues.The chromophoric derivatives of polyamines are also well separated by thin-layer chromatography (TLC) on silica gel, and the combination of the HPLC and TLC procedures provides a reliable method for qualitative and quantitative analysis of polyamines.  相似文献   

19.
W A Gahl  H C Pitot 《Life sciences》1981,29(21):2177-2179
Human pregnancy serum diamine oxidase was purified 50 fold and tested for activity with a variety of substrates. Putrescine, spermidine, spermine, N-acetylputrescine, N8-acetylspermidine, and N1-acetylspermidine were acceptable substrates for the enzyme, which exhibited greatest activity against N1-acetylspermidine.  相似文献   

20.
A simple, rapid, and reproducible method is described for the quantitation of submicrogram amounts of protein. This method is based upon the reaction of 3H-labeled 1-dimethylaminonaphthalene-5-sulfonyl chloride ([3H]dansyl chloride) with protein under denaturing conditions. As little as 50 ng of protein can be detected under the experimental conditions described, and the assay is linear over the range 50 to 5000 ng of protein. Furthermore, this method has been used for the electrophoretic determination of molecular weights of proteins available in submicrogram amounts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号