首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A gene (pmeA) encoding pectin methylesterase was isolated from a shoyu koji mold, Aspergillus oryzae KBN616, and characterized. The structural gene comprised 1,370 bp with six introns. The PMEA protein consisted of 331 amino acids with a putative signal peptide of 17 amino acids. The deduced amino acid sequence was very similar to those of Aspergillus niger PMEA and Aspergillus aculeatus PME1. The pmeA gene was efficiently expressed under control of the A. oryzae TEF1 gene promoter for purification and characterization of the ezymatic properties. PMEA had a molecular mass of 38.5 kDa, a pH optimum of 5.0, and a temperature optimum of 55 degrees C.  相似文献   

2.
Synthetic oligonucleotide probes based on amino acid sequence data were used to identify and clone cDNA sequences encoding a catalase (catalase-R) of Aspergillus niger. One cDNA clone was subsequently used to isolate the corresponding genomic DNA sequences (designated catR). Nucleotide sequence analysis of both genomic and cDNA clones suggested that the catR coding region consists of five exons interrupted by four small introns. The deduced amino acid sequence of catalase-R spans 730 residues which show significant homology to both prokaryotic and eukaryotic catalases, particularly in regions involved in catalytic activity and binding of the haem prosthetic group. Increased expression of the catR gene was obtained by transformation of an A. niger host strain with an integrative vector carrying the cloned genomic DNA segment. Several of these transformants produced three- to fivefold higher levels of catalase than the untransformed parent strain. Hybridization analyses indicated that these strains contained multiple copies of catR integrated into the genome. A second expression vector was constructed in which the catR coding region was functionally joined to the promoter and terminator elements of the A. niger glucoamylase (glaA) gene. A. niger transformants containing this vector produced from three- to 10-fold higher levels of catalase-R than the untransformed parent strain.  相似文献   

3.
4.
A 1319 bp long cDNA encoding for a polygalacturonase (EC 3.2.1.15) from Aspergillus niger RH5344 comprises a single open reading frame of 1089 bp which includes the mature protein of 362 amino acids and an NH2-terminal signal peptide of 27 amino acids. The directly determined peptides of the mature polygalacturonase confirmed the sequence information deduced from the cDNA.  相似文献   

5.
黑曲霉T21是由黑曲霉3.795经诱变育种获得的糖化酶高产菌株,为阐明其高产的分子机制,由黑曲霉3.795克隆了糖化酶结构基因及其5′旁侧序列,并与黑曲霉T21的相应序列进行了比较.由黑曲霉3.795菌丝体分离染色体DNA,Southern杂交分析表明,糖化酶结构基因位于~2.5kb的EcoRⅠ-EcoRⅤ染色体DNA片段上,在此EcoRⅠ位点上游约1.0kb处有一SalⅠ位点.为构建糖化酶结构基因及其5′旁侧序列的基因组文库,该染色体DNA分别用EcoRⅠ+EcoRⅤ和EcoR+SalⅠ消化,琼脂糖凝胶电泳分离并回收长度在1.0kb左右和2.5kb左右的DNA片段,分别与pUC19载体连接后转化入E.coliDH5.用原位杂交方法筛选到了携带糖化酶基因编码区及其1505bp5′旁侧序列的阳性克隆.对克隆片段的DNA序列进行了测定并与黑曲霉T21的相应序列进行了比较,结果表明,在糖化酶基因编码区及其150bp3′非编码区内,未发现碱基差异,但在-340~-1505的5′上游区内发生了9个位置的碱基变化,包括缺失、插入和替换.这些结果表明,黑曲霉T21与3.795的糖化酶产量的差异与其结构基因无关,但可能与其  相似文献   

6.
DNA fragments coding for hemoglobin domains (HBD) were isolated from Aspergillus oryzae and Aspergillus niger. The HBD activities were expressed in A. oryzae by introduction of HBD gene fragments under the control of the promoter of the constitutively expressed gpdA gene. In the transformants, oxygen uptake was significantly higher, and during growth on solid substrates the developed biomass was at least 1.3 times higher than that of the untransformed wild-type strain. Growth rate of the HBD-activity-producing strains was also significantly higher compared to the wild type. During growth on solid cereal substrates, the amylase and protease activities in the extracts of the HBD-activity-producing strains were 30-150% higher and glucoamylase activities were at least 9 times higher compared to the wild-type strain. These results suggest that the Aspergillus HBD-encoding gene can be used in a self-cloning strategy to improve biomass yield and protein production of Aspergillus species.  相似文献   

7.
Selectable markers are valuable tools in transforming asexual fungi like Aspergillus niger. An arginase (agaA) expression vector and a suitable arginase-disrupted host would define a novel nutritional marker/selection for transformation. The development of such a marker was successfully achieved in two steps. The single genomic copy of A. niger arginase gene was disrupted by homologous integration of the bar marker. The agaA disruptant was subsequently complemented by transforming it with agaA expression vectors. Both citA and trpC promoters were able to drive the expression of arginase cDNA. Such agaA+ transformants displayed arginase expression pattern distinct from that of the parent strain. The results are also consistent with a single catabolic route for arginine in this fungus. A simple yet novel arginine-based selection for filamentous fungal transformation is thus described.  相似文献   

8.
Aspergillus niger produces several polygalacturonases that, with other enzymes, are involved in the degradation of pectin. One of the two previously characterized genes coding for the abundant polygalacturonases I and II (PGI and PGII) found in a commercial pectinase preparation was used as a probe to isolate five more genes by screening a genomic DNA library in phage lambda EMBL4 using conditions of moderate stringency. The products of these genes were detected in the culture medium of Aspergillus nidulans transformants on the basis of activity measurements and Western-blot analysis using a polyclonal antibody raised against PGI. These transformants were, with one exception, constructed using phage DNA. A. nidulans transformants secreted high amounts of PGI and PGII in comparison to the previously characterized A. niger transformants and a novel polygalacturonase (PGC) was produced at high levels by A. nidulans transformed with the subcloned pgaC gene. This gene was sequenced and the protein-coding region was found to be interrupted by three introns; the different intron/exon organization of the three sequenced A. niger polygalacturonase genes can be explained by the gain or loss of two single introns. The pgaC gene encodes a putative 383-amino-acid prepro-protein that is cleaved after a pair of basic amino acids and shows approximately 60% amino acid sequence similarity to the other polygalacturonases in the mature protein. The N-terminal amino acid sequences of the A. niger polygalacturonases display characteristic amino acid insertions or deletions that are also observed in polygalacturonases of phytopathogenic fungi. In the upstream regions of the A. niger polygalacturonase genes, a sequence of ten conserved nucleotides comprising a CCAAT sequence was found, which is likely to represent a binding site for a regulatory protein as it shows a high similarity to the yeast CYC1 upstream activation site recognized by the HAP2/3/4 activation complex.  相似文献   

9.
I Palva 《Gene》1982,19(1):81-87
The gene coding for alpha-amylase from Bacillus amyloliquefaciens was isolated by direct shotgun cloning using B. subtilis as a host. The genome of B. amyloliquefaciens was partially digested with the restriction endonuclease MboI and 2- to 5-kb fragments were isolated and joined to plasmid pUB110. Competent B. subtilis amylase-negative cells were transformed with the hybrid plasmids and kanamycin-resistant transformants were screened for the production of alpha-amylase. One of the transformants producing high amounts of alpha-amylase was characterized further. The alpha-amylase gene was shown to be present in a 2.3-kb insert. The alpha-amylase production of the transformed B. subtilis could be prevented by inserting lambda DNA fragments into unique sites of EcoRI, HindIII and KpnI in the insert. Foreign DNA inserted into a unique ClaI site failed to affect the alpha-amylase production. The amount of alpha-amylase activity produced by this transformed B. subtilis was about 2500-fold higher than that for the wild-type B. subtilis Marburg strain, and about 5 times higher than the activity produced by the donor B. amyloliquefaciens strain. Virtually all of the alpha-amylase was secreted into the culture medium. The secreted alpha-amylase was shown to be indistinguishable from that of B. amyloliquefaciens as based on immunological and biochemical criteria.  相似文献   

10.
A gene coding for xylanase activity in the ruminal bacterial strain 23, the type strain of Bacteroides ruminicola, was cloned into Escherichia coli JM83 by using plasmid pUC18. AB. ruminicola 23 genomic library was prepared in E. coli by using BamHI-digested DNA, and transformants were screened for xylanase activity on the basis of clearing areas around colonies grown on Remazol brilliant blue R-xylan plates. Six clones were identified as being xylanase positive, and all six contained the same 5.7-kilobase genomic insert. The gene was reduced to a 2.7-kilobase DNA fragment. Xylanase activity produced by the E. coli clone was found to be greater than that produced by the original B. ruminicola strain. Southern hybridization analysis of genomic DNA from the related B. ruminicola strains, D31d and H15a, by using the strain 23 xylanase gene demonstrated one hybridizing band in each DNA.  相似文献   

11.
A gene coding for xylanase activity in the ruminal bacterial strain 23, the type strain of Bacteroides ruminicola, was cloned into Escherichia coli JM83 by using plasmid pUC18. AB. ruminicola 23 genomic library was prepared in E. coli by using BamHI-digested DNA, and transformants were screened for xylanase activity on the basis of clearing areas around colonies grown on Remazol brilliant blue R-xylan plates. Six clones were identified as being xylanase positive, and all six contained the same 5.7-kilobase genomic insert. The gene was reduced to a 2.7-kilobase DNA fragment. Xylanase activity produced by the E. coli clone was found to be greater than that produced by the original B. ruminicola strain. Southern hybridization analysis of genomic DNA from the related B. ruminicola strains, D31d and H15a, by using the strain 23 xylanase gene demonstrated one hybridizing band in each DNA.  相似文献   

12.
We have transformed an industrial strain, Aspergillus niger GN-3, with the alpha-glucosidase gene (aglA) from the same strain. Southern hybridization analysis revealed that transformants had multiple copies of the cloned DNA inserted into the host genome. An 11-fold improvement of enzyme production was achieved by transformation with a DNA fragment composed of 1.11 kb of the 5' noncoding region, 3.12 kb of the coding region containing three introns, and 1.2 kb of the 3' noncoding region. It was found that the 3' noncoding region (1.2 kb) was preferable for maximum production of the enzyme in the transformant.  相似文献   

13.
A cDNA library from Aspergillus niger strain NRRL-3 enriched in sequences glucose oxidase was constructed. An 800 bp cDNA clone isolated from this library was used to screen 12,000 recombinant phages from an EMBL3 genomic library. A 15 kbp DNA segment isolated from this library contained the 1815 bp structural gene for glucose oxidase as well as a short 5'- and a longer 3'-noncoding region. The deduced protein sequence was verified by partial peptide sequencing.  相似文献   

14.
We have isolated a cDNA clone corresponding to a substantial portion of the human tissue-type plasminogen activator (t-PA) protein. It encodes almost all of the protein B chain and part of the 3' untranslated region. We have used this clone to screen bacteriophage lambda and cosmid libraries of human genomic DNA. Several related genomic clones were isolated. One of these, a cosmid clone, carried approx. 40 kb of human DNA. Mapping experiments indicate that the region containing the protein-coding exons is approx. 20 kb in length. The cosmid, containing the t-PA gene and the aminoglycosyl-3'-phosphotransferase dominant-selection marker, was introduced into mouse L cells. Approximately half of the transformants were shown to produce human t-PA. We demonstrated that the fibrinolytic t-PA activity could be specifically quenched by anti-t-PA antibody and that the recombinant t-PA was of similar size (by SDS-polyacrylamide gel electrophoresis) to the t-PA produced by the human Bowes melanoma cell line. Our results suggest that the cosmid clone carries the whole t-PA coding region together with the regulatory elements necessary for its expression.  相似文献   

15.
从AspergillusnigerT21分离到自发性的氯酸盐抗性株,再经氮源生长试验获得硝酸盐还原酶缺陷的niaD突变体N44。用含有niaD的质粒pSTA10转化N44,转化频率为5个/μg(转化子/DNA)。转化子的Southern印迹分析表明niaD基因同源整合到N44的染色体DNA中。pSTA10与含葡糖苷酸酶基因(uidA)的质粒pNOM102共转化N44,共转化频率为40%。共转化子的GUS(葡糖苷酸酶)活力测定结果表明uidA基因已在N44中表达。由此可知,以niaD为选择标记,uidA为报告基因,以N44为受体的转化系统可用于丝状真菌启动子功能检测和已知调控序列的功能分析。  相似文献   

16.
The hst gene was originally identified in surgically obtained human gastric mucosae as a transforming gene which could transform NIH3T3 cells morphologically. The hst cDNA clone was synthesized from mRNA of one of the NIH3T3 transformants. A human leukocyte genomic library was screened with this cDNA clone, and an hst genomic fragment was obtained. This genomic fragment itself had transforming activity, and the protein coding sequences were proved to be completely identical to those of the cDNA clone prepared from mRNA of the NIH3T3 transformant. This fact suggests that rearrangement or other structural alterations in the coding sequence are not required for the activation of the hst gene. The predicted hst protein consists of 206 amino acids and has a significant homology (40-50%) to fibroblast growth factors and int-2 protein. They together make up a new superfamily of growth factors and transforming genes.  相似文献   

17.
Isolation and characterization of the Aspergillus niger trpC gene   总被引:3,自引:0,他引:3  
The Aspergillus niger trpC gene was isolated by complementation experiments with an Escherichia coli trpC mutant. Plasmid DNA containing the A. niger trpC gene transforms an Aspergillus nidulans mutant strain, defective in all three enzymatic activities of the trpC gene, to Trp+, indicating the presence of a complete and functional trpC gene. Southern blot analysis of DNA from these Trp+ transformants showed that plasmid DNA was present but that this DNA was not integrated at the site of the chromosomal trpC locus. The A. niger trpC gene was localized on the cloned fragment by heterologous hybridization experiments and sequence analysis. These experiments suggest that the organization of the A. niger trpC gene is identical to that of the analogous A. nidulans trpC and the Neurospora crassa trp-1 genes.  相似文献   

18.
The sC sequence from Aspergillus niger was cloned and developed into a homologous marker system for genetic transformation. The coding region of the sC gene amplified by PCR from the A. niger genome was provided with Aspergillus nidulans expression signals (gpdA promoter and trpC terminator). This chimeric construct was used to successfully transform a spontaneous sC- isolate of A. niger to prototrophy. The transformants analyzed by Southern analysis showed integration of multiple copies of the transforming DNA. They also exhibited much higher ATP sulfurylase activity than the wild-type A. niger strain reinforcing the molecular data. This demonstrates the usefulness of the sCniger construct, driven by PgpdA, as a marker for A. niger transformation.  相似文献   

19.
The production of asparagine (N)-linked oligosaccharides is of vital importance in the formation of glycosylated proteins in eukaryotes and is mediated by the dolichol pathway. As part of studies to allow manipulation of this pathway, the gene coding for the production of the enzyme UDP N-acetylglucosamine: dolichol phosphate N-acetylglucosaminylphosphoryl transferase (GPT), catalysing the first step in the assembly of dolichol-linked oligosaccharides, was cloned from the filamentous fungus Aspergillus niger. Degenerate-PCR was used to amplify a 470-bp fragment of the gene, which was labelled as a probe to obtain a full-length clone from a genomic library of A. niger. This contained a 1557-bp open reading frame encoding a highly hydrophobic protein of 468 amino acids with a predicted molecular weight of 51.4 kDa. The gene contained two intron sequences and putative dolichol recognition sites (PDRSs) were present in the deduced amino acid sequence. Comparison with other eukaryotic GPTs revealed the A. niger GPT to share 45-47% identity with yeasts (Saccharomyces cerevisiae and Schizosaccharomyces pombe) and 41-42% identity with mammals (mouse, hamster, human). Nested-PCR of a cDNA library was used to confirm the position of an intron. A complete cDNA clone of A. niger gpt was obtained by employing a recombinant PCR approach. This was used to rescue a conditional lethal mutant of S. cerevisiae carrying a dysfunctional gpt gene by heterologous expression, confirming that the gpt genes from A. niger and S. cerevisiae are functionally equivalent.  相似文献   

20.
There is a growing consumer demand for wines containing lower levels of alcohol and chemical preservatives. The objectives of this study were to express the Aspergillus niger gene encoding a glucose oxidase (GOX; beta- d-glucose:oxygen oxidoreductase, EC 1.1.3.4) in Saccharomyces cerevisiae and to evaluate the transformants for lower alcohol production and inhibition of wine spoilage organisms, such as acetic acid bacteria and lactic acid bacteria, during fermentation. The A. niger structural glucose oxidase (gox) gene was cloned into an integration vector (YIp5) containing the yeast mating pheromone alpha-factor secretion signal (MFalpha1(S)) and the phosphoglycerate-kinase-1 gene promoter (PGK1(P)) and terminator (PGK1(T)). The PGK1(P)- MFalpha1(S)- gox- PGK1(T) cassette (designated GOX1) was introduced into a laboratory strain (Sigma1278) of S. cerevisiae. Yeast transformants were analysed for the production of biologically active glucose oxidase on selective agar plates and in liquid assays. The results indicated that the recombinant glucose oxidase was active and was produced beginning early in the exponential growth phase, leading to a stable level in the stationary phase. The yeast transformants also displayed antimicrobial activity in a plate assay against lactic acid bacteria and acetic acid bacteria. This might be explained by the fact that a final product of the GOX enzymatic reaction is hydrogen peroxide, a known antimicrobial agent. Microvinification with the laboratory yeast transformants resulted in wines containing 1.8-2.0% less alcohol. This was probably due to the production of d-glucono-delta-lactone and gluconic acid from glucose by GOX. These results pave the way for the development of wine yeast starter culture strains for the production of wine with reduced levels of chemical preservatives and alcohol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号