首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The trypanocidal activity of N-isopropyl oxamate (NIPOx) and the ethyl ester of N-isopropyl oxamate (Et-NIPOx) were tested on cultured epimastigotes (in vitro) and on murine trypanosomiasis (in vivo) using five different T. cruzi strains. When benznidazole and nifurtimox, used for comparison, were tested we found that only three of these T. cruzi strains were affected, whereas the other two strains, Miguz and Compostela, were resistant to the in vitro and the in vivo trypanocidal activity of these substances. In addition, when NIPOx was tested on cultured epimastigotes and on mice parasitaemia, trypanocidal activity was not obtained on either of these T. cruzi strains. Our experiments strongly suggest that NIPOx does not penetrate intact epimastigotes due to the polarity of its carboxylate whereas Et-NIPOx, acting as a prodrug, exhibited in vitro and in vivo trypanocidal activity in the five tested T. cruzi strains.  相似文献   

2.
The trypanocidal activity of N-allyl (NAOx) and N-propyl (NPOx) oxamates and that of the ethyl esters of N-allyl (Et-NAOx) and N-propyl (Et-NPOx) oxamates were tested on cultured epimastigotes (in vitro) and murine trypanosomiasis (in vivo) using five different T. cruzi strains. NAOx and NPOx did not penetrate intact epimastigotes and therefore we were not able to detect any trypanocidal effect with these oxamates. Whereas the ethyl esters (Et-NAOx and Et-NPOx), acting as prodrugs, exhibited in vitro and in vivo trypanocidal activity on the five tested T. cruzi strains. On the contrary, when Nifurtimox and Benznidazole used as reference drugs were tested, we found that only three of the five tested T. cruzi strains were affected, whereas the other two strains, Miguz and Compostela, were resistant to the in vitro and in vivo trypanocidal activity of these compounds.  相似文献   

3.
The effect of N-isopropyl oxamate on the activity of α-hydroxyacid dehydrogenase-isozyme II (HADH-isozyme II) from Trypanosoma cruzi was investigated. The kinetic studies showed that this substance was a competitive inhibitor of this isozyme. The attachment of the nonpolar isopropylic branched chain to the nitrogen of oxamate increased 12-fold the affinity of N-isopropyl oxamate for the active site of T. cruzi HADH-isozyme II. N-isopropyl oxamate was a selective inhibitor of HADH-isozyme II, since other T. cruzi dehydrogenases were not inhibited by this substance. Since HADH-isozyme II participates in the energy metabolism of T. cruzi, a trypanocidal effect can be expected with inhibitors of this isozyme. However, although it was not possible to detect any trypanocidal activity with N-isopropyl oxamate when the ethyl ester was tested as a possible trypanocidal prodrug, the expected trypanocidal effect was obtained, comparable to that obtained with nifurtimox and benznidazole.  相似文献   

4.
The effect of N-isopropyl oxamate on the activity of alpha-hydroxyacid dehydrogenase-isozyme II (HADH-isozyme II) from Trypanosoma cruzi was investigated. The kinetic studies showed that this substance was a competitive inhibitor of this isozyme. The attachment of the nonpolar isopropylic branched chain to the nitrogen of oxamate increased 12-fold the affinity of N-isopropyl oxamate for the active site of T. cruzi HADH-isozyme II. N-isopropyl oxamate was a selective inhibitor of HADH-isozyme II, since other T. cruzi dehydrogenases were not inhibited by this substance. Since HADH-isozyme II participates in the energy metabolism of T. cruzi, a trypanocidal effect can be expected with inhibitors of this isozyme. However, although it was not possible to detect any trypanocidal activity with N-isopropyl oxamate when the ethyl ester was tested as a possible trypanocidal prodrug, the expected trypanocidal effect was obtained, comparable to that obtained with nifurtimox and benznidazole.  相似文献   

5.
Chagas disease is an endemic parasitic infection caused by Trypanosomacruzi that affects 18-20 million people in Central and South America. Recently we described the Epoxy-α-Lap, an oxyran derivative of α-lapachone, which presents a low toxicity profile and a high inhibitory activity against T.cruzi epimastigotes forms, the non-infective form of this parasite. In this work we described the trypanocidal effects of Epoxy-α-Lap on extracellular (trypomastigote) and intracellular (amastigote) infective forms of two T. cruzi strains (Y and Colombian) known by their different infective profile. Our results showed that Epoxy-α-Lap is lethal to trypomastigote Y and Colombian strains (97% and 84%, respectively). Interestingly, Epoxy-α-Lap also showed a trypanocidal effect in human macrophage infected with T. cruzi Y (85.6%) and Colombian (71.9%) strains amastigote forms. Similar effects were observed on T. cruzi amastigote infected Vero cells (96.4% and 95.0%, respectively). Our results pointed Epoxy-α-Lap as a potential candidate for Chagas disease chemotherapy since it presents trypanocidal activity on all T. cruzi forms with low) toxicity profile.  相似文献   

6.
In this study we compared the effects of naphthoquinones (α-lapachone, β-lapachone, nor-β-lapachone and Epoxy-α-lap) on growth of Trypanosoma cruzi epimastigotes forms, and on viability of VERO cells. In addition we also experimentally analyzed the most active compounds inhibitory profile against T. cruzi serine- and cysteine-proteinases activity and theoretically evaluated them against cruzain, the major T. cruzi cysteine proteinase by using a molecular docking approach. Our results confirmed β-lapachone and Epoxy-α-lap with a high trypanocidal activity in contrast to α-lapachone and nor-β-lapachone whereas Epoxy-α-lap presented the safest toxicity profile against VERO cells. Interestingly the evaluation of the active compounds effects against T. cruzi cysteine- and serine-proteinases activities revealed different targets for these molecules. β-Lapachone is able to inhibit the cysteine-proteinase activity of T. cruzi proteic whole extract and of cruzain, similar to E-64, a classical cysteine-proteinase inhibitor. Differently, Epoxy-α-lap inhibited the T. cruzi serine-proteinase activity, similar to PMSF, a classical serine-proteinase inhibitor. In agreement to these biological profiles in the enzymatic assays, our theoretical analysis showed that E-64 and β-lapachone interact with the cruzain specific S2 pocket and active site whereas Epoxy-α-lap showed no important interactions. Overall, our results infer that β-lapachone and Epoxy-α-lap compounds may inhibit T. cruzi epimastigotes growth by affecting T. cruzi different proteinases. Thus the present data shows the potential of these compounds as prototype of protease inhibitors on drug design studies for developing new antichagasic compounds.  相似文献   

7.
The trypanocidal activity of N-allyl (NAOx) and N-propyl (NPOx) oxamates and that of the ethyl esters ofN-allyl (Et-NAOx) and N-propyl (Et-NPOx) oxamates were tested on cultured epimastigotes (in vitro) and murine trypanosomiasis (in vivo) using five different T. cruzi strains. NAOx and NPOx did not penetrate intact epimastigotes and therefore we were not able to detect any trypanocidal effect with these oxamates. Whereas the ethyl esters (Et-NAOx and Et-NPOx), acting as prodrugs, exhibited in vitro and in vivo trypanocidal activity on the five tested T. cruzi strains. On the contrary, when Nifurtimox and Benznidazole used as reference drugs were tested, we found that only three of the five tested T cruzi strains were affected, whereas the other two strains, Miguz and Compostela, were resistant to the in vitro and in vivo trypanocidal activity of these compounds.  相似文献   

8.
Trypanosoma cruzi, the etiologic agent of Chagas disease, has a complex life cycle in which four distinct developmental forms alternate between the insect vector and the mammalian host. It is assumed that replicating epimastigotes present in the insect gut are not infective to mammalian host, a paradigm corroborated by the widely acknowledged fact that only this stage is susceptible to the complement system. In the present work, we establish a T. cruzi in vitro and in vivo epimastigogenesis model to analyze the biological aspects of recently differentiated epimastigotes (rdEpi). We show that both trypomastigote stages of T. cruzi (cell‐derived and metacyclic) are able to transform into epimastigotes (processes termed primary and secondary epimastigogenesis, respectively) and that rdEpi have striking properties in comparison to long‐term cultured epimastigotes: resistance to complement‐mediated lysis and both in vitro (cell culture) and in vivo (mouse) infectivity. Proteomics analysis of all T. cruzi stages reveled a cluster of proteins that were up‐regulated only in rdEpi (including ABC transporters and ERO1), suggesting a role for them in rdEpi virulence. The present work introduces a new experimental model for the study of host‐parasite interactions, showing that rdEpi can be infective to the mammalian host.  相似文献   

9.
Hundreds of millions of people worldwide are affected by Chagas’ disease caused by Trypanosoma cruzi. Since the current treatment lack efficacy, specificity, and suffers from several side-effects, novel therapeutics are mandatory. Natural products from endophytic fungi have been useful sources of lead compounds. In this study, three lactones isolated from an endophytic strain culture were in silico evaluated for rational guidance of their bioassay screening. All lactones displayed in vitro activity against T. cruzi epimastigote and trypomastigote forms. Notably, the IC50 values of (+)-phomolactone were lower than benznidazole (0.86 vs. 30.78 μM against epimastigotes and 0.41 vs. 4.88 μM against trypomastigotes). Target-based studies suggested that lactones displayed their trypanocidal activities due to T. cruzi glyceraldehyde-3-phosphate dehydrogenase (TcGAPDH) inhibition, and the binding free energy for all three TcGAPDH-lactone complexes suggested that (+)-phomolactone has a lower score value (−3.38), corroborating with IC50 assays. These results highlight the potential of these lactones for further anti-T. cruzi drug development.  相似文献   

10.
Among the natural compounds, terpenoids play an important role in the drug discovery process for tropical diseases. The aim of the present work was to isolate antiprotozoal compounds from Ambrosia elatior and A. scabra. The sesquiterpene lactone (STL) cumanin was isolated from A. elatior whereas two other STLs, psilostachyin and cordilin, and one sterol glycoside, daucosterol, were isolated from A. scabra. Cumanin and cordilin were active against Trypanosoma cruzi epimastigotes showing 50% inhibition concentrations (IC50) values of 12 µM and 26 µM, respectively. Moreover, these compounds are active against bloodstrean trypomastigotes, regardless of the T. cruzi strain tested. Psilostachyin and cumanin were also active against amastigote forms with IC50 values of 21 µM and 8 µM, respectively. By contrast, daucosterol showed moderate activity on epimastigotes and trypomastigotes and was inactive against amastigote forms. We also found that cumanin and psilostachyin exhibited an additive effect in their trypanocidal activity when these two drugs were tested together. Cumanin has leishmanicidal activity with growth inhibition values greater than 80% at a concentration of 5 µg/ml (19 µM), against both L. braziliensis and L. amazonensis promastigotes. In an in vivo model of T. cruzi infection, cumanin was more active than benznidazole, producing an 8-fold reduction in parasitemia levels during the acute phase of the infection compared with the control group, and more importantly, a reduction in mortality with 66% of the animals surviving, in comparison with 100% mortality in the control group. Cumanin also showed nontoxic effects at the doses assayed in vivo, as determined using markers of hepatic damage.  相似文献   

11.
Unstimulated mouse peritoneal exudate cells were cultured on coverslips in Medium 199 containing 10% (v/v) calf serum. Cytochalasin B dissolved in dimethyl sulphoxide (DMSO) and diluted in Medium 199 was added to cultures to give final concentrations of 1, 5 and 10 μg/ml. Equal numbers of Leishmania mexicana promastigotes, Trypanosoma cruzi epimastigotes and sheep red cells were added to 24 hr cultures incubated at 37 C. The macrophage monolayers were fixed and stained at various time intervals. L. mexicana promastigotes and sheep red blood cells were found to attach to macrophages in the presence of the drug but did not enter the cells. When the medium containing the Cytochalasin was replaced with normal medium phagocytosis of the adherent parasites and red cells followed rapidly. T. cruzi epimastigotes were found inside macrophages in both drug-treated and drug-free cultures although the number found to be intracellular in the latter was significantly greater. This study suggests that L. mexicana promastigotes enter macrophages by being phagocytosed, whereas T. cruzi epimastigotes can actively penetrate these cells.  相似文献   

12.
Trypanosoma cruzi is the agent of Chagas disease, an infection that affects around 8 million people worldwide. The search for new anti-T. cruzi drugs are relevant, mainly because the treatment of this disease is limited to two drugs. The objective of this study was to investigate the trypanocidal and cytotoxic activity and elucidate the chemical profile of extracts from the roots of the Lonchocarpus cultratus. Roots from L. cultratus were submitted to successive extractions with hexane, dichloromethane, and methanol, resulting in LCH, LCD, and LCM extracts, respectively. Characterization of extracts was done using 1H-RMN, 13C-RMN, CC and TLC. Treatment of T. cruzi forms (epimastigotes, trypomastigotes, and amastigotes) with crescent concentrations of LCH, LCD, and LCM was done for 72, 48, and 48 h, respectively. After this, the percentage of inhibition and IC50/LC50 were calculated. Benznidazole was used as a positive control. Murine macrophages were treated with different concentrations of both extracts for 48 h, and after, the cellular viability was determined by the MTT method and CC50 was calculated. The chalcones derricin and lonchocarpine were identified in the hexane extract, and for the first time in the genus Lonchocarpus, the presence of a dihydrolonchocarpine derivative was observed. Other chalcones such as isocordoin and erioschalcone B were detected in the dichloromethane extract. The dichloromethane extract showed higher activity against all tested forms of T. cruzi than the other two extracts, with IC50 values of 10.98, 2.42, and 0.83 µg/mL, respectively; these values are very close to those of benznidazole. Although the dichloromethane extract presented a cytotoxic effect against mammalian cells, it showed selectivity against amastigotes. The methanolic extract showed the lowest anti-T. cruzi activity but was non-toxic to peritoneal murine macrophages. Thus, the genus Lonchocarpus had demonstrated in the past action against epimastigotes forms of T. cruzi but is the first time that the activity against infective forms is showed, which leading to further studies with in vivo tests.  相似文献   

13.
Poly(ADP-ribosylation) is a post-translational covalent modification of proteins catalyzed by a family of enzymes termed poly(ADP-ribose) polymerases (PARPs). In the human genome, 17 different genes have been identified that encode members of the PARP superfamily. Poly (ADP-ribose) metabolism plays a role in a wide range of biological processes. In Trypanosoma cruzi, PARP enzyme appears to play a role in DNA repair mechanisms and may also be involved in controlling the different phases of cell growth. Here we describe the identification of potent inhibitors for T. cruzi PARP with a fluorescence-based activity assay. The inhibitors were also tested on T. cruzi epimastigotes, showing that they reduced ADP-ribose polymer formation in vivo. Notably, the identified inhibitors are able to reduce the growth rate of T. cruzi epimastigotes. The best inhibitor, Olaparib, is effective at nanomolar concentrations, making it an efficient chemical tool for chacterization of ADP-ribose metabolism in T. cruzi. PARP inhibition also decreases drastically the amount of amastigotes but interestingly has no effect on the amount of trypomastigotes in the cell culture. Knocking down human PARP-1 decreases both the amount of amastigotes and trypomastigotes in cell culture, indicating that the effect would be mainly due to inhibition of human PARP-1. The result suggests that the inhibition of PARP could be a potential way to interfere with T. cruzi infection.  相似文献   

14.
Understanding the energy-transduction pathways employed by Trypanosoma cruzi, the etiological agent of Chagas disease, may lead to the identification of new targets for development of a more effective therapy. Herein, the contribution of different substrates for O2 consumption rates along T. cruzi epimastigotes (Tulahuen 2 and Y strains) growth curve was evaluated. O2 consumption rates were higher at the late stationary phase not due to an increase on succinate-dehydrogenase activity. Antimycin A and cyanide did not totally inhibit the mitochondrial respiratory chain (MRC). Malonate at 10 or 25 mM was not a potent inhibitor of complex II. Comparing complex II and III, the former appears to be the primary site of H2O2 release. An update on T. cruzi MRC is presented that together with our results bring important data towards the understanding of the parasite’s MRC. The findings mainly at the stationary phase could be relevant for epimastigotes transformation into the metacyclic form, and in this sense deserves further attention.  相似文献   

15.
Sulfonamide carbonic anhydrase (CA, EC 4.2.1.1) inhibitors targeting the α-class enzyme from the protozoan pathogen Trypanosoma cruzi, responsible of Chagas disease, were recently reported. Although many such derivatives showed low nanomolar activity in vitro, they were inefficient anti-T. cruzi agents in vivo. Here, we show that by formulating such sulfonamides as nanoemulsions in clove (Eugenia caryophyllus) oil, highly efficient anti-protozoan effects are observed against two different strains of T. cruzi. These effects are probably due to an enhanced permeation of the enzyme inhibitor through the nanoemulsion formulation, interfering in this way with the life cycle of the pathogen either by inhibiting pH regulation or carboxylating reactions in which bicarbonate/CO2 are involved. This type of formulation of sulfonamides with T. cruzi CA inhibitory effects may lead to novel therapeutic approaches against this orphan disease.  相似文献   

16.
Using a defined culture medium it was shown that Trypanosoma cruzi epimastigotes (strains Y, Ma, and F1) do not require exogeneous nucleotides for continuous cultivation. Biochemical determinations carried out on parasites grown in the presence or absence of exogenous nucleotides revealed no differences in intracellular nucleotide concentrations. This suggests that T. cruzi epimastigotes have the capacity for de novo nucleotide synthesis. Choline and folic acid were necessary only for high yields of T. cruzi, suggesting that epimastigotes can partially satisfy their vitamin requirements.  相似文献   

17.
Synthetic thiosemicarbazones and semicarbazones were evaluated for their Trypanosoma cruzi trypomastigotes obtained from LLC-MK2 cell cultures. In general, thiosemicarbazone derivatives were most effective and among them the 4-N-(2′-methoxy styryl)-thiosemicarbazone was chosen, to compare the in vitro effect against amastigotes of T. cruzi lodged in mouse peritoneal and human macrophages. A potent trypanocidal effect was observed that was more pronounced against parasites internalized in human macrophages. A potential target for this compound was also evaluated by measuring the nitric oxide synthase activity through NADPH consumption. A significant decrease in enzyme activity was observed. In contrast to the cytotoxic effect observed with benznidazole, no macrophage toxicity was observed for any of the compounds, indicating that their activity was specific for the parasite forms investigated.  相似文献   

18.
Desferrioxamine (DFO) is a potent iron chelator that is also known to modulate inflammation and act as an efficient antioxidant under normal conditions and under oxidative stress. Many in vitro and in vivo studies have shown the efficacy of DFO in the treatment of viral, bacterial and protozoan infections. DFO is known to reduce the intensity of Trypanosoma cruzi infections in mice even during a course of therapy that is not effective in maintaining anaemia or low iron levels. To further clarify these findings, we investigated the action of DFO on mouse T. cruzi infection outcomes and the direct impact of DFO on parasites.Infected animals treated with DFO (5 mg/animal/day) for 35 days, beginning 14 days prior to infection, presented lower parasitemia and lower cumulative mortality rate. No significant effect was observed on iron metabolism markers, erythrograms, leukograms or lymphocyte subsets.In the rapid method for testing in vivo T. cruzi susceptibility, DFO also induced lower parasitemia.In regard to its direct impact on parasites, DFO slightly inhibited the growth of amastigotes and trypomastigotes in fibroblast culture. Trypan blue staining showed no effects of DFO on parasite viability, and only minor apoptosis in trypomastigotes was observed. Nevertheless, a clear decrease in parasite mobility was detected.In conclusion, the beneficial actions of DFO on mice T. cruzi infection seem to be independent of host iron metabolism and free of significant haematological side effects. Through direct action on the parasite, DFO has more effective trypanostatic than trypanocidal properties.  相似文献   

19.
The in vivo susceptibility of several inbred strains of mice to the Y and CL strains of Trypanosoma cruzi was compared to the in vitro ability of spleen cells from infected mice to generate factor(s) able to activate macrophages to a trypanocidal state. Spleen cells from resistant immune mice generate higher levels of the factor(s) and do so at earlier times during infection than those of susceptible mice. The spleen cells capable of generating the in vitro factor(s) are also capable of conferring resistance upon passive transfer. Removal of immunoglobulin-bearing cells from the immune spleen cell population did not affect either transfer of protection in vivo or generation of the factor(s) in vitro. The cellular basis underlying the differences between susceptible and resistant mouse strains has not yet been determined.  相似文献   

20.
Chagas' disease, caused by the protozoan Trypanosoma cruzi, is endemic in Latin America, which current treatment presents variable efficacy and serious side effects. A previous screening of naphthoquinone derivatives pointed to the naphthoimidazoles N1, N2 and N3 as the most active compounds against T. cruzi. In this study, a proteomic approach was employed to identify proteins involved in the N1, N2 and N3 trypanocidal activity. In epimastigotes, the naphthoimidazoles are involved in multiple mechanisms: (a) redox metabolism; (b) energy production; (c) ergosterol biosynthesis; (d) cytoskeleton assembly; (e) protein metabolism and biosynthesis; and (f) chaperones modulation. They induce an imbalance in crucial pathways of the parasite, leading to the loss of metabolic homeostasis and T. cruzi death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号