首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 386 毫秒
1.
Abstract The reversibility of adhesion of 3 representative strains of oral streptococci from a phosphate-buffered suspension onto 5 different solid substrata was studied.
Streptococcus mitis T9 (surface free energy γb= 39 mJ · m−2). Streptococcus sanguis CH3 (γb= 95 mJ · m−2) and Streptococcus mutans NS (γb= 117 mJ · m−2) were selected on basis of their surface free energy. Solid substrata were employed with a surface free energy γs ranging from 20 mJ · m−2 for polytetrafluorethylene to 109 mJ · m−2 for glass. Bacterial suspensions containing 2.5 × 109 cells per ml were incubated with 2 samples of each substratum. After 1 h the number of adhering bacteria was evaluated on one sample, while the second sample was kept for another hour at a 10-fold lower bacterial concentration. Bacteria with a low surface free energy desorbed only from substrata with a high surface free energy, while bacteria with a high surface free energy desorbed from substrata with a low surface free energy. Thus low energy bacterial strains adhered reversibly to high energy substrata and vice versa. Similar observations were made with polystyrene particles. Calculation of the interfacial free energy of adhesion (Δ F adh) for each bacterial strain as well as for the polystyrene particles showed that a reversible adhesion was associated with a positive Δ F adh, denoting unfavourable adhesion conditions upon a thermodynamic basis.  相似文献   

2.
The adhesion of Streptococcus mitis to solid substrata from phosphate suspensions with various ionic strengths was studied and compared with the adhesion of polystyrene particles. At all ionic strengths, the interfacial free energy of adhesion governed the relative number of bacteria or polystyrene particles adhering at equilibrium, except that in a low-ionic-strength buffer, adhesion occurred less frequently because of increased electrostatic repulsion. Large differences between bacterial and polystyrene particle adhesion were observed, as indicated by the ratio of bacteria to polystyrene particles adhering, which decreased from 30 to 4 with a change from low to high ionic strength.  相似文献   

3.
The adhesion of Streptococcus mitis to solid substrata from phosphate suspensions with various ionic strengths was studied and compared with the adhesion of polystyrene particles. At all ionic strengths, the interfacial free energy of adhesion governed the relative number of bacteria or polystyrene particles adhering at equilibrium, except that in a low-ionic-strength buffer, adhesion occurred less frequently because of increased electrostatic repulsion. Large differences between bacterial and polystyrene particle adhesion were observed, as indicated by the ratio of bacteria to polystyrene particles adhering, which decreased from 30 to 4 with a change from low to high ionic strength.  相似文献   

4.
Surface free energies of oral streptococci and their adhesion to solids   总被引:1,自引:0,他引:1  
Abstract The adhesion of 3 strains of oral streptococci from a buffered suspension onto 3 different solid substrata was studied. Representative strains of streptococci were selected on the basis of their surface free energy ( γ b), namely Streptococcus mitis L1 ( γ b= 37 mJ·m−2), Streptococcus sanguis CH3 (95 mJ·m−2) and Streptococcus mutans NS (117 mJ·m−2). Solid substrata were also selected on basis of their surface free energy ( γ s), and included polytetrafluorethylene ( γ s= 20 mJ·m−2), polymethylmethacrylate (53 mJ·m−2) and glass (109 mJ·m−2). Bacterial adhesion was measured as the number of bacteria adhering per cm2 at equilibrium. Equilibrium was usually obtained within 20 min. S. sanguis CH3, having an intermediate surface free energy did not show a clear preference for any of the 3 solids. S. mitis L1, however, the lowest surface free energy strain, adhered in highest numbers to the low energy solid PTFE, whereas the highest γ b strain, S. mutans NS, adhered in highest numbers to the highest γ s solid, glass. Calculation of the interfacial free energy of adhesion ( ΔF adh) for each bacterial strain showed that this parameter was predictive of bacterial adhesion to solid substrata.  相似文献   

5.
The kinetics of adhesion of Streptococcus sanguis CH3 from suspension to polymers with different surface free energies were studied by using three bacterial concentrations (2.5 X 10(7), 2.5 X 10(8), and 2.5 X 10(9) cells per ml-1). Substratum surface free energies (gamma s) ranged from 18 to 120 erg cm-2. The kinetics of bacterial adhesion to these surfaces showed a typical two-step adhesion process, indicating an equilibrium in both steps. In the initial adhesion step (step 1), low equilibrium numbers of adhering bacteria were counted on substrata with surface free energies lower than 55 erg cm-2. A maximal number adhered on substrata with higher surface free energies. At the lowest bacterial concentration tested, the highest number of bacteria were found on substrata with a surface free energy around 55 erg cm-2. For each substratum, step 2 started after a characteristic time interval tau, being short (30 min) for gamma s less than 50 and long (120 min) for gamma s greater than 50 erg cm-2. The relationship between the substratum surface free energy and the number of bacteria adhering at equilibrium after step 2 was similar to, although less distinct than, that during step 1 with a slight indication of a bioadhesive minimum around gamma s = 35 erg cm-2. The results are indicative of a two-step adhesion model, in which step 1 is controlled by macroscopic substratum properties.  相似文献   

6.
The kinetics of adhesion of Streptococcus sanguis CH3 from suspension to polymers with different surface free energies were studied by using three bacterial concentrations (2.5 X 10(7), 2.5 X 10(8), and 2.5 X 10(9) cells per ml-1). Substratum surface free energies (gamma s) ranged from 18 to 120 erg cm-2. The kinetics of bacterial adhesion to these surfaces showed a typical two-step adhesion process, indicating an equilibrium in both steps. In the initial adhesion step (step 1), low equilibrium numbers of adhering bacteria were counted on substrata with surface free energies lower than 55 erg cm-2. A maximal number adhered on substrata with higher surface free energies. At the lowest bacterial concentration tested, the highest number of bacteria were found on substrata with a surface free energy around 55 erg cm-2. For each substratum, step 2 started after a characteristic time interval tau, being short (30 min) for gamma s less than 50 and long (120 min) for gamma s greater than 50 erg cm-2. The relationship between the substratum surface free energy and the number of bacteria adhering at equilibrium after step 2 was similar to, although less distinct than, that during step 1 with a slight indication of a bioadhesive minimum around gamma s = 35 erg cm-2. The results are indicative of a two-step adhesion model, in which step 1 is controlled by macroscopic substratum properties.  相似文献   

7.
Thermodynamic aspects of cell spreading on solid substrata   总被引:1,自引:0,他引:1  
To verify the validity of thermodynamic approaches to the prediction of cellular behavior, cell spreading of three different cell types on solid substrata was determined in vitro. Solid substrata as well as cell types were selected on the basis of their surface free energies, calculated from contact angle measurements. The surface free energies of the solid substrata ranged from 18-116 erg cm-2. To measure contact angles on cells, a technique was developed in which a multilayer of cells was deposited on a filter and air dried. Cell surface free energies ranged from 60 erg cm-2 for fibroblasts, and 57 for smooth muscle cells, to 91 for HeLa epithelial cells. After adsorption of serum proteins, cell surface free energies of all three cell types converged to approx 74 erg cm-2. The spreading of these cell types from RPMI 1640 medium on the various solid substrata showed that both in the presence and in the absence of serum proteins in the medium, cells spread poorly on low energy substrata (Ys less than 50 erg cm-2), whereas good cell spreading was observed on the higher energy substrata. Calculations of the interfacial free energy of adhesion (delta Fadh) show that delta Fadh decreases with increasing Ys, and equals zero around 45 erg cm-2 for all three cell types in the presence of serum proteins and for HeLa epithelium cells in the absence of serum proteins. This explains the spreading of these cells on the various substrata upon a thermodynamic basis. The results clearly show that substratum surface free energy has a predictive value with respect to cell spreading in vitro, both in the presence and absence of serum proteins. It is noted, however, that interfacial thermodynamics fail to explain the behavior of fibroblasts and smooth muscle cells in the absence of serum proteins, most likely because of the relatively high surface charges of these two cell types.  相似文献   

8.
The adhesion of yeasts, two Candida albicans and two Candida tropicalis strains isolated from naturally colonized voice prostheses, to silicone rubber with and without a salivary conditioning film in the absence and presence of adhering Streptococcus thermophilus B, a biosurfactant-releasing dairy isolate, was studied. Coverage of 1 to 4% of the surface of silicone rubber substrata with adhering S. thermophilus B gave significant reductions in the initial yeast adhesion regardless of the presence of a conditioning film. Mechanistically, this interference in yeast adhesion by S. thermophilus B was not due to direct physical effects but to biosurfactant release by the adhering bacteria, because experiments with S. thermophilus B cells that had released their biosurfactants prior to adhesion to silicone rubber and competition with yeasts did not show interference with initial yeast adhesion. The amounts of biosurfactants released were highest for mid-exponential- and early-stationary-phase bacteria (37 mg.g of cells-1 [dry weight]), but biosurfactants released by stationary-phase bacteria (14 mg.g of cells-1 [dry weight]) were the most surface active. The crude biosurfactants released were mixtures of various components, with a glycolipid-like component being the most surface active. A lipid-enriched biosurfactant fraction reduced the surface tension of an aqueous solution to about 35 mJ.m-2 at a concentration of only 0.5 mg.ml-1. The amount of biosurfactant released per S. thermophilus B cell was estimated to be sufficient to cover approximately 12 times the area of the cross section of the bacterium, making biosurfactant release a powerful defense weapon in the postadhesion competition of the bacterium with microorganisms such as yeasts. Preadsorption of biosurfactants to the silicone rubber prior to allowing yeasts to adhere was as effective against C. albicans GB 1/2 adhesion as covering 1 to 2% of the silicone rubber surface with adhering S. thermophilus B, but a preadsorbed biosurfactant layer was less effective against C. tropicalis GB 9/9.  相似文献   

9.
Surface thermodynamics of bacterial adhesion.   总被引:37,自引:23,他引:14       下载免费PDF全文
The adhesion of five strains of bacteria, i.e., Staphylococcus aureus (strain 049), Staphylococcus epidermidis (strain 047), Escherichia coli (strains 055 and 2627), and Listeria monocytogenes, to various polymeric surfaces was studied. The design of the experimental protocol was dictated by thermodynamic considerations. From the thermodynamic model for the adhesion of small particles from a suspension onto a solid substratum, it follows that the extent of adhesion is determined by the surface properties of all three phases involved, i.e., the surface tensions of the adhering particles, of the substrate, and of the suspending liquid medium. In essence, adhesion is more extensive to hydrophilic substrata (i.e., substrata of relatively high surface tension) than to hydrophobic substrata, when the surface tension of the bacteria is larger than that of the suspending medium. When the surface tension of the suspending liquid is larger than that of the bacteria, the opposite pattern of behavior prevails. Suspensions of bacteria at a concentration of 10(8) microorganisms per ml were brought into contact with several polymeric surfaces (Teflon, polyethylene, polystyrene, and acetal and sulfonated polystyrene) for 30 min at 20 degrees C. After rinsing, the number of bacteria adhering per unit surface area was determined by image analysis. The surface tension of the suspending medium. Hanks balanced salt solution, was modified through the addition of various amounts of dimethyl sulfoxide. It was found that the number of bacteria adhering per unit surface area correlates well with the thermodynamic predictions and that these data may be used to determine the surface tension of the different bacterial species. The surface tensions of the bacteria obtained in this fashion are in excellent agreement with those obtained by other methods.  相似文献   

10.
Four different thermodynamic approaches were compared on their usefulness to predict correctly the adhesion of two fouling microogranisms from dairy processing to various solid substrata. The surface free energies of the interacting surfaces were derived from measured contact angles according to: 1. The equation of state; 2. The geometric-mean equation using dispersion and polar components neglecting spreading pressures; 3. The geometric-mean equation using dispersion and polar components while accounting for spreading pressures; and 4. The Lifshitz-van der Waals/Acid-Base approach. All approaches yielded similar surface free energies for the low energy surfaces. Application of approach 1 with different liquids did not give consistent values for the high surface free energy substrata. The dispersion or Lifshiftz-van der Waals components were nearly equal for approaches 2, 3, and 4; however, the polar or acid-base components differed greatly according to the approach followed. Approaches 1 and 2 correctly predicted that adhesion should occur, although the trend with respect to the various solid substrata was opposite the one experimentally observed, as was also the trend predicted by approach 4. Only approach 3 correctly predicted the observed bacterial adhesion with respect to the various solid substrata. In approach 3 and 4, adhesion was frequently found, despite a positive free energy of adhesion. This was attributed to either possible local attractive electrostatic interactions, inadequate weighing of surface free energy components in the calculation of free energies of adhesion, or to additional forces arising from structured interfacial water.  相似文献   

11.
In several systems bacterial adhesion occurs despite a positive interfacial free energy of adhesion, Fadh; this implies that other interactions are involved. We hypothesize that the number of bacteria adhering at Fadh=0 represents their ability to adhere by other, i.e., non-Fadh-dependent interactions. Eight strains of oral streptococci were allowed to adhere to three solid substrata with different surface free energies in a flow cell system. Strain-specific linear relations were found between the numbers of bacteria adhering at saturation, nb,s, and Fadh. When for all strains the numbers of adhering bacteria at Fadh=0 were plotted versus the slopes, denoting the sensitivity to Fadh, a linear relationship (r=0.92) was observed. It is, therefore, concluded that one strain-specific factor influences both Fadh-dependent and non-Fadh-dependent adherence. The numerical value of this factor, together with a surface energetic analysis, predicts the number of streptococci that will adhere to a given nonbiological substratum.  相似文献   

12.
The adhesion of twenty nine Staphylococcus epidermidis strains to teflon, polyethylene, polycarbonate and bovine pericardium was studied in vitro and examined in relation to the surface free energies of both bacteria and biomaterials. All S. epidermidis strains had similar surface free energies, close to that of water, and adhered better to the materials with analogous surface free energies. There was a significant correlation (Kendall's Tau B = 1000) of biomaterial's surface free energy with the number of adhering bacteria. This correlation is inverse (Kendall's Tau B = -1000) when surface hydrophobicity is considered instead of surface free energy. This indicates that in Staphylococcus epidermidis adherence to biomaterials is inversely correlated to the surface hydrophobicity of the last, being so just the opposite of that occurring with other bacteria.  相似文献   

13.
The adhesion of the oral bacterium Streptococcus sanguis CH3 to various polymeric surfaces with surface free energies (gamma s) ranging from 22 to 141 erg cm-2 was investigated. Suspensions containing nine different bacterial concentrations (2.5 X 10(7) to 2.5 X 10(9) cells per ml) were used. After adhesion for 1 h at 21 degrees C and a standardized rinsing procedure, the number of attached bacteria per square centimeter (nb) was determined by scanning electron microscopy. The highest number of bacteria was consistently found on polytetrafluorethylene (gamma s = 22 erg cm-2), and the lowest number was found on glass (gamma s = 141 erg cm-2) at all bacterial concentrations tested. The overall negative correlation between nb and gamma s was weak. However, the slope of the line showing this decrease, calculated from an assumed linear relationship between nb and gamma s, appeared to depend strongly on the bacterial concentration and increased with increasing numbers of bacteria in the suspension. Analysis of the data for each separate polymer showed that the numbers of attached cells on polyvinyl chloride and polypropylene were higher but that those on polycarbonate were lower than would be expected on basis of a linear relationship between nb and gamma s. Desorption experiments were performed by first allowing the bacteria to attach to substrata for 1 h, after which the substrata and attached bacteria were removed to bacterial suspensions containing 10-fold lower bacterial concentrations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The adhesion of the oral bacterium Streptococcus sanguis CH3 to various polymeric surfaces with surface free energies (gamma s) ranging from 22 to 141 erg cm-2 was investigated. Suspensions containing nine different bacterial concentrations (2.5 X 10(7) to 2.5 X 10(9) cells per ml) were used. After adhesion for 1 h at 21 degrees C and a standardized rinsing procedure, the number of attached bacteria per square centimeter (nb) was determined by scanning electron microscopy. The highest number of bacteria was consistently found on polytetrafluorethylene (gamma s = 22 erg cm-2), and the lowest number was found on glass (gamma s = 141 erg cm-2) at all bacterial concentrations tested. The overall negative correlation between nb and gamma s was weak. However, the slope of the line showing this decrease, calculated from an assumed linear relationship between nb and gamma s, appeared to depend strongly on the bacterial concentration and increased with increasing numbers of bacteria in the suspension. Analysis of the data for each separate polymer showed that the numbers of attached cells on polyvinyl chloride and polypropylene were higher but that those on polycarbonate were lower than would be expected on basis of a linear relationship between nb and gamma s. Desorption experiments were performed by first allowing the bacteria to attach to substrata for 1 h, after which the substrata and attached bacteria were removed to bacterial suspensions containing 10-fold lower bacterial concentrations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
This study investigated the physicochemical forces involving the adhesion of Listeria monocytogenes to surfaces. A total of 22 strains of L. monocytogenes were compared for relative surface hydrophobicity with the salt aggregation test. Cell surface charges and hydrophobicity of L. monocytogenes Scott A were also determined by electrophoretic mobility, hydrophobic-interaction chromatography, and contact angle measurements. Electrokinetic measurements indicated that the strain Scott A has a negative electrophoretic mobility. Physicochemical characterization of L. monocytogenes by various methods indicates that this microorganism is hydrophilic. All L. monocytogenes strains tested with the salt aggregation test method aggregated a at very high ammonium sulfate molarities. The hydrophobicity-interaction chromatography results show that L. monocytogenes Scott A cells do not adhere to octyl-Sepharose unless the pH is low. Results from contact angle measurements showed that the surface free energy of strain Scott A was 65.9 mJ.m-2, classifying this microorganism as a hydrophilic bacterium. In addition, the interfacial free energy of adhesion of L. monocytogenes Scott A estimated for polypropylene and rubber was lower than that for glass and stainless steel. However, these theoretical implications could not be correlated with the attachment capabilities of L. monocytogenes.  相似文献   

16.
Transition from reversible to irreversible bacterial adhesion is a highly relevant but poorly understood step in initial biofilm formation. We hypothesize that in oral biofilm formation, irreversible adhesion is caused by bond strengthening due to specific bacterial interactions with salivary conditioning films. Here, we compared the initial adhesion of six oral bacterial strains to salivary conditioning films with their adhesion to a bovine serum albumin (BSA) coating and related their adhesion to the strengthening of the binding forces measured with bacteria-coated atomic force microscopy cantilevers. All strains adhered in higher numbers to salivary conditioning films than to BSA coatings, and specific bacterial interactions with salivary conditioning films were accompanied by stronger initial adhesion forces. Bond strengthening occurred on a time scale of several tens of seconds and was slower for actinomyces than for streptococci. Nonspecific interactions between bacteria and BSA coatings strengthened twofold faster than their specific interactions with salivary conditioning films, likely because specific interactions require a closer approach of interacting surfaces with the removal of interfacial water and a more extensive rearrangement of surface structures. After bond strengthening, bacterial adhesion forces with a salivary conditioning film remained stronger than those with BSA coatings.  相似文献   

17.
To verify the validity of thermodynamic approaches to the prediction of cellular behavior, cell spreading of three different cell types on solid substrata was determined in vitro. Solid substrata as well as cell types were selected on the basis of their surface free energies, calculated from contact angle measurements. The surface free energies of the solid substrata ranged from 18–116 erg cm−2. To measure contact angles on cells, a technique was developed in which a multilayer of cells was deposited on a filter and air dried. Cell surface free energies ranged from 60 erg cm−2 for fibroblasts, and 57 for smooth muscle cells, to 91 for HeLa epithelial cells. After adsorption of serum proteins, cell surface free energies of all three cell types converged to approx 74 erg cm−2. The spreading of these cell types from RPMI 1640 medium on the various solid substrata showed that both in the presence and in the absence of serum proteins in the medium, cells spread poorly on low energy substrata (Y s <50 erg cm−2), whereas good cell spreading was observed on the higher energy substrata. Calculations of the interfacial free energy of adhesion (ΔF adh) show that ΔF adh decreases with increasingY s , and equals zero around 45 erg cm−2 for all three cell types in the presence of serum proteins and for HeLa epithelium cells in the absence of serum proteins. This explains the spreading of these cells on the various substrata upon a thermodynamic basis. The results clearly show that substratum surface free energy has a predictive value with respect to cell spreading in vitro, both in the presence and absence of serum proteins. It is noted, however, that interfacial thermodynamics fail to explain the behavior of fibroblasts and smooth muscle cells in the absence of serum proteins, most likely because of the relatively high surface charges of these two cell types.  相似文献   

18.
The release of biosurfactants by adhering microorganisms as a defense mechanism against other colonizing strains on the same substratum surface has been described previously for probiotic bacteria in the urogenital tract, the intestines, and the oropharynx but not for microorganisms in the oral cavity. Two Streptococcus mitis strains (BA and BMS) released maximal amounts of biosurfactants when they were grown in the presence of sucrose and were harvested in the early stationary phase. The S. mitis biosurfactants reduced the surface tensions of aqueous solutions to about 30 to 40 mJ m(-2). Biochemical and physicochemical analyses revealed that the biosurfactants released were glycolipids. An acid-precipitated fraction was extremely surfactive and was identified as a rhamnolipidlike compound. In a parallel-plate flow chamber, the number of Streptococcus mutans NS cells adhering to glass with and without a salivary conditioning film in the presence of biosurfactant-releasing S. mitis BA and BMS (surface coverage, 1 to 4%) was significantly reduced compared with the number of S. mutans NS cells adhering to glass in the absence of S. mitis. S. mutans NS adhesion in the presence of non-biosurfactant-releasing S. mitis BA and BMS was not reduced at all. In addition, preadsorption of isolated S. mitis biosurfactants to glass drastically reduced the adhesion of S. mutans NS cells and the strength of their bonds to glass, as shown by the increased percentage of S. mutans NS cells detached by the passage of air bubbles through the flow chamber. Preadsorption of the acid-precipitated fraction inhibited S. mutans adhesion up to 80% in a dose-responsive manner. These observations indicate that S. mitis plays a protective role in the oral cavity and protects against colonization of saliva-coated surfaces by cariogenic S. mutans.  相似文献   

19.
The contact angles on cell layers of a series of polymeric droplets from aqueous two-phase systems of dextran and poly(ethylene glycol) have been used to determine the critical or limiting interfacial tension for spreading on the cell layers. Test droplets of the denser dextran-rich phase were formed in the lighter poly(ethylene glycol)-rich phase. The interfacial tensions, gamma, between the phases were determined with the pendant drop method, and a linear relationship was found between gamma-1/2 and the cosine of the angle the droplets made with the cell layers (Good-Girifalco plot). We were thus able to determine the limiting or critical interfacial tension, gamma c, for spreading on the cell layers. The value of gamma c is a measure of the interfacial energy of the cell/bathing medium interface. Values of gamma c obtained by this method include the following: 0.65 and 0.84 microN . m-1 for human erythrocytes and neutrophils, respectively; 0.93 microN . m-1 for porcine pulmonary macrophages; 0.75--3.60 microM . m-1 for various transformed murine lymphoid cell lines, and 2.53 microN . m-1 for Balb/c murine spleen lymphocytes. Exposure to various agents has differing effects on gamma c. Concanavalin A reduces gamma c, and bacterial lipopolysaccharide increases gamma c of murine spleen lymphocytes. The calcium ionophore, A23187, increases gamma c of both porcine pulmonary macrophages and murine spleen lymphocytes. This new method provides a quantitative approach to the cell surface energy and hydrophobicity which are thought to play an important role in membrane-mediated phenomena and in cell adhesion.  相似文献   

20.
The initial interaction between microorganisms and substrata is mediated by physicochemical forces, which in turn originate from the physicochemical surface properties of both interacting phases. In this context, we have determined the physicochemical proprieties of all microorganisms isolated from cedar wood decay in an old monument at the Medina of Fez-Morocco. The cedar wood was also assayed in terms of hydrophobicity and electron donor-electron acceptor (acid-base) properties. Investigations of these two aspects were performed by contact angles measurements via sessile drop technique. Except Bacillus subtilis strain (Giwi < 0), all strains studied showed positive values of the degree of hydrophobicity (Giwi > 0) and can therefore be considered as hydrophilic while cedar wood revealed a hydrophobic character (Giwi = 58.81 mJ m−2). All microbial strains were predominantly electron donor. The results show also that all strains were weak electron acceptors. Cedar wood exhibits a weak electron donor/acceptor character. Based on the thermodynamic approach, the Lifshitz-van der Waals interaction free energy, the acid-basic interactions free energy, the total interaction free energy between the microbial cells and six different wood species (cedar, oak, beech, ash, pine and teak) in aqueous media was calculated and used to predict which microbial strains have a higher ability to adhere to wooden surfaces. Except of weak wood, for all the situations studied, generalizations concerning the adhesion of the microbiata on wood species cannot be made and the microbial adhesion on wooden substrata was dependent on wood species and microorganisms tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号