首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quantitative structure-activity relationships (QSARs) within a series of cytochrome P450 2C9 (CYP2C9) and cytochrome P450 2C19 (CYP2C19) inhibitors are reported. In particular, it is noted that compound lipophilicity, in the form of log P values (where P is the octanol/water partition coefficient), is an important factor in explaining the variation in inhibitory potency within these series of compounds, many of which also act as substrates for the respective enzymes. In addition, there is a role for hydrogen bonding and pi-pi stacking interactions within the P450 active site which represent secondary factors in the binding processes of these compounds.  相似文献   

2.
The arachidonic acid metabolizing CYP enzymes with prominent roles in vascular regulation are epoxygenases of the two gene family which generate epoxyeicosatrienoic acids. Carriers of CYP2C9 mutant alleles exhibit a diminished CYP2C9 metabolic capacity leading to decreased endothelium-derived hyperpolarizing factors (EDHF) synthesis and an increased risk for atherosclerosis. We investigated whether the polymorphisms of CYP2C9/19 are related with atherosclerosis. We examined 108 patients having angioraphically > or =70 coronary artery narrowing and 90 healthy controls. CYPC2C9/19*2 and CYP2C9/19*3 alleles were investigated in both patients and controls by a real time PCR instrument. There was no significant difference in the distribution of the CYP2C9*2/*3 alleles between cases and the controls. We found that smoker patients having CYP2C9*2 heterozygote genotype have 3.7-fold risk of developing atherosclerosis. CYP2C19*3 heterozygote alleles are more frequent in patients than in controls (10.2%, 5.6% respectively) and it is related with a three-fold risk of atherosclerosis (odds ratio (OR) = 3.75, confidence interval (CI) = 0.75-18.65). It becomes clear that cigarette smoking can cause almost all major diseases prevalent today, such as cancer or heart disease. This inter-subject variability in cigarette-induced pathologies is partly mediated by genetic variants of genes that may participate in detoxification processes, e.g., cytochrome P450 (CYP), cellular susceptibility to toxins, such as p53, or disease development such as atherosclerosis.  相似文献   

3.
Three series of N-3 alkyl substituted phenytoin, nirvanol, and barbiturate derivatives were synthesized and their inhibitor potencies were tested against recombinant CYP2C19 and CYP2C9 to probe the interaction of these ligands with the active sites of these enzymes. All compounds were found to be competitive inhibitors of both enzymes, although the degree of inhibitory potency was generally much greater towards CYP2C19. Inhibitor stereochemistry did not markedly influence K(i) towards CYP2C9, and log P adequately predicted inhibitor potency for this enzyme. In contrast, stereochemistry was an important factor in determining inhibitor potency towards CYP2C19. (S)-(+)-N-3-Benzylnirvanol and (R)-(-)-N-3-benzylphenobarbital emerged as the most potent and selective CYP2C19 inhibitors, with K(i) values of < 250nM--at least two orders of magnitude greater inhibitor potency than towards CYP2C9. Both inhibitors were metabolized preferentially at their C-5 phenyl substituents, indicating that CYP2C19 prefers to orient the N-3 substituents away from the active oxygen species. These features were incorporated into expanded CoMFA models for CYP2C9, and a new, validated CoMFA model for CYP2C19.  相似文献   

4.
Linkage between the CYP2C8 and CYP2C9 genetic polymorphisms   总被引:9,自引:0,他引:9  
Cytochrome P450 (CYP) 2C8 and 2C9 are polymorphic enzymes. The CYP2C8*3 and CYP2C9*2 are the major variant alleles in Caucasian populations. The enzymes encoded by these variant alleles have impaired function for the metabolism of several drug substrates. In the present study 1468 subjects that were used as population-based controls in the Stockholm Heart Epidemiology Program (SHEEP) were genotyped by allelic discrimination using a 5'-nuclease assay for CYP2C8*1, 2C8*3, 2C9*1, 2C9*2, and 2C9*3 variant alleles in which the frequencies appeared to be 0.91, 0.095, 0.83, 0.11, and 0.066, respectively. Approximately, 96% of the subjects with CYP2C8*3 allele also carried a CYP2C9*2 and 85% of the subjects that had CYP2C9*2 variant also carried a CYP2C8*3. The number of subjects carrying both of the CYP2C8*1*3 and CYP2C9*1*2 was 4.5-fold higher than expected. This strong association may be of importance especially for the metabolism of common substrates of CYP2C8 and CYP2C9 like arachidonic acid that produces physiologically active metabolites.  相似文献   

5.
Cytochrome P450 2C19 (CYP2C19) is a member of the cytochrome P-450 enzyme superfamily and plays an important role in the metabolism of drugs. In order to gain insights for developing personalized drugs, the 3D (dimensional) structure of CYP2C19 has been developed based on the crystal structure of CYP2C9 (PDB code 1R90), and its structure-activity relationship with the ligands of CEC, Fluvoxamine, Lescol, and Ticlopidine investigated through the structure-activity relationship approach. By means of a series of docking studies, the binding pockets of CYP2C19 for the four compounds are explicitly defined that will be very useful for conducting mutagenesis studies, providing insights into personalization of drug treatments and stimulating novel strategies for finding desired personalized drugs.  相似文献   

6.
We introduced two novel types of pig (Sus scrofa) cytochrome P450, CYP2B22 and CYP2C49, into rice plants (Oryza sativa L. cv. ‘Nipponbare’) to produce herbicide-tolerant plants and to confirm the metabolic activities of the cytochrome P450 species. In germination tests, both types of transgenic plants showed tolerance to various herbicides with different modes of action. CYP2B22 rice plants showed tolerance towards 12 herbicides including chlortoluron (100 μM), amiprofos-methyl (2.5 μM), pendimethalin (10 μM), metolachlor (2.5 μM), and esprocarb (20 μM). CYP2C49 rice plants showed tolerance towards 13 herbicides, including chlortoluron (100 μM), norflurazon (0.5 μM), amiprofos-methyl (2.5 μM), alachlor (0.8 μM), and isoxaben (1 μM). The herbicide tolerance was considered to reflect the substrate specificity of the introduced P450 species. We used 14C-labeled metolachlor and norflurazon to confirm the P450 activity in the transgenic rice plants. The herbicides were metabolized more quickly in the transgenic rice plants than in the nontransgenic rice plants. Therefore, CYP2B22 and CYP2C49 rice plants became more tolerant to various herbicides than nontransgenic control plants because of accelerated metabolism of the herbicides by the introduced P450 species. Assuming that public and commercial acceptance is forthcoming, these transgenic rice plants may become useful tools for the breeding of herbicide-tolerant crops.  相似文献   

7.
A detailed analysis of substrate selectivity within the cytochrome P450 2 (CYP2) family is reported. From a consideration of specific interactions between drug substrates for human CYP2 family enzymes and the putative active sites of CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP2E1, it is likely that the number and disposition of hydrogen bond donor/acceptors and aromatic rings within the various P450 substrate molecules determines their enzyme selectivity and binding affinity, together with directing their preferred routes of metabolism by the CYP2 enzymes concerned. Although many aliphatic residues are present in most P450 active sites, it would appear that their main contribution centers around hydrophobic interactions and desolvation processes accompanying substrate binding. Molecular modeling studies based on the recent CYP2C5 crystal structure appear to show close agreement with site-directed mutagenesis experiments and with information on substrate metabolism and selectivity within the CYP2 family.  相似文献   

8.
1. The inhibitory effects of tranylcypromine, a nonselective irreversible inhibitor of monoamine oxidase (MAO), on three cytochrome P450 (CYP) enzymes, namely CYP2C9, CYP2C19, and CYP2D6, have been evaluated in vitro. 2. The studies were conducted using cDNA-expressed human CYP enzymes and probe substrates. 3. A range of substrate concentrations was coincubated with a range of tranylcypromine concentrations in the presence of each of the CYP enzymes at 37 degrees C for a predetermined period of time. Product concentrations were quantified by HPLC with UV detection. 4. The results demonstrated that tranylcypromine is a competitive inhibitor of CYP2C19 (Ki = 32 microM) and CYP2D6 (Ki = 367 microM) and a noncompetitive inhibitor of CYP2C9 (Ki = 56 microM). 5. None of these inhibitory effects are considered clinically significant at usual therapeutic doses. However, in certain situations such as high dose tranylcypromine therapy, or in poor metabolizers of CYP2C19 substrates, clinically significant interactions might occur, particularly when tranylcypromine is coadministered with drugs with a narrow therapeutic index.  相似文献   

9.
Gerber JG  Rhodes RJ  Gal J 《Chirality》2004,16(1):36-44
Methadone is a clinically used opioid agonist that is oxidatively metabolized by cytochrome P450 (CYP) isoforms to a stable metabolite, EDDP. Methadone is a chiral drug administered as the racemic mixture of (R)-(-)- and (S)-(+)-methadone, but (R)-methadone is the active isomer. The cytochrome P450 (CYP) isoform involved in methadone's metabolism is thought to be CYP3A4, but human drug-drug interaction studies are not consistent with this. The ability of the common human drug-metabolizing CYPs (obtained from baculovirus-infected insect cell supersomes) to generate 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrilidine (EDDP) from racemic methadone was examined and then determined if the CYP isoforms metabolized methadone stereoselectively. Only CYP2B6, 2C19, and 3A4 generated measurable EDDP from 1 microg/ml of racemic methadone. The hierarchy of EDDP generation was CYP2B6 > CYP2C19 >/= CYP3A4. At 10 microg/ml of methadone, CYP2C9 and CYP2D6 also generated EDDP, but in at least 10-fold lower quantities than CYP2B6. Michaelis-Menten kinetic data demonstrated that CYP2B6 had the highest V(max) (44 ng/min/10pmol) and the lowest K(m) (12.6 microg/ml) for EDDP formation of all the CYP isoforms. In human liver microsomes with high and low CYP2B6 expression but equivalent CYP3A4 expression, high CYP2B6 expression microsomes generated twice the amount of EDDP from 10 microg/ml of methadone than low CYP2B6 expression microsomes. When stereoselective metabolism of racemic methadone by CYP2B6, 2C19, and 3A4 was examined using an enantiospecific methadone assay, CYP2B6 preferentially metabolized (S)-methadone, CYP2C19 preferentially metabolized (R)-methadone, and CYP3A4 showed no preference. These data suggest that multiple CYPs metabolized methadone but CYP2B6 had the highest V(max)/K(m). In addition, only CYP2B6 and 2C19 showed stereoselective metabolism. Our data could explain why the plasma concentration ratio of R/S methadone is variable and why drugs that induce CYP2B6 such as nevirapine and efavirenz also induce methadone metabolism, while the CYP3A4 inducer rifabutin has no effect on methadone pharmacokinetics.  相似文献   

10.
Hepatic P450s, named M-3 and M-4 were purified from phenobarbitone pretreated rhesus monkey. These demonstrated polypeptide molecular mass of 50 and 52.5 kDa and specific content of 12 and 20 nmol P450/mg protein, respectively. Both the isozymes demonstrated low spin state of heme. Antibodies raised against M-3 inhibited the activity of aminopyrine, erythromycin and ethylmorphine N-demethylase in the microsomes obtained from PB pretreated rhesus monkey by 76, 40 and 35%, respectively. M-4 did the same by 69, 85 and 79%, respectively. These observations indicated M-3 and M-4 to be the members of CYP2C and 3A subfamilies, respectively. These results were substantiated by the observations that M-3 metabolized aminopyrine whereas M-4 metabolized aminopyrine, erythromycin and ethylmorphine in the reconstituted system. Microsomal lipids and cytochrome b5 enhanced the rate of these reactions. Further confirmation to the identity of these isozymes was provided by N-terminal amino acid sequences. The first 10 N-terminal amino acid residues of M-3 were 90% similar to CYP2C20 and 2C9 and that of M-4 were 100 and 90% similar to CYP3A8 and 3A5, respectively. In conclusion, two isozymes of hepatic P450 purified from PB pretreated rhesus monkey belong to CYP2C and 3A subfamilies.  相似文献   

11.
A series of 2-aroylthiophenes derived from tienilic acid by replacement of its OCH2COOH substituent with groups bearing various functions have been synthesized and studied as possible substrates of recombinant human liver cytochrome P450s 2C9 and 2C18 expressed in yeast. Whereas only compounds bearing a negative charge acted as substrates of CYP 2C9 and were hydroxylated at position 5 of their thiophene ring at a significant rate, many neutral 2-aroylthiophenes were 5-hydroxylated by CYP 2C18 with kcat values of >2 min-1. Among the various compounds that were studied, those bearing an alcohol function were the best CYP 2C18 substrates. One of them, compound 3, which bears a terminal O(CH2)3OH function, appeared to be a particularly good substrate of CYP 2C18. It was regioselectively hydroxylated by CYP 2C18 at position 5 of its thiophene ring with a KM value of 9 +/- 1 microM and a kcat value of 125 +/- 25 min-1, which are the highest described so far for a CYP 2C. A comparison of the oxidations of 3, by yeast-expressed CYP 1A1, 1A2, 2C8, 2C9, 2C18, 2C19, 2D6, 2E1, 3A4, and 3A5, showed that only CYP 2C8, 2C18, and 2C19 were able to catalyze the 5-hydroxylation of 3. However, the catalytic efficiency of CYP 2C18 for that reaction was considerably higher (kcat/KM value being 3-4 orders of magnitude larger than those found for CYP 2C8 and 2C19). Several human P450s exhibited small activities for the oxidative O-dealkylation of 3. The four recombinant CYP 2Cs were the best catalysts for that reaction (kcat between 1 and 5 min-1) when compared to all the P450s that were tested, even though it is a minor reaction in the case of CYP 2C18. All these results show that compound 3 is a new, selective, and highly efficient substrate for CYP 2C18 that should be useful for the study of this P450 in various organs and tissues. They also suggest some key differences between the active sites of CYP 2C9 and CYP 2C18 for substrate recognition.  相似文献   

12.
13.
The cDNA of cytochrome P450 (CYP) 2C43 was cloned from cynomolgus monkey liver by RT-PCR. The deduced amino acid sequence showed 93% and 91% identity to human CYP2C9 and CYP2C19, respectively. The cDNA was expressed in Escherichia coli and purified by a series of chromatography steps, yielding a specific content of 11.5 nmol P450/mg protein. The substrate specificity of the purified CYP2C43 was examined in a reconstitution system comprising NADPH-P450 reductase, lipid, cytochrome b(5) and CYP2C marker substrates. The purified CYP2C43 showed high activity for testosterone 17-oxidation and progesterone 21-hydroxylation, which were also observed for CYP2C19 but not CYP2C9. In addition, CYP2C43 showed activity for (S)-mephenytoin 4'-hydroxylation, a marker reaction for CYP2C19. With CYP2C9 marker substrates, CYP2C43 exhibited low activity for diclofenac 4'-hydroxylation and no activity for tolbutamide p-methylhydroxylation. Therefore, in terms of substrate specificity, our results indicate that CYP2C43 is similar to CYP2C19, rather than CYP2C9.  相似文献   

14.
氯吡格雷是一种广泛用于预防静脉血栓形成的抗血小板药物。研究表明, 携带有CYP2C19基因功能缺失型等位基因CYP2C19*2、CYP2C19*3的病人, 其体内代谢氯吡格雷成为其活性形式的能力降低, 导致氯吡格雷抑制血小板聚集功能减弱。文章旨在建立一种利用高分辨率熔解曲线分析(High-resolution melting curve analysis,HRM)技术在闭合单管中同时对CYP2C19*2、CYP2C19*3两个多态性位点进行简便、准确分型的方法。本实验针对两个SNP位点分别设计特异性的HRM引物, 并在两个位点引物的5′端分别加上富含AT和GC的序列, 保证两个位点的扩增产物熔解峰无重叠。利用HRM技术, 快速、灵敏地对64例随机DNA样本的CYP2C19*2 、CYP2C19*3两个多态性位点进行了基因分型, 且HRM方法的分型结果与测序验证结果完全一致。因此, 利用HRM技术可以实现在闭合单管中简便、准确地对CYP2C19*2 、CYP2C19*3两个多态性位点同时进行基因分型。该方法有望应用于临床, 指导氯吡格雷的个体化用药。  相似文献   

15.
16.
17.
Although CYP2C9 and CYP2C19 display 91% sequence identity at the amino acid level, the two enzymes have distinct substrate specificities for compounds such as diclofenac, progesterone and (S)-mephenytoin. Amino acid substitutions in CYP2C9 were made based on an alignment of CYP2C9, CYP2C19 and monkey CYP2C43 sequences. Mutants of CYP2C9 were expressed in Escherichia coli. Sixteen amino acids, which are common to both CYP2C19 and CYP2C43 but different between CYP2C9 and CYP2C19, were substituted in CYP2C9 (CYP2C9-16aa). Next, the mutated amino acids in CYP2C9-16aa were individually reverted to those of CYP2C9 to examine the effect of each substitution on the enzymatic activity for CYP2C marker substrates. In addition, the role of the F-G loop in CYP2C9 and CYP2C19 was examined for substrate specificity and enzymatic activity. Our results showed: (i) CYP2C9-16aa displays 11% (S)-mephenytoin 4'-hydroxylase and full omeprazole 5-hydroxylase activity compared with that of CYP2C19; (ii) residue 286 is important for conferring CYP2C9-like enzyme activity on CYP2C9-16aa and residue 442 in CYP2C19 may be involved in the interaction with NADPH-P450 reductase; (iii) substitution of the F-G loop in CYP2C9 to that of CYP2C19 enhances tolbutamide p-methyhydroxylase and diclofenac 4'-hydroxylase activities and confers partial (S)-mephenytoin 4'-hydroxylase and omeprazole 5-hydroxylase activities, which are attributed to CYP2C19.  相似文献   

18.
Affecting hepatic cytochrome (CYP) activity is one of the major concerns in drug–drug interaction. Thus the testing of drug candidates on their impact on these enzymes is an essential step in early drug discovery. We tested a collection of 480 in-house phthalimide derivatives against different CYP450s using a high throughput inhibition assay. In initial tests with the isoform CYP2C19 about 57.5% of the tested phthalimide derivatives showed significantly enhanced inhibitory effects against this enzyme. In addition similar patterns of phthalimide inhibition for CYP2C9 and CYP2C19 were found, whereas the unrelated isoforms CYP2D6 and CYP3A4 were not specifically affected. Also less than 10% of randomly chosen substances inhibited CYP2C9. Analyses of structure-function relationships revealed that the substituent at the nitrogen atom in the isoindole ring is of crucial impact for the activity of CYP2C9/19.  相似文献   

19.
CYP1A2 and CYP2E1 are two of the main cytochrome P450 isoforms involved in the metabolism of commonly used drugs and xenobiotic compounds considered to be responsible for or possible participants in the development of several human diseases. Individual susceptibility to developing these pathologies relies, among other factors, on genetic polymorphism which depends on ethnic differences, as the frequency of mutant genotypes varies in different human populations. Thus the aim of this study was to investigate the frequency of CYP1A2 5'-flanking region and CYP2E1 Rsa I/Pst I polymorphisms in Mexicans by PCR-RFLP methods. The DNA of 159 subjects was analysed and mutant allele frequencies of 30% for CYP2E1 Rsa I/Pst I sites and 43% for CYP1A2 5'-flanking region were found. These frequencies are higher than those previously reported for other human populations.  相似文献   

20.
目的:观察细胞色素P450系统药物代谢酶CYP2C19基因多态性以及相关临床因素对氯吡格雷抵抗的影响。方法:选择2010年11月至2011年5月我科拟行PCI术治疗的冠心病患者共145例,均给予氯吡格雷300mg负荷剂量,75mg维持剂量。①通过流式细胞仪检测血管舒张因子刺激酸磷蛋白血小板反应性指数VASP PRI(以VASP PRI≥50%,定义为氯吡格雷抵抗)分为氯吡格雷抵抗组和氯吡格雷反应组。②检测入选患者的药物代谢酶CYP2C19的基因型;根据不同等位基因功能缺失,分为快代谢基因型(*1/*1)、中间代谢基因型(*1/*2、*1/*3)和慢代谢基因型(*2/*2、*2/*3、*3/*3)。③观察CYP2C19基因型及相关临床危险因素对氯吡格雷反应性的影响,④观察氯吡格雷抵抗与临床不良终点事件主要临床不良终点事件[心源性死亡、再发心肌梗死、靶病变再次血运重建术(TLR)]和次要临床终点事件(支架内血栓形成、脑血管意外、大出血)之间的相关性。结果:检测出氯吡格雷抵抗的患者31例,其发生率为20.67%;检测出CYP2C19慢代谢基因型携带患者19例,所占比例为12.67%。慢代谢基因型患者与(快代谢基因型+中间代谢基因型患者)之间VASP PRI比为(49.20±8.45)%VS(44.17±5.41)%,P<0.05,氯吡格雷抵抗发生率之比为35.49%(n=11)VS16.81%(n=20),P<0.05。多元回归分析提示CYP2C19慢代谢基因型(OR:4.43;95%CI:3.28-8.37,P<0.05)和2型糖尿病(OR:2.76;95%CI:2.13-6.14;P<0.05)是氯吡格雷抵抗的两种危险因素。临床随访结果显示氯吡格雷抵抗组与氯吡格雷反应组主要临床不良终点事件的发生率比为6.45%(n=2)vs2.63%(n=3),P<0.05。结论:携带CPY2C19慢代谢基因型和患有2型糖尿病是导致氯吡格雷抵抗的两种重要的危险因素,氯吡格雷抵抗的发生增加了临床不良终点事件的风险。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号