首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Gene》1998,208(2):229-238
In the present study, the gene encoding rat 17β-hydroxysteroid dehydrogenase type 1 (rHSD17B1 gene) was cloned and characterized. Like the analogous human gene (hHSD17B1), rHSD17B1 contains six exons and five introns spanning approximately 2.2 kb. The identity between the exons and introns of the two genes ranges from 58% to 82% and 42% to 57%, respectively. In contrast to hHSD17B1, rHSD17B1 is not duplicated. The cap site for rHSD17B1 was localized to position −41 upstream of the ATG translation initiation codon. Sequence comparison of the first 200 bp upstream of the cap site showed 72% identity between the human and rat HSD17B1 genes, including a conserved GC-rich area. Further upstream, no significant identity between the two genes was observed and several, cis-acting elements known to modulate the expression of hHSD17B1 are not conserved in the rat gene. Rat HSD17B1 unlike hHSD17B1 with two cap sites, possesses two polyadenylation signals, thus resulting in two mRNAs.  相似文献   

2.
3.
In search for specific drugs against steroid-dependent cancers we have developed a novel set of potent inhibitors of steroidogenic human 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD 1). The X-ray structure of 17β-HSD 1 in complex with estradiol served as basis for the design of the inhibitors. 2-Substituted estrone and D-homo-estrone derivatives were synthesized and tested for 17β-HSD 1 inhibition. The best 17β-HSD 1 inhibitor, 2-phenethyl-D-homo-estrone, revealed an IC50 of 15 nM in vitro. The inhibitory potency of compounds is comparable or better to that of previously described inhibitors. An interaction within the cofactor binding site is not necessary to obtain this high binding affinity for substances developed.  相似文献   

4.
Perfluoroalkyl substances (PFASs) are man-made polyfluorinated compounds that are widely used and persistent in the environment. PFASs have potential effects on many biological systems including the development of lung. Glucocorticoids have been reported to promote fetal and neonatal lung development at the late stage, and 11β-hydroxysteroid dehydrogenase 1(11βHSD1) in the lung is critical for the generation of local active glucocorticoid cortisol (human) or corticosterone (rodents) from biologically inert 11keto-steroids. The purpose of the present study is to study the direct inhibitory effects of PFASs on 11βHSD1 activities and action modes. Microsomal 11βHSD1 was subjected to the exposure to various PFASs, including perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), potassium perfluorohexanesulfonate (PFHxS) and potassium perfluorobutane sulfonate (PFBS). PFOS and PFOA inhibited neonatal rat lung 11βHSD1 activity with IC(50)s of 3.45μM (95% Confidence Intervals, CI(95): 1.97-6.37μM) and 45.31μM (CI(95): 27.64-74.26μM), respectively, while PFHxS and PFBS did not inhibit the enzyme activity at 250μM. PFOS and PFOA inhibited human 11βHSD1 activity with IC(50)s of 7.56μM (CI(95): 2.86-19.97μM) and 37.61μM (CI(95): 24.49-57.75μM), respectively, while PFHxS and PFBS did not inhibit the enzyme activity at 250μM. PFASs showed competitive inhibition on both human and rat 11βHSD1. In conclusion, the present study shows that PFOS and PFOA are the inhibitors of 11βHSD1.  相似文献   

5.
Abstract

Context: Mammary and placental 17β-hydroxysteroid dehydrogenase type 1 (17βHSD1).

Objective: To assess the impact of testosterone, tibolone, and black cohosh on purified mammary and placental 17βHSD1.

Materials and methods: 17βHSD1 was purified from human mammary gland and placenta by column chromatography, its activity was monitored by a radioactive activity assay, and the degree of purification was determined by gel electrophoresis. Photometric cofactor transformation analysis was performed to assess 17βHSD1 activity without or in presence of testosterone, tibolone and black cohosh.

Results: 17βHSD1 from both sources displayed a comparable basal activity. Testosterone and tibolone metabolites inhibited purified mammary and placental 17βHSD1 activity to a different extent, whereas black cohosh had no impact.

Discussion: Studies on purified enzymes reveal the individual action of drugs on local regulatory mechanisms thus helping to develop more targeted therapeutic intervention.

Conclusion: Testosterone, tibolone and black cohosh display a beneficial effect on local mammary estrogen metabolism by not affecting or decreasing local estradiol exposure.  相似文献   

6.
The 3β-hydroxysteroid dehydrogenase (3β-HSD) and 17β-hydroxysteroid dehydrogenase 3 (17β-HSD3) are involved in the reactions that culminate in androgen biosynthesis in Leydig cells. Human and rat testis microsomes were used to investigate the inhibitory potencies on 3β-HSD and 17β-HSD3 activities of 14 different phthalates with various carbon numbers in the ethanol moiety. The results demonstrated that the half-maximal inhibitory concentrations (IC(50)s) of dipropyl (DPrP), dibutyl (DBP), dipentyl (DPP), bis(2-butoxyethyl) (BBOP) and dicyclohexyl (DCHP) phthalate were 123.0, 24.1, 25.5, 50.3 and 25.5μM for human 3β-HSD activity, and 62.7, 30.3, 33.8, 82.6 and 24.7μM for rat 3β-HSD activity, respectively. However, only BBOP and DCHP potently inhibited human (IC(50)s, 23.3 and 8.2μM) and rat (IC(50)s, 30.24 and 9.1μM) 17β-HSD3 activity. Phthalates with 1-2 or 7-8 carbon atoms in ethanol moieties had no effects on both enzyme activities even at concentrations up to 1mM. The mode of action of DCHP on 3β-HSD activity was competitive with the substrate pregnenolone but noncompetitive with the cofactor NAD+. The mode of action of DCHP on 17β-HSD3 activity was competitive with the substrate androstenedione but noncompetitive with the cofactor NADPH. In summary, our results showed that there are clear structure-activity responses for phthalates in the inhibition of both 3β-HSD and 17β-HSD3 activities. The length of carbon chains in the ethanol moieties of phthalates may determine the potency to inhibit these two enzymes.  相似文献   

7.
We have previously reported the discovery of a new class of potent inhibitors of 17β-hydroxysteroid dehydrogenase type 3 (17β-HSD3) derived from benzylidene oxazolidinedione and thiazolidinedione scaffolds. In this study, these analogs were designed, synthesized, and evaluated in a human cell-based assay. The detailed structure-activity relationship (SAR) surrounding this pharmacophore were developed, and consequently a number of compounds from this series demonstrated single-digit nanomolar 17β-HDS3 inhibitory activity in vitro. Subsequent optimization work in pursuit of the improvement of oral bioavailability demonstrated in vivo proof-of-concept by prodrug strategy based on phosphate esters for these 17β-HSD3 inhibitors. When a phosphate ester 16 was administered orally at a high dose of 100mg/kg, 16 showed approximately two times more potent testosterone (T)-lowering effect against a positive control in the luteinizing hormone-releasing hormone (LH-RH)-induced T production assay. The T-lowering effect continued at ca 10% level of control over 4h after administration. The nonsteroidal molecules based on this series have the potential to provide unique and effective clinical opportunities for treatment of prostate cancer.  相似文献   

8.
9.
17β-estradiol (E2), the most potent estrogen in humans, known to be involved in the development and progession of estrogen-dependent diseases (EDD) like breast cancer and endometriosis. 17β-HSD1, which catalyses the reduction of the weak estrogen estrone (E1) to E2, is often overexpressed in breast cancer and endometriotic tissues. An inhibition of 17β-HSD1 could selectively reduce the local E2-level thus allowing for a novel, targeted approach in the treatment of EDD. Continuing our search for new nonsteroidal 17β-HSD1 inhibitors, a novel pharmacophore model was derived from crystallographic data and used for the virtual screening of a small library of compounds. Subsequent experimental verification of the virtual hits led to the identification of the moderately active compound 5. Rigidification and further structure modifications resulted in the discovery of a novel class of 17β-HSD1 inhibitors bearing a benzothiazole-scaffold linked to a phenyl ring via keto- or amide-bridge. Their putative binding modes were investigated by correlating their biological data with features of the pharmacophore model. The most active keto-derivative 6 shows IC50-values in the nanomolar range for the transformation of E1 to E2 by 17β-HSD1, reasonable selectivity against 17β-HSD2 but pronounced affinity to the estrogen receptors (ERs). On the other hand, the best amide-derivative 21 shows only medium 17β-HSD1 inhibitory activity at the target enzyme as well as fair selectivity against 17β-HSD2 and ERs. The compounds 6 and 21 can be regarded as first benzothiazole-type 17β-HSD1 inhibitors for the development of potential therapeutics.  相似文献   

10.
Perfluoroalkylated substances (PFASs) including perfluorooctane acid (PFOA) and perfluorooctane sulfonate (PFOS) have been classified as persistent organic pollutants and are known to cause reduced testosterone production in human males. The objective of the present study was to compare the potencies of five different PFASs including PFOA, PFOS, potassium perfluorooctane sulfonate (PFOSK), potassium perfluorohexane sulfonate (PFHxSK) and potassium perfluorobutane sulfonate (PFBSK) in the inhibition of 3β-hydroxysteroid dehydrogenase (3β-HSD) and 17β-hydroxysteroid dehydrogenase 3 (17β-HSD3) activities in the human and rat testes. Human and rat microsomal enzymes were exposed to various PFASs. PFOS and PFOSK inhibited rat 3β-HSD activity with IC50 of 1.35 ± 0.05 and 1.77 ± 0.04 μM, respectively, whereas PFHxSK and PFBSK had no effect at concentrations up to 250 μM. All chemicals tested weakly inhibited human 3β-HSD activity with IC50s over 250 μM. On the other hand, PFOS, PFOSK and PFOA inhibited human 17β-HSD3 activity with IC50s of 6.02 ± 1.02, 4.39 ± 0.46 and 127.60 ± 28.52 μM, respectively. The potencies for inhibition of 17β-HSD3 activity were determined to be PFOSK > PFOS > PFOA > PFHxSK = PFBSK for human 17β-HSD3 activity. There appears to be a species-dependent sensitivity to PFAS-mediated inhibition of enzyme activity because the IC50s of PFOS(K) for inhibition of rat 17β-HSD3 activity was greater than 250 μM. In conclusion, the present study shows that PFOS and PFOSK are potent inhibitors of rat 3β-HSD and human 17β-HSD3 activity, and implies that inhibition of steroidogenic enzyme activity may be a contributing factor to the effects that PFASs exert on androgen secretion in the testis.  相似文献   

11.
Novel and potent inhibitors of 17β-hydroxysteroid dehydrogenase type 3 (17β-HSD3) were identified based on oxazolidinedione and thiazolidinedione derivatives, starting from a high-throughput screening hit, 5-(3-bromo-4-hydroxybenzyl)-3-(4-methoxyphenyl)-1,3-thiazol-2-one. 5-(3-Bromo-4-hydroxybenzylidene)-3-(4-methoxyphenyl)-2-thioxo-1,3-thiazolidin-4-one exhibited a promising activity profile and demonstrated significant selectivity over the related 17β-HSD isoenzymes and nuclear receptors.  相似文献   

12.
There is considerable interest in the development of an inhibitor of aldo-keto reductase (AKR) 1C3 (type 5 17β-hydroxysteroid dehydrogenase and prostaglandin F synthase) as a potential therapeutic for both hormone-dependent and hormone-independent cancers. AKR1C3 catalyzes the reduction of 4-androstene-3,17-dione to testosterone and estrone to 17β-estradiol in target tissues, which will promote the proliferation of hormone dependent prostate and breast cancers, respectively. AKR1C3 also catalyzes the reduction of prostaglandin (PG) H(2) to PGF(2α) and PGD(2) to 9α,11β-PGF(2), which will limit the formation of anti-proliferative prostaglandins, including 15-deoxy-Δ(12,14)-PGJ(2), and contribute to proliferative signaling. AKR1C3 is overexpressed in a wide variety of cancers, including breast and prostate cancer. An inhibitor of AKR1C3 should not inhibit the closely related isoforms AKR1C1 and AKR1C2, as they are involved in other key steroid hormone biotransformations in target tissues. Several structural leads have been explored as inhibitors of AKR1C3, including non-steroidal anti-inflammatory drugs, steroid hormone analogues, flavonoids, cyclopentanes, and benzodiazepines. Inspection of the available crystal structures of AKR1C3 with multiple ligands bound, along with the crystal structures of the other AKR1C isoforms, provides a structural basis for the rational design of isoform specific inhibitors of AKR1C3. We find that there are subpockets involved in ligand binding that are considerably different in AKR1C3 relative to the closely related AKR1C1 or AKR1C2 isoforms. These pockets can be used to further improve the binding affinity and selectivity of the currently available AKR1C3 inhibitors. Article from the special issue on Targeted Inhibitors.  相似文献   

13.
Inhibition of the local formation of estrogens seems to be an attractive strategy for pharmacological intervention in hormone-dependent disorders. The direct antiproliferative properties of ten nonsteroidal 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1) inhibitors were investigated on human cancer cell lines of gynecological origin. The mechanism of the antiproliferative action was approximated by cell cycle analysis, fluorescent microscopy, BrdU assay, determination of caspase-3 activity and quantification of the expression of cell cycle regulators at mRNA level. Treatment of HeLa cells with some of the compounds resulted in a concentration-dependent inhibition of the G1–S transition and an increase in the apoptotic population. The most effective agents increased the expression of tumor suppressors p21 and p53, while CDK2 and Rb were down-regulated. The reported anticancer actions of the tested compounds are independent of the 17β-HSD1-inhibiting capacity. These results indicate that it is possible to combine direct antiproliferative activity and 17β-HSD1 inhibition resulting in novel agents with dual mode of action.  相似文献   

14.
A series of N α-acyl (alkyl)- and N α-alkoxycarbonyl-derivatives of l- and d-ornithine were prepared, characterized, and analyzed for their potency toward the bacterial enzyme N α-acetyl-l-ornithine deacetylase (ArgE). ArgE catalyzes the conversion of N α-acetyl-l-ornithine to l-ornithine in the fifth step of the biosynthetic pathway for arginine, a necessary step for bacterial growth. Most of the compounds tested provided IC50 values in the μM range toward ArgE, indicating that they are moderately strong inhibitors. N α-chloroacetyl-l-ornithine (1g) was the best inhibitor tested toward ArgE providing an IC50 value of 85 μM while N α-trifluoroacetyl-l-ornithine (1f), N α-ethoxycarbonyl-l-ornithine (2b), and N α-acetyl-d-ornithine (1a) weakly inhibited ArgE activity providing IC50 values between 200 and 410 μM. Weak inhibitory potency toward Bacillus subtilis-168 for N α-acetyl-d-ornithine (1a) and N α-fluoro- (1f), N α-chloro- (1g), N α-dichloro- (1h), and N α-trichloroacetyl-ornithine (1i) was also observed. These data correlate well with the IC50 values determined for ArgE, suggesting that these compounds might be capable of getting across the cell membrane and that ArgE is likely the bacterial enzymatic target.  相似文献   

15.
The enzyme 11β-HSD1 plays a crucial role in the tissue-specific regulation of cortisol levels and it has been associated with various diseases. Inhibition of 11β-HSD1 is an attractive intervention strategy and the discovery of novel selective 11β-HSD1 inhibitors is of high relevance. In this study, we identified and evaluated a new series of selective peptide 11β-HSD1 inhibitors with potential for skin care applications. This novel scaffold was designed with the aid of molecular modeling and two previously reported inhibitors. SAR optimization yielded highly active peptides (IC50 below 400?nM) that were inactive at 1?µM concentration against structurally related enzymes (11β-HSD2, 17β-HSD1 and 17β-HSD2). The best performing peptides inhibited the conversion of cortisone into cortisol in primary human keratinocytes and the most active compound, 5d, was further shown to reverse cortisone-induced collagen damage in human ex-vivo tissue.  相似文献   

16.
The enzyme type 5 17β-hydroxysteroid dehydrogenase 5 (17β-HSD5) catalyzes the transformation of androstenedione (4-dione) to testosterone (T) in the prostate. This metabolic pathway remains active in cancer patients receiving androgen deprivation therapy. Since physicians seek to develop advantageous and better new treatments to increase the average survival of these patients, we synthesized several different dehydroepiandrosterone derivatives. These compounds have a pyrazole or imidazole function at C-17 and an ester moiety at C-3 and were studied as inhibitors of 17β-HSD5. The kinetic parameters of this enzyme were determined for use in inhibition assays. Their pharmacological effect was also determined on gonadectomized hamsters treated with Δ4-androstenedione (4-dione) or testosterone (T) and/or the novel compounds. The results indicated that the incorporation of a heterocycle at C-17 induced strong 17β-HSD5 inhibition. These derivatives decreased flank organ diameter and prostate weight in castrated hamsters treated with T or 4-dione. Inhibition of 17β-HSD5 by these compounds could have therapeutic potential for the treatment of prostate cancer and benign prostatic hyperplasia.  相似文献   

17.
11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) converts inactive 11-keto derivatives to active glucocorticoids within tissues and may play a role in the metabolic syndrome (MS). We used an antisense oligonucleotide (ASO) to knock down 11β-HSD1 in livers of C57BL/6J mice consuming a Western-type diet (WTD). 11β-HSD1 ASO-treated mice consumed less food, so we compared them to ad libitum-fed mice and to food-matched mice receiving control ASO. Knockdown of 11β-HSD1 directly protected mice from WTD-induced steatosis and dyslipidemia by reducing synthesis and secretion of triglyceride (TG) and increasing hepatic fatty acid oxidation. These changes in hepatic and plasma lipids were not associated with reductions in genes involved in de novo lipogenesis. However, protein levels of both sterol regulatory element-binding protein (SREBP) 1 and fatty acid synthase were significantly reduced in mice treated with 11β-HSD1 ASO. There was no change in hepatic secretion of apolipoprotein (apo)B, indicating assembly and secretion of smaller apoB-containing lipoproteins by the liver in the 11β-HSD1-treated mice. Our results indicate that inhibition of 11β-HSD1 by ASO treatment of WTD-fed mice resulted in improved plasma and hepatic lipid levels, reduced lipogenesis by posttranslational regulation, and secretion of similar numbers of apoB-containing lipoproteins containing less TG per particle.  相似文献   

18.
The human enzyme 11β-hydroxysteroid dehydrogenase (11β-HSD) catalyzes the reversible oxidoreduction of 11β-OH/11-oxo groups of glucocorticoid hormones. Besides this important endocrinological property, the type 1 isozyme (11β-HSD1) mediates reductive phase I reactions of several carbonyl group bearing xenobiotics, including drugs, insecticides and carcinogens. The aim of this study was to explore novel substrate specificities of human 11β-HSD1, using heterologously expressed protein in the yeast system Pichia pastoris. In addition to established phase I xenobiotic substrates, it is now demonstrated that transformed yeast strains catalyze the reduction of ketoprofen to its hydroxy metabolite, and the oxidation of the prodrug DFU-lactol to the pharmacologically active lactone compound. Purified recombinant 11β-HSD1 mediated oxidative reactions, however, the labile reductive activity component could not be maintained. In conclusion, evidence is provided that human 11β-HSD1 in vitro is involved in phase I reactions of anti-inflammatory non-steroidal drugs like ketoprofen and DFU-lactol.  相似文献   

19.
17β-Hydroxysteroid dehydrogenase type 2 (17β-HSD2) catalyzes the NADP+-dependent oxidation of the most potent estrogen 17β-estradiol into the weak estrogen estrone, and the conversion of testosterone to androstenedione. It has been reported that 17β-HSD2 was expressed in many tissues in human, rats, however, the full-length sequence of 17β-HSD2 gene and its expression in ewe were still unknown. In this study, we cloned the full-length cDNA sequence and investigated mRNA differential expression in 28 tissues of 12 adult Hu-Sheep which were fed with high- and low- dietary intake. The 1,317 bp full-length cDNA sequence was first cloned. The coding region was 1,167 bp in length, and the monomer was estimated to contain 389 amino acid residues. It shares high AA sequence identity with that of bos Taurus (96.13 %), sus scrofa (77.06 %), canis lupus familiaris (70.44 %), Callithrix jacchus (65.72 %), Nomascus leucogenys (65.46 %), pan troglodytes (65.21 %), human (64.69 %), mus musculus (58.35 %), and a comparatively lower identity to danio rerio (37.85 %). 17β-HSD2 gene was high expressed in gastrointestinal (GI) tract, liver, but weakly expressed in other tissues. No detected expression was examined in lung. 17β-HSD2 gene expression was significantly difference in rumen, omasum, duodenum, cecum, hypophysis after high- and low- dietary intake. Results from the present study suggested that 17β-HSD2 plays a crucial role in almost all tissues protecting against excessive levels of active steroid hormone, and GI tract maybe an important steroid hormone metabolizing organ in Hu-Sheep. This present study is the first to provide the primary foundation for further insight into this ovine gene.  相似文献   

20.
17β-Hydroxysteroid dehydrogenase type 1 (17β-HSD1) catalyzes the formation of the potent proliferation-stimulating hormone estradiol, and it is thus involved in the development of hormone-dependent breast cancer. Due to its high substrate specificity and the known relationships between its overexpression and disease incidence, 17β-HSD1 is considered an attractive target for drug development. Here, we have used structure-based virtual high-throughput screening to successfully identify potent nonsteroidal 17β-HSD1 inhibitors. Computational screening of a drug-like database containing 13 million compounds identified hits with a 2-benzylidenebenzofuran-3(2H)-one scaffold that we show to be highly potent 17β-HSD1 inhibitors. The most potent in the series, compound 1, showed an IC(50) of 45nM in our 17β-HSD1 inhibition assay, and also showed good selectivity for 17β-HSD1 over 17β-HSD2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号