首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to differentiate the EDTA-sensitive from the EDTA-insensitive human serum esterases by evaluating their catalytic constants, K(M) and V(m), for the hydrolysis of phenylacetate (PA). Measurements were done at 37 degrees C in 0.1 M Tris/HCl buffer pH 7.4 and 8.4. The K(M,sen) and K(M,ins) constants were significantly different, 0.97 and 2.7 mM respectively, confirming that two esterases hydrolyse PA. The pH of the medium had no effect on K(M) values, and also no effect on V(m,sen) while V(m,ins) was two fold higher at pH 8.4 than at 7.4 further confirming the existence of two different enzymes. The stability of the esterases in aqueous media was also studied. EDTA-sensitive activity in buffer without CaCl(2) was extremely unstable; the time-course of inactivation followed a two-phase reaction kinetics, indicating that two EDTA-sensitive esterases hydrolyse PA. The EDTA-insensitive activity remained constant in aqueous media under the same experimental conditions.  相似文献   

2.
A method for microperfusion of isolated segments of the midgut epithelium of Drosophila larvae has been developed to characterize cellular transport pathways and membrane transporters. Stereological ultrastructural morphometry shows that this epithelium has unusually long tight junctions, with little or no lateral intercellular volume normally found in most epithelia. Amplification of the apical and basal aspects of the cells, by ≈ 17-fold and ≈ 7-fold, respectively, predicts an almost exclusively transcellular transport system for solutes. This correlates with the high lumen-negative transepithelial potential (Vt) of 38 to 45 mV and high resistance (Rt) of 800 to 1400 Ω • cm2 measured by terminated cable analysis, in contrast to other microperfused epithelia like the renal proximal tubule. Several blockers (amiloride 10−4 M, ouabain 10−4 M, bumetanide 10−4 M), K+-free solutions, or organic solutes such as D-glucose 10 mM or DL-alanine 0.5 mM failed to affect Vt or Rt. Bafilomycin-A1 (3 to 5 μM) decreased Vt by ≈ 40% and short-circuit current (Isc) by ≈ 50%, and decreased intracellular pH when applied from the basal side only, consistent with an inhibition of an electrogenic V-H+-ATPase located in the basal membrane. Gradients of H+ were detected by pH microelectrodes close to the basal aspect of the cells or within the basal extracellular labyrinth. The apical membrane is more conductive than the basal membrane, facilitating secretion of base (presumably HCO3), driven by the basal V-H+-ATPase.  相似文献   

3.
γ-Aminobutyraldehyde dehydrogenase from Escherichia coli K-12 has been purified and characterized from cell mutants able to grow in putrescine as the sole carbon and nitrogen source. The enzyme has an Mr of 195 000±10 000 in its dimeric form with an Mr of 95 000±1000 for each subunit, a pH optimum at 5.4 in sodium citrate buffer, and does not require bivalent cations for its activity. Km values are 31.3±6.8 μM and 53.8±7.4 μM for Δ-1-pyrroline and NAD+, respectively. An inhibitory capacity for NADH is also shown using the purified enzyme.  相似文献   

4.
6-Phosphogluconate dehydrogenase (6PG) was purified from rat small intestine with 36% yield and a specific activity of 15 U/mg. On SDS/PAGE, one band with a mass of 52 kDa was found. On native PAGE three protein and two activity bands were observed. The pH optimum was 7.35. Using Arrhenius plots, Ea, ΔH, Q10 and Tm for 6PGD were found to be 7.52 kcal/mol, 6.90 kcal/mol, 1.49 and 49.4°C, respectively. The enzyme obeyed “Rapid Equilibrium Random Bi Bi” kinetic model with Km values of 595 ± 213 μM for 6PG and 53.03±1.99 μM for NADP. 1/Vm versus 1/6PG and 1/NADP plots gave a Vm value of 8.91±1.92 U/mg protein. NADPH is the competitive inhibitor with a Ki of 31.91±1.31 μM. The relatively small Ki for the 6PGD:NADPH complex indicates the importance of NADPH in the regulation of the pentose phosphate pathway through G6PD and 6PGD.  相似文献   

5.
The effect of trifluoperazine (TFP) on the ATPase activity of soluble and paniculate F1ATPase and on ATP synthesis driven by succinate oxidation in submitochondrial particles from bovine heart was studied at pH 7.4 and 8.8. At the two pH. TFP inhibited ATP hydrolysis. Inorganic phosphate protected against the inhibiting action of TFP. The results on the effect of various concentrations of phosphate in the reversal of the action of TFP on hydrolysis at pH 7.4 and 8.8 showed that H2PO 4 is the species that competes with TFP. The effect of TFP on oxidative phosphorylation was studied at concentrations that do not produce uncoupling or affect the aerobic oxidation of succinate (<15M). TFP inhibited oxidative phosphorylation to a higher extent at pH 8.8 than at pH 7.4; this was through a diminution in theV max, and an increase in theK m for phosphate. Data on phosphate uptake during oxidative phosphorylation at several pH showed that H2PO 4 is the true substrate for oxidative phosphorylation. Thus, in both synthesis and hydrolysis of ATP, TFP and H2PO 4 interact with a common site. However, there is a difference in the sensitivity to TFP of ATP synthesis and hydrolysis; this is more noticeable at pH 8.8, i.e. ATPase activity of soluble F1 remains at about 40% of the activity of the control in a concentration range of TFP of 40–100M, whereas in oxidative phosphorylation 14M TFP produces a 60% inhibition of phosphate uptake.  相似文献   

6.
To explain the six-banded pattern obtained upon electrophoresis of the soluble form of malate dehydrogenase (sMDH, EC 1.1.1.37) from the characiform Hoplias malabaricus, a recent locus duplication of its A isoform (sMDH-A*), in addition to its sMDH-B* isoform, was proposed. Klebe’s serial dilutions carried out using skeletal muscle, heart and liver extracts showed that the A1 and A2 subunits have the same visual end-points, indicating that these A-duplicated genes have a nondivergent pattern. Since there is no evidence of polyploidy in the Erythrinidae family, the MDH-A* loci have probably evolved from regional gene duplication. While these sMDH-A* loci encode nondivergent thermostable isoforms, the sMDH-B* encodes a thermolabile one. Thermostable sMDHs differ from the thermolabile sMDHs in that they have a higher Km of oxaloacetate. Liver, muscle and heart unfractionated sMDH levels at three different temperature and two pH regimens were analysed and the results showed that, in the adaptative temperature range of Hoplias, the variation in Km under conditions of constant pH (imidazole buffer) was less (approximately threefold) than that measured in the presence of temperature-dependent pH imidazole buffer (sevenfold). Estimation of the ratio of both isoforms in these tissues by Klebe’s method showed that, in unfractionated liver – where Km values were the highest and the minimum Km was obtained at 30^C (both for temperature-dependent pH and constant-pH imidazole buffer) – the duplicate A (thermostable, A1 and A2) and B (thermolabile) subunits were detected in a ratio of 2:1. On the other hand, in muscle extracts – in which the lowest Km values were measured, with the minimum Km at 10–20^C (temperature-dependent pH and constant-pH imidazole buffer, respectively) – a ratio of two thermolabile to one thermostable subunits was observed.  相似文献   

7.
Kinetics of sulfate uptake by freshwater and marine species ofDesulfovibrio   总被引:3,自引:0,他引:3  
Apparent half-saturation constants (K m) and maximum uptake rates (V max) for sulfate were determined in four species ofDesulfovibrio of freshwater and marine origin using a35S-sulfate tracer technique. The lowerstK m (5 M) was found in the freshwater speciesDesulfovibrio vulgaris (Marburg) and the highestK m (77 M) in the marine speciesDesulfovibrio salexigens. Maximum specific rates of sulfate uptake (i.e.,V max) were proportional to the growth rates observed in batch cultures. The halophilicDesulfovibrio salexigens did not change itsK m andV max between 1 and 6,000 M SO 4 2- , and apparently did not induce a low-affinity uptake system at high sulfate concentrations. The low half-saturation constants measured for sulfate uptake explain why high rates of bacterial sulfate reduction occur in surface sediments of freshwater lakes, and why sulfate reduction can be a quantitatively important process in anaerobic carbon mineralization in low-sulfate environments. The results shows that extremely low sulfate concentrations must occur before sulfate reduction is completely outcompeted by methanogenesis.Abbreviations MPB methane producing bacteria - SRB sulfate reducing bacteria  相似文献   

8.
Porphobilinogen deaminase, the enzyme condensing four molecules of porphobilinogen, was isolated and purified from light grown Scenedesmus obliquus (wild type). The purification procedure included heat treatment, ammonium sulphate fractionation, gel filtration, high-resolution anion-exchange chromatography and hydrophobic interaction chromatography. The enzyme was purified 1368-fold, compared to the initial crude extract. Its final specific activity was 6812 units · (mg · protein)?1 at pH 7.4 with a recovery of 44%. The relative molecular mass was 33000, as determined by Sephadex G-100 gel filtration, and 35900 by lithium dodecyl sulfate-polyacrylamide-gel electrophoresis, indicating that the enzyme is a monomer. Studies of initial reaction velocities showed a linear progress curve for hydroxymethylbilane formation and a hyperbolic dependence of the initial reaction rate on substrate concentration, consistent with a sequential displacement mechanism. Apparent kinetic constants (K m and V max) for the conversion of porphobilinogen to hydroxymethylbilane at 37 ° C, pH 7.4, were 79 μM and 176 pmol · min?1, respectively. Variation of both V max and K max with pH indicated the presence of ionizable groups in the enzyme-substrate complex(es), showing a single ionization (pK 7.15) in V max/K m plots. A sharp pH-profile for V max was interpreted as a positive cooperative proton dissociation. In spite of the two pathways existing for 5-aminolevulinate biosynthesis in Scenedesmus, currently there is no indication of the existence of two porphobilinogen deaminases or even of isoenzymes.  相似文献   

9.
Activity and kinetics of phospholipase A2 (PLA2) from Trypanosoma brucei gambiense (Wellcome strain) and Trypanosoma brucei brucei (GUTat 3.1) were examined using two different fluorescent substrates. The activity in the supernatants of sonicated parasites was Ca2+-independent, strongly stimulated by Triton X-100 with optimum activity at 37°C and pH 6.5–8.5. To encourage a possible interaction between the parasite enzyme and organotin compounds, fatty acid derivatives of dibutyltin dichloride were synthesized and evaluated as potential inhibitors of PLA2. The enzyme from the two-trypanosome species differ with respect to kinetic parameters and are noncompetitively inhibited by the organotin compounds. The Michaelis constant (KM) for PLA2 from T. b. brucei is 63.87 and 30.90 μM while for T. b. gambiense it is 119.64 and 32.90 μM for the substrates l,2-bis-(1-pyrenebutanoyl-sn-glycero-3-phosphocholine (PBGPC) and 2-(12-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)dode-canoyl-1-hexadecanoyl-sn-glycero-3-phosphocholine (NBDC12-HPC), respectively.  相似文献   

10.
Strom  E. V.  Dinarieva  T. Yu.  Netrusov  A. I. 《Microbiology》2004,73(2):124-128
The cbo-type oxidase of Methylobacillus flagellatus KT was purified to homogeneity by preparative native gel electrophoresis, and the kinetic properties and substrate specificity of the enzyme were studied. Ascorbate and ascorbate/N,N,N,N-tetramethyl-p-phenylenediamine (TMPD) were oxidized by cytochrome cbo with a pH optimum of 8.3. With TMPD as an electron donor for the cbo-type oxidase, the optimal pH (7.0 to 7.6) was determined from the difference between respiration rates in the presence of ascorbate/TMPD and only ascorbate. The kinetic constants determined at pH 7.0 were as follows: oxidation by the enzyme of reduced TMPD was characterized by K M = 0.86 mM and V max = 1.1 mol O2/(min mg protein), and oxidation of reduced horse heart cytochrome c was characterized by K M = 0.09 mM and V max = 0.9 mol O2/(min mg protein). Cyanide inhibited ascorbate/TMPD–oxidase activity (K i = 4.5–5.0 M). The soluble cytochrome c H (12 kDa), partially purified from M. flagellatus KT, was found to serve as a natural electron donor for the cbo-type oxidase.  相似文献   

11.
Yeast alcohol dehydrogenase (EC 1.1.1.1) catalyzes the novel reduction of p-nitro-so-N,N-dimethylaniline with NADH as a cofactor. Apparent kinetic constants for this enzymatic reaction are: V 2=2.1 s–1, K Q=456 M, K iQ=119 M, and K P=1.47 mM, at pH 8.9, 25 °C. This reaction is especially useful for the quantitative determination of NAD+ and NADH by enzymatic cycling.  相似文献   

12.
Summary Xylanase from Scytalidium thermophilum was immobilized on Eudragit L-100, a pH sensitive copolymer of methacrylic acid and methyl methacrylate. The enzyme was non-covalently immobilized and the system expressed 70% xylanase activity. The immobilized preparation had broader optimum temperature of activity between 55 and 65 °C as compared to 65 °C in case of free enzyme and broader optimum pH between 6.0 and 7.0 as compared to 6.5 in case of free enzyme. Immobilization increased the t1/2 of enzyme at 60 °C from 15 to 30 min with a stabilization factor of 2. The Km and Vmax values for the immobilized and free xylanase were 0.5% xylan and 0.89 μmol/ml/min and 0.35% xylan and 1.01 μmol/ml/min respectively. An Arrhenius plot showed an increased value of activation energy for immobilized xylanase (227 kcal/mol) as compared to free xylanase (210 kcal/mol) confirming the higher temperature stability of the free enzyme. Enzymatic saccharification of xylan was also improved by xylanase immobilization.  相似文献   

13.
The high levels of electrophoretic polymorphism of esterase M detected in eight distinct hybridization groups of motileAeromonas raise questions of genetic homogeneity of the electromorphs. The 40 electromorphs detected fall in fourM r classes—75, 80, 90, and 110 kD—and one typical variant belonging to each of these classes was purified. The four purified esterases exhibited the same resistance to heat, topH and to diisopropyl fluorophosphate, the sameK m values for 1-naphthyl acetate and 1-naphthyl propionate (1mm), and immunological cross-reactions. Within each class, the electromorphs appeared to be related in term of single amino acid substitutions as estimated from their comparative titration patterns. The titration curves of the four purified esterases were strictly parallel suggesting close structural similarities. Thus, despite considerable variation in theirpI,M F,andM r values, it seems likely that the variants of esterase M are the products of closely related loci originating from a common ancestral gene.This work was supported by a grant from the Conseil Scientifique de la Faculté Xavier Bichat (Université Paris VII).  相似文献   

14.
Peroxidase-catalyzed oxidation of o-phenylenediamine (PDA) is greatly activated with melamine (MA) in 15 mM phosphate–citrate buffer at pH 6.0–7.4 in a noncompetitive manner: k cat and K m increase in direct proportion to the MA concentration. An extent of the activation is quantitatively characterized with a coefficient (in M–1), which essentially increases along with the rise in pH from 6.0 to 7.4. MA acts as a nucleophilic catalyst in the oxidation process: it most likely affects the peroxidase active site from the distal position of heme. MA noncompetitively inhibits the peroxidase oxidation of PDA at pH 4.3, since it completely loses its nucleophilic properties in acidic medium. A rapid, highly accurate, and simple analytical test system based on the kinetics of melamine-activated oxidation of PDA is proposed for the quantitative determination of melamine within the concentration range of 10–4–10–3 M. This test system uses the spectrophotometric determination of the PDA oxidation product at 455 nm.  相似文献   

15.
Summary The benzoyl-CoA ligase from an anaerobic syntrophic culture was purified to homogeneity. It had a molecular mass of around 420 kDa and consisted of seven or eight subunits of 58 kDa. The temperature optimum was 37–40° C, the optimum pH around 8.0 and optimal activity required 50–100 mM TRIS-HCI buffer, pH 8.0 and 3–7 mM MgCl2; MgCl2 in excess of 10 mM was inhibitory. The activation energy for benzoate was 11.3 kcal/mol. Although growth occured only with benzoate as a carbon source, the benzoyl-coenzyme A (CoA) ligase formed benzoyl-CoA esters with benzoate, 2-, 3- and 4-fluorobenzoate, picolinate, nicotinate and isonicotinate. Acetate was activated to acetyl-CoA by an acetyl-CoA synthetase. The K m values for benzoate, 2-, 3- and 4-fluorobenzoate were 0.04, 0.28, 1.48 and 0.32 mM, the V max values 1.05, 1.0, 0.7 and 0.98 units (U)/mg, respectively. For reduced CoA (CoA-SH) a K m of 0.17 mM and a V max of 1.05 U/mg and for ATP a K m of 0.16 mM and a V max of 1.08 U/mg was determined. Benzoate activation was inhibited by more than 6 mM ATP, presumably by pyrophosphate generation from ATP. The inhibition constant (K i) for pyrophosphate was 5.7 mM. No homology of the N-terminal amino acid sequence with that of a 2-aminobenzoyl-CoA ligase of a denitrifying Pseudomonas sp. was found. Correspondence to: J. Winter  相似文献   

16.
Summary Necturus kidneys were perfused with Tris-buffered solutions at three different pH values, i.e. 7.5, 6.0 and 9.0. A significant drop in fluid absorption occurred at pH 6.0, whereas pH 9.0 did not increase volume flow significantly. When acute unilateral, i.e. either in the lumen or the peritubular capillaries, and bilateral pH changes were elicited in both directions from 7.5 to 9.0 at a constant Tris-butyrate buffer concentration, both peritubular membrane potential differenceV 1 and transepithelial potential differenceV 3 hyperpolarized, independently of the side where the change in pH was brought about. Acid perfusions at pH 6.0 caused a similar response but of opposite sign. Analysis of the potential changes shows that pH influences not only the electromotive force and resistance of the homolateral membrane, but also the electrical properties of the paracellular path. Interference of pH with Na, Cl or K conductance was assessed. Any appreciable role for sodium or chloride was excluded, whereas the potassium transference number (t K) of the peritubular membrane increased 16% in alkaline pH. However, this increase accounts only for 19 to 36% of the observed hyperpolarization. Since changes in Tris-butyrate buffer concentration at constant pH do not affect V1 or V3 considerably, the hyperpolarization in pH 9 cannot be explained by an elevation in internal pH only, or by a Tris-H+ ion diffusion potential only. The role of the permeability of the buffers: bicarbonate, butyrate and phosphate, in determining electrical membrane parameters was evaluated. Transport numbers of the buffer anions ranked as follows:t HCO3>t butyrate>t phosphate. It is concluded that modulation of membrane potential by extracellular pH is mediated primarily by a change in peritubular cell membranet K and additionally by membrane currents carried by buffer anions.  相似文献   

17.
Archaeoglobus fulgidus, a sulfate-reducing Archaeon with a growth temperature optimum of 83°C, uses the 5-deazaflavin coenzyme F420 rather than pyridine nucleotides in catabolic redox processes. The organism does, however, require reduced pyridine nuclcotides for biosynthetic purposes. We describe here that the Archaeon contains a coenzyme F420-dependent NADP reductase which links anabolism to catabolism. The highly thermostable enzyme was purfied 3600-fold by affinity chromatography to apparent homogeneity in a 60% yield. The native enzyme with an apparent molecular mass of 55 kDa was composed of only one type of subunit of apparent molecular mass of 28 kDa. Spectroscopic analysis of the enzyme did not reveal the presence of any chromophoric prosthetic group. The purified enzyme catalyzed the reversible reduction of NADP (apparent K M 40 M) with reduced F420 (apparent K M 20M) with a specific activity of 660 U/mg (apparent V max) at pH 8.0 (pH optimum) and 80°C (temperature optimum). It was specific for both coenzyme F420 and NADP. Sterochemical investigations showed that the F420-dependent NADP reductase was Si face specific with respect to C5 of F420 and Si face specific with respect to C4 of NADP.Abbreviations F420 coenzyme F420 - F420H2 1,5-dihydrocoenzyme F420 - H4MPT tetrahydromethanopterin - CH=H4MPT N5, N10-methylenetetrahydromethanopterin - MFR methanofuran - HPLC high performance liquid chromatography - methylene-H4MPT dehydrogenase N5, N10-methylenetetrahydromethanopterin dehydrogenase - 1 U = 1 mol/min  相似文献   

18.
Abstract

The accurate estimation of kinetic parameters is of fundamental importance for biochemical studies for research and industry. In this paper, we demonstrate the application of a modular microfluidic system for execution of enzyme assays that allow determining the kinetic parameters of the enzymatic reactions such as Vmax – the maximum rate of reaction and KM – the Michaelis constant. For experiments, the fluorogenic carbonate as a probe for a rapid determination of the kinetic parameters of hydrolases, such as lipases and esterases, was used. The microfluidic system together with the method described yields the kinetic constants calculated from the concentration of enzymatic product changes via a Michaelis–Menten model using the Lambert function W(x). This modular microfluidic system was validated on three selected enzymes (hydrolases).  相似文献   

19.
Participation of the complexes of hemin and albumins (or delipidated albumins) in peroxidation of aromatic free radical scavengers and antioxidants was studied at varying hemin/albumin ratios. The radicalscavenging amines includedo-phenylenediamine (OPD) and tetramethylbenzidine (TMB); the antioxidants were gallic acid (GA) and GA polydisulfide (GAPD). Peroxidation reactions were carried out in buffered physiological saline (BPS) supplemented with 2% dimethylsulfoxide (DMSO), pH 7.4 (medium A), or in 40% aqueous dimethylformamide (DMF), pH 7.4 (medium B). In all systems involving methemalbumins, kinetic constants (kcat), Michaelis constants(K M), and the ratios thereof(k cat/KM) were determined for OPD oxidation in medium A and TMB oxidation in medium B. Oxidation of OPD, GA, and GAPD in medium A was characterized by a decrease in the catalytic activity of hemin after the formation of hemin-albumin complexes. Conversely, oxidation of TMB and OPD in medium B was distinguished by pronounced activation of hemin present within methemalbumins.  相似文献   

20.
Reductive adsorption of Cr(VI) on coir pith (hereafter CP) was examined as a function of pH, ionic strength, and temperature. The CP contains 1.33 meq g? 1 phenolic, 0.43 meq g? 1 of lactonic, and 0.35 meq g? 1 carboxylic sites. Thus the CP surface is enriched with electron-donating oxygen functionalities. As evidenced by infrared (IR) spectroscopy, the Cr(VI) → Cr(III) conversion is facilitated by CP sites that are enriched with O─ O functional groups. The adsorption of reduced Cr(VI) was found to occur via C─ O─ functional groups first forming innersphere complexes with the CP surface, yielding keto (> C═ O) groups on the CP surface. The reductive adsorption of Cr(VI) was almost completed within 3 to 4 h, and it was dependent on pH and background ionic strength, yielding the highest monolayer coverage (9.56E-7 mol m? 2) at pH 3.7 in 0.1 M NaNO3. The ΓCr(III) followed the order with respect to the ionic strength: Γ0.1 M > Γ0.01 M > Γ0.001 M. The initial rate constant, k i , increased with temperature as k i 313 K > k i 303 K > k i 293 K > k i 283 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号