首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A method was developed for the reconstruction of glycosaminoglycan (GAG) oligosaccharides using the transglycosylation reaction of an endo-beta-N-acetylhexosaminidase, testicular hyaluronidase, under optimal conditions. Repetition of the transglycosylation using suitable combinations of various GAGs as acceptors and donors made it possible to custom-synthesize GAG oligosaccharides. Thus we prepared a library of chimeric GAG oligosaccharides with hybrid structures composed of disaccharide units such as GlcA-GlcNAc (from hyaluronic acid), GlcA-GalNAc (from chondroitin), GlcA-GalNAc4S (from chondroitin 4-sulfate), GlcA-GalNAc6S (from chondroitin 6-sulfate), IdoA-GalNAc (from desulfated dermatan sulfate), and GlcA-GalNAc4,6-diS (from chondroitin sulfate E). The specificity of the hyaluronidase from Streptococcus dysgalactiae (hyaluronidase SD) was then investigated using these chimeric GAG oligosaccharides as model substrates. The results indicate that the specificity of hyaluronidase SD is determined by the following restrictions at the nonreducing terminal side of the cleavage site: (i) at least one disaccharide unit (GlcA-GlcNAc) is necessary for the enzymatic action of hyaluronidase SD; (ii) cleavage is inhibited by sulfation of the N-acetylgalactosamine; (iii) hyaluronidase SD releases GlcA-GalNAc and IdoA-GalNAc units as well as GlcA-GlcNAc. At the reducing terminal side of the cleavage site, the sulfated residues on the N-acetylgalactosamines in the disaccharide units were found to have no influence on the cleavage. Additionally, we found that hyaluronidase SD can specifically and endolytically cleave the internal unsulfated regions of chondroitin sulfate chains. This demonstration indicates that custom-synthesized GAG oligosaccharides will open a new avenue in GAG glycotechnology.  相似文献   

2.
In the previous study, we have found that the endo-beta-xylosidase from Patinopecten had the attachment activities of glycosaminoglycan (GAG) chains to peptide. As artificial carrier substrates for this reaction, synthesis of various GAG chains having the linkage region tetrasaccharide, GlcA beta 1-3Gal beta 1-3Gal beta 1-4Xyl, between GAG chain and core protein of proteoglycan was investigated. Hyaluronic acid (HA), chondroitin (Ch), chondroitin 4-sulfate (Ch4S), chondroitin 6-sulfate (Ch6S), and desulfated dermatan sulfate (desulfated DS) as donors and the 4-metylumbelliferone (MU)-labeled hexasaccharide having the linkage region tetrasaccharide at its reducing terminals (MU-hexasaccharide) as an acceptor were subjected to a transglycosylation reaction of testicular hyaluronidase. The products were analyzed by high-performance liquid chromatography and enzyme digestion, and the results indicated that HA, Ch, Ch4S, Ch6S, and desulfated DS chains elongated by the addition of disaccharide units to the nonreducing terminal of MU-hexasaccharide. It was possible to custom-synthesize various GAG chains having the linkage region tetrasaccharide as carrier substrates for enzymatic attachment of GAG chains to peptide.  相似文献   

3.
Using the transglycosylation reaction of testicular hyaluronidase, reconstructions of hybrid glycosaminoglycans (GAGs) containing 6-sulfated (GalNAc6S), 4-sulfated (GalNAcS) and unsulfated N-acetylgalactosamine (GalNAc) were investigated. First, chondroitin 4-sulfate (Ch4S) as a donor containing GalNAc4S and the pyridylaminated (PA) chondroitin 6-sulfate (Ch6S) hexasaccharide as an acceptor containing GalNAc6S were subjected to transglycosylation reaction. Second, when the resulting PA-Ch6S(hexa-)-Ch4S(di-)octasaccharide and chondroitin (Ch) were used as an acceptor and as a donor containing GalNAc, respectively, a new decasaccharide having a hybrid structure composed of disaccharide units derived from Ch6S, Ch4S and Ch was reconstructed. Using a systematic combination of each donor and acceptor molecule, it was possible to reconstruct various types of hybrid GAGs.  相似文献   

4.
Glycosaminoglycans were prepared as salts of different divalent cations and tested as donors in bovine testicular hyaluronidase catalyzed transglycosylation reactions. All of the metal cations examined had similar binding efficiency of divalent cations to hyaluronan. However, cations bound with different efficiencies to chondroitin sulfate species and the differences were marked in the case of chondroitin 6-sulfate; the numbers of cations bound per disaccharide unit were estimated to be 0.075 for Mn, 1.231 for Ba, 0.144 for Zn, and 0.395 for Cu. While barium salt of chondroitin sulfates enhanced transglycosylation, the zinc salt of chondroitin sulfates inhibited transglycosylation. Therefore, by selecting the proper divalent cation salt of chondroitin sulfates as a donor in the transglycosylation reaction it is possible to improve the yields of the products.  相似文献   

5.
The glycosaminoglycan chain of decorin from human spinal ligaments was digested using the hydrolysis of bovine testicular hyaluronidase. As a result, decorin with hexasaccharide, octasaccharide, and decasaccharide including the linkage region, GlcA-Gal-Gal-Xyl, was obtained. The obtained decorin as an acceptor and hyaluronic acid as a donor were incubated with bovine testicular hyaluronidase under the condition of transglycosylation reaction. The transglycosylation reaction product had hexasaccharide to triacontasaccharide. Judging from the analysis of glycosaminoglycan chain in the transglycosylation reaction product, it was confirmed that hyaluronic acid chain as a donor was transferred to the retained glycosaminoglycan chain of decorin as an acceptor. Similarly, it was possible to reconstruct the glycosaminoglycan chain in decorin to chondroitin, chondroitin 4-sulfate or chondroitin 6-sulfate. Therefore, we succeeded in synthesizing an artificial family of decorins.  相似文献   

6.
A 3'-phosphoadenylylsulfate:chondroitin sulfotransferase (EC 2.8.2.5) was purified to homogeneity (about 760-fold) from the cytosolic fraction of calf arterial tissue by Con A-Sepharose, ion exchange and affinity chromatography. The enzyme has a molecular mass of 38000 Da, optimal activity at pH 6.0 (100%) and 7.25 (75%), requires divalent cations for maximal activity (Mn2+ greater than Mg2+, Ca2+) and exhibits specificity towards desulfated chondroitin sulfate and oligosaccharides derived therefrom. The enzyme transfers sulfate groups from [35S]phosphoadenylylsulfate exclusively to C-6 OH groups of N-acetylgalactosamine units of the acceptor substrates. Maximal sulfate transfer occurs at 2mM chondroitin disaccharide units (100%), the transfer rates decreasing with decreasing chain length in the order deca (55%), octa (17%) and hexasaccharides (4%). Lineweaver-Burk plots revealed equal maximal velocities for chondroitin, deca-, octa- and hexasaccharide, but decreasing Km values. Chondroitin 4-sulfate has 21% of the acceptor potency exhibited by chondroitin, whereas dermatan sulfate, heparan sulfate and hyaluronate and the chondroitin tetrasaccharide showed no acceptor properties. Analysis of the reaction products formed by prolonged enzymatic sulfation of a reduced chondroitin hexasaccharide [GlcA-GalNAc]2-GlcA-GalNAc-ol revealed that the preterminal N-acetylgalactosamine from the non-reducing end and the internal N-acetylgalactosamine but not the N-acetylgalactosaminitol were sulfated and that no hexasaccharide disulfate was formed by the action of chondroitin 6-sulfotransferase. Chondroitin 6-sulfotransferase is considered to possess a binding region capable of accommodating a nonsulfated oligosaccharide sequence of at least six sugars and is believed to act in the course of chondroitin sulfate synthesis in cooperation with, but shortly after, the enzymes involved in the chain elongation reaction.  相似文献   

7.
A 3' -phosphoadenosine 5' -phosphosulfate (PAPS):chondroitin sulfate sulfotransferase from chicken embryo epiphyseal cartilage, which was partially purified, exhibited a molecular mass of 150 kDa. The enzymatic sulfation of totally desulfated chondroitin was activated up to 12-fold by protamine while the sulfation of partially sulfated chondroitin was activated only 3-fold. Protamine increased the affinity of the enzyme for PAPS about 4-fold when partially desulfated chondroitin was used as sulfate acceptor. The S 0.5 for the totally desulfated chondroitin was not affected by protamine, while high PAPS concentration slightly increased the affinity of the enzyme for the same sulfate acceptor. The possible role of these substances in the regulation of the sulfation of chondroitin sulfate is discussed.  相似文献   

8.
A 3′-phosphoadenosine 5′-phosphosulfate (PAPS):chondroitin sulfate sulfotransferase from chicken embryo epiphyseal cartilage, which was partially purified, exhibited a molecular mass of 150 kDa. The enzymatic sulfation of totally desulfated chondroitin was activated up to 12-fold by protamine while the sulfation of partially sulfated chondroitin was activated only 3-fold. Protamine increased the affinity of the enzyme for PAPS about 4-fold when partially desulfated chondroitin was used as sulfate acceptor. The S0.5 for the totally desulfated chondroitin was not affected by protamine, while high PAPS concentration slightly increased the affinity of the enzyme for the same sulfate acceptor. The possible role of these substances in the regulation of the sulfation of chondroitin sulfate is discussed.  相似文献   

9.
The amniotic membrane (AM) is the innermost layer of fetal membranes and possesses various biological activities. Although the mechanism underlying these biological activities remains unclear, unique components seem to be involved. AM contains various extracellular matrix components such as type I collagen, laminin, fibronectin, hyaluronan, and proteoglycans bearing chondroitin sulfate/dermatan sulfate (CS/DS) glycosaminoglycan side chains. Since CS/DS have been implicated in various biological processes, we hypothesized that CS/DS in AM may play a major role in the biological activities of AM. Therefore, the structure and bioactivity of the CS/DS chains from porcine fetal membranes (FM-CS/DS) were investigated. A compositional analysis using various chondroitinases revealed that the characteristic DS domain comprised of iduronic acid-containing disaccharide units is embedded in FM-CS/DS, along with predominant disaccharide units, GlcA-GalNAc, GlcA-GalNAc(4-O-sulfate), and GlcA-GalNAc(6-O-sulfate), where GlcA and GalNAc represent D-glucuronic acid and N-acetyl-D-galactosamine, respectively. The average molecular mass of FM-CS/DS chains was unusually large and estimated to be 250 – 300 kDa. The FM-CS/DS chains showed neurite outgrowth-promoting activity, which was eliminated by digestion with chondroitinase ABC of the CS/DS chains. This activity was suppressed by antibodies against growth factors including pleiotrophin, midkine, and fibroblast growth factor-2, suggesting the involvement of these growth factors in the neurite outgrowth-promoting activity. The binding of these growth factors to FM-CS/DS was also demonstrated by surface plasmon resonance spectroscopy.  相似文献   

10.
Aggregation of cultured mouse cells was measured by the rate of disappearance of particles from a suspension of single cells. Treatment with several enzymes which degrade hyaluronic acid (testicular hyaluronidase, streptomyces hyaluronidase, streptococcal hyaluronidase and chondroitinase ABC) inhibited the aggregation of SV-3T3 and several other cell types. Since streptomyces and streptococcal hyaluronidases are specific for hyaluronic acid, it is suggested that hyaluronic acid is involved in the observed aggregation. Hyaluronidase-induced inhibition of aggregation was complete in the absence of divalent cations, but only partial in their presence. This finding is consistent with the hypothesis that two separate mechanisms are responsible for aggregation; one dependent upon and the other independent of calcium and magnesium. Aggregation was also inhibited by high levels of hyaluronic acid. A similar effect was obtained with fragments of hyaluronic acid consisting of six sugar residues or more. Chondroitin (desulfated chondroitin 6-sulfate) and to a lesser extent desulfated dermatan sulfate also inhibited aggregation. Other glycosaminoglycans (chondroitin 4-sulfate, chondroitin 6-sulfate, heparin and heparan sulfate) had little or no effect on aggregation. It is suggested that the hyaluronic acid inhibits aggregation by competing with endogenous hyaluronic acid for cell surface binding sites.  相似文献   

11.
A chondroitin sulfate was purified from the body of Viviparus ater (Mollusca gastropoda) and analyzed for molecular mass, constituent disaccharides, and structure by 1H NMR and 1H 2D NMR. A quite unique glycosaminoglycan species was isolated having a high molecular mass (greater than 45,000) and low charge density, about 0.60, due to the presence of 42% non-sulfated disaccharide, 5% 6-sulfated disaccharide, 48% 4-sulfated disaccharide, and 5% 4,6-disulfated disaccharide. Specimens of Mollusca were also submitted to lead exposure for different times, and the effect on chondroitin sulfate structure was studied. After 96 h treatment a strong decrease in chondroitin sulfate content was observed with a significant modification of its structure producing a more desulfated polymer, in particular in position 4 of the galactosamine unit. Simultaneously, the amount of unsaturated non-sulfated disaccharide increased with an overall decrease of the charge density.  相似文献   

12.
We demonstrated previously that chondroitin sulfate E (ChS-E) binds to type V collagen (Munakata, H., Takagaki, K., Majima, M., and Endo, M. (1999) Glycobiology 9, 1023--1027). In this study, we investigated the structure and binding of ChS-E oligosaccharides. Eleven oligosaccharides were isolated from ChS-E by gel filtration chromatography and anion-exchange high performance liquid chromatography after hydrolysis with testicular hyaluronidase. Separately, seven oligosaccharides were custom synthesized using the transglycosylation reaction of testicular hyaluronidase. Structural analysis was performed by enzymatic digestions in conjunction with high performance liquid chromatography and mass spectrometry. This library of 18 oligosaccharides was used as a source of model molecules to clarify the structural requirements for binding to type V collagen. Binding was analyzed by a biosensor based on surface plasmon resonance. The results indicated that to bind to type V collagen the oligosaccharides must have the following carbohydrate structures: 1) octasaccharide or larger in size; 2) a continuous sequence of three GlcAbeta1--3GalNAc(4S,6S) units; 3) a GlcAbeta1--3GalNAc(4S,6S) unit, GlcAbeta1--3GalNAc(4S) unit or GlcAbeta1--3GalNAc(6S) unit at the reducing terminal; 4) a GlcAbeta1--3GalNAc(4S,6S) unit at the nonreducing terminal. It is likely that these characteristic oligosaccharide sequences play key roles in cell adhesion and extracellular matrix assembly.  相似文献   

13.
Eight hexasaccharide fractions were isolated from commercialshark cartilage chondroitin sulfate D by means of gel nitrationchromatography and HPLC on an amine-bound silica column afterexhaustive digestion with sheep testicular hyaluronidase. Capillaryelectrophoresis of the enzymatic digests as well as one- andtwo-dimensional 500 MHz 1H-NMR spectroscopy demonstrated thatthese hexasaccharides share the common core saccharide structureGlcAß1-3GalNAcß1-4GlcAß1-3GalNAcß1-4GlcAß1-3GalNAcwith three, four, or five sulfate groups in different combinations.Six structures had the same sulfation profiles as those of theunsaturated hexasaccharides isolated from the same source afterdigestion with chondroitinase ABC (Sugahara et al., Eur. J.Biochem., 293, 871–880, 1996) and the other two have notbeen reported so far. In the new components, a D disaccharideunit, GlcA(2-sulfate)ß1-3GalNAc(6-sulfate), characteristicof chondroitin sulfate D was arranged on the reducing side ofan A disaccharide unit, GlcAß1-3GalNAc(4-sulfate),forming an unusual A-D tetrasaccharide sequence, GlcAß1-3GalNAc(4-sulfate)-4GlcA(2-sulfate)ß1-3GaINAc(6-sulfate)which is known to be recognized by the monoclonal antibody MO225.These findings support the notion that the tetrasaccharide sequence,GlcAß1-3GalNAc(4-sulfate)ß1-4GlcAß1-3GalNAc(6-sulfate)is included in the acceptor site of a hitherto unreported 2-O-sulfotransferaseresponsible for its synthesis. The sulfated hexasaccharidesisolated in this study will be useful as authentic oligosaccharideprobes and enzyme substrates in studies of sulfated glycosaminogly-cans. sulfated hexasaccharides chondroitin sulfate D hyaluronidase 1 H-NMR  相似文献   

14.
4-O-Sulfation of GalNAc is a high frequency modification of chondroitin sulfate and dermatan sulfate (DS), and three major GalNAc 4-O-sulfotransferases including dermatan 4-O-sulfotransferase-1 (D4ST-1) and chondroitin 4-O-sulfotransferases-1 and -2 (C4ST-1 and -2) have been identified. 4-O-Sulfation of GalNAc during DS biosynthesis had long been postulated to be a prerequisite for iduronic acid (IdoUA) formation by C5-epimerization of GlcUA. This hypothesis has recently been argued based on enzymological studies using microsomes that C5-epimerization precedes 4-O-sulfation, which was further supported by the specificity of the cloned D4ST-1 with predominant preference for IdoUA-GalNAc flanked by GlcUA-GalNAc over IdoUA-GalNAc flanked by IdoUA-GalNAc in exhaustively desulfated dermatan. Whereas the counterproposal explains the initial reactions, apparently it cannot rationalize the synthetic mechanism of IdoUA-GalNAc(4-O-sulfate)-rich clusters typical of mature DS chains. In this study, we examined detailed specificities of the three recombinant human 4-O-sulfotransferases using partially desulfated DS as an acceptor. Enzymatic analysis of the transferase reaction products showed that D4ST-1 far more efficiently transferred sulfate to GalNAc residues in -IdoUA-Gal-NAc-IdoUA-than in -GlcUA-GalNAc-GlcUA-sequences. In contrast, C4ST-1 showed the opposite preference, and C4ST-2 used GalNAc residues in both sequences to comparable degrees, being consistent with its phylogenetic relations to D4ST-1 and C4ST-1. Structural analysis of the oligosaccharides, which were isolated after chondroitinase AC-I digestion of the 35S-labeled transferase reaction products, revealed for the first time that D4ST-1, as compared with C4ST-1 and C4ST-2, most efficiently utilized GalNAc residues located not only in the sequence -IdoUA-GalNAc-IdoUA- but also in -GlcUA-Gal-NAc-IdoUA- and -IdoUA-GalNAc-GlcUA-. The isolated oligosaccharide structures also suggest that 4-O-sulfation promotes subsequent 4-O-sulfation of GalNAc in the neighboring disaccharide unit.  相似文献   

15.
Hyaluronan and chondroitin/dermatan sulfate are glycosaminoglycans that play major roles in the biomechanical properties of a wide variety of tissues, including cartilage. A chondroitin/dermatan sulfate chain can be divided into three regions: (1) a single linkage region oligosaccharide, through which the chain is attached to its proteoglycan core protein, (2) numerous internal repeat disaccharides, which comprise the bulk of the chain, and (3) a single nonreducing terminal saccharide structure. Each of these regions of a chondroitin/dermatan sulfate chain has its own level of microheterogeneity of structure, which varies with proteoglycan class, tissue source, species, and pathology. We have developed rapid, simple, and sensitive protocols for detection, characterization and quantitation of the saccharide structures from the internal disaccharide and nonreducing terminal regions of hyaluronan and chondroitin/dermatan sulfate chains. These protocols rely on the generation of saccharide structures with free reducing groups by specific enzymatic treatments (hyaluronidase/chondroitinase) which are then quantitatively tagged though their free reducing groups with the fluorescent reporter, 2-aminoacridone. These saccharide structures are further characterized by modification through additional enzymatic (sulfatase) or chemical (mercuric ion) treatments. After separation by fluorophore-assisted carbohydrate electrophoresis, the relative fluorescence in each band is quantitated with a cooled, charge-coupled device camera for analysis. Specifically, the digestion products identified are (1) unsaturated internal Deltadisaccharides including DeltaDiHA, DeltaDi0S, DeltaDi2S, DeltaDi4S, DeltaDi6S, DeltaDi2,4S, DeltaDi2,6S, DeltaDi4,6S, and DeltaDi2,4,6S; (2) saturated nonreducing terminal disaccharides including DiHA, Di0S, Di4S and Di6S; and (3) nonreducing terminal hexosamines including glcNAc, galNAc, 4S-galNAc, 6S-galNAc, and 4, 6S-galNAc.  相似文献   

16.
Brain-specific chondroitin sulfate (CS) proteoglycan (PG) DSD-1-PG/6B4-PG/phosphacan isolated from neonatal mouse brains exhibits neurite outgrowth-promoting activity toward embryonic rat and mouse hippocampal neurons in vitro through the so-called DSD-1 epitope embedded in its glycosaminoglycan side chains. Oversulfated CS variants, CS-D from shark cartilage and CS-E from squid cartilage, also possess similar activities. We have proposed that the neuritogenic property of the DSD-1 epitope may be attributable to a distinct CS structure characterized by the disulfated D disaccharide unit [GlcUA(2S)-GalNAc(6S)]. In this study, we assessed neuritogenic potencies of various oversulfated dermatan sulfate (DS) preparations purified from hagfish notochord, the bodies of two kinds of ascidians and embryonic sea urchin, which are characterized by the predominant disulfated disaccharide units of [IdoUA-GalNAc(4S,6S)] (68%), [IdoUA(2S)-GalNAc(4S)] (66%) plus [IdoUA(2S)-GalNAc(6S)] (5%), [IdoUA(2S)-GalNAc (6S)] (>90%), and [IdoUA-GalNAc(4S,6S)] (74%), respectively. They exerted marked neurite outgrowth-promoting activities, resulting in distinct morphological features depending on the individual structural features. Such activities were not observed for a less sulfated DS preparation derived from porcine skin, which has a monosulfated disaccharide unit [IdoUA-Gal-NAc(4S)] as a predominant unit. The neurite outgrowth-promoting activities of these oversulfated DS preparations and DSD-1-PG were eliminated by the specific enzymatic cleavage of GalNAc-IdoUA linkages characteristic of DS using chondroitinase B. In addition, chemical analysis of the glycosaminoglycan side chains of DSD-1-PG revealed the DS-type structures. These observations suggest potential novel neurobiological functions of oversulfated DS structures and may reflect the physiological neuritogenesis during brain development by mammalian oversulfated DS structures exemplified by the DSD-1 epitope.  相似文献   

17.
N-Acetylgalactosamine 4-sulfate 6-O-sulfotransferase (GalNAc4S-6ST), which transfers sulfate from 3'-phosphoadenosine 5'-phosphosulfate (PAPS) to position 6 of N-acetylgalactosamine 4-sulfate in chondroitin sulfate and dermatan sulfate, was purified 19,600-fold to apparent homogeneity from the squid cartilage. SDS-polyacrylamide gel electrophoresis of the purified enzyme showed a broad protein band with a molecular mass of 63 kDa. The protein band coeluted with GalNAc4S-6ST activity from Toyopearl HW-55 around the position of 66 kDa, indicating that the active form of GalNAc4S-6ST may be a monomer. The purified enzyme transferred sulfate from PAPS to chondroitin sulfate A, chondroitin sulfate C, and dermatan sulfate. The transfer of sulfate to chondroitin sulfate A and dermatan sulfate occurred mainly at position 6 of the internal N-acetylgalactosamine 4-sulfate residues. Chondroitin sulfate E, keratan sulfate, heparan sulfate, and completely desulfated N-resulfated heparin were not efficient acceptors of the sulfotransferase. When a trisaccharide or a pentasaccharide having sulfate groups at position 4 of N-acetylgalactosamine was used as acceptor, efficient sulfation of position 6 at the nonreducing terminal N-acetylgalactosamine 4-sulfate residue was observed.  相似文献   

18.
Chondroitinase C from Flavobacterium heparinum.   总被引:3,自引:0,他引:3  
A chondroitinase that acts upon chondroitin sulfate C and hyaluronic acid was isolated from Flavobacterium heparinum. This enzyme was seperated from constitutional chondroitinase AC and an induced chondroitinase B also present in extracts of F. heparinum previously grown in the presence of chondroitin sulfates A, B or C. The enzyme acts upon chondroitin sulfate C producing tetrasaccharide plus an unsaturated 6-sulfated disaccharide (delta Di-6S), and upon hyaluronic acid producing unsaturated nonsulfated disaccharide (delta Di-OS). Chondroitin sulfate A is also degraded producing oligosaccharides and delta Di-6S but not delta Di-4S. The chondroitinase C is also distinguished from the chondroitinases B and AC by several properties, such as effect of ions, temperature for optimal activity, and susceptibility to increasing salt concentrations. The substrate specificity of the chondroitinase C is different from that of any other chondroitinase or hyaluronidase described so far.  相似文献   

19.
We have previously cloned N-acetylgalactosamine 4-sulfate 6-O-sulfotransferase (GalNAc4S-6ST), which transfers sulfate from 3'-phosphoadenosine 5'-phosphosulfate (PAPS) to the C-6 hydroxyl group of the GalNAc 4-sulfate residue of chondroitin sulfate A and forms chondroitin sulfate E containing GlcA-GalNAc(4,6-SO(4)) repeating units. To investigate the function of chondroitin sulfate E, the development of specific inhibitors of GalNAc4S-6ST is important. Because GalNAc4S-6ST requires a sulfate group attached to the C-4 hydroxyl group of the GalNAc residue as the acceptor, the sulfated GalNAc residue is expected to interact with GalNAc4S-6ST and affect its activity. In this study, we synthesized phenyl alpha- or -beta-2-acetamido-2-deoxy-beta-D-galactopyranosides containing a sulfate group at the C-3, C-4, or C-6 hydroxyl groups and examined their inhibitory activity against recombinant GalNAc4S-6ST. We found that phenyl beta-GalNAc(4SO(4)) inhibits GalNAc4S-6ST competitively and also serves as an acceptor. The sulfated product derived from phenyl beta-GalNAc(4SO(4)) was identical to phenyl beta-GalNAc(4,6-SO(4)). These observations indicate that derivatives of beta-D-GalNAc(4SO(4)) are possible specific inhibitors of GalNAc4S-6ST.  相似文献   

20.
We have recently demonstrated that the transfer of heavy chains (HCs) from inter-α-inhibitor, via the enzyme TSG-6 (tumor necrosis factor-stimulated gene 6), to hyaluronan (HA) oligosaccharides is an irreversible event in which subsequent swapping of HCs between HA molecules does not occur. We now describe our results of HC transfer experiments to chondroitin sulfate A, chemically desulfated chondroitin, chemoenzymatically synthesized chondroitin, unsulfated heparosan, heparan sulfate, and alginate. Of these potential HC acceptors, only chemically desulfated chondroitin and chemoenzymatically synthesized chondroitin were HC acceptors. The kinetics of HC transfer to chondroitin was similar to HA. At earlier time points, HCs were more widely distributed among the different sizes of chondroitin chains. As time progressed, the HCs migrated to lower molecular weight chains of chondroitin. Our interpretation is that TSG-6 swaps the HCs from the larger, reversible sites on chondroitin chains, which function as HC acceptors, onto smaller chondroitin chains, which function as irreversible HC acceptors. HCs transferred to smaller chondroitin chains were unable to be swapped off the smaller chondroitin chains and transferred to HA. HCs transferred to high molecular weight HA were unable to be swapped onto chondroitin. We also present data that although chondroitin was a HC acceptor, HA was the preferred acceptor when chondroitin and HA were in the same reaction mixture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号