首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the current study, the applicability and scope of 3D-QSAR models (CoMFA and CoMSIA) to complement virtual screening using 3D pharmacophore and molecular docking is examined and applied to identify potential hits against Mycobacterium tuberculosis Enoyl acyl carrier protein reductase (MtENR). Initially CoMFA and CoMSIA models were developed using series of structurally related arylamides as MtENR inhibitors. Docking studies were employed to position the inhibitors into MtENR active site to derive receptor based 3D-QSAR models. Both CoMFA and CoMSIA yielded significant cross validated q2 values of 0.663 and 0.639 and r2 values of 0.989 and 0.963, respectively. The statistically significant models were validated by a test set of eight compounds with predictive r2 value of 0.882 and 0.875 for CoMFA and CoMSIA. The contour maps from 3D-QSAR models in combination with docked binding structures help to better interpret the structure activity relationship. Integrated with CoMFA and CoMSIA predictive models structure based (3D-pharmacophore and molecular docking) virtual screening have been employed to explore potential hits against MtENR. A representative set of 20 compounds with high predicted IC50 values were sorted out in the present study.  相似文献   

2.
Presently, an in silico modeling was carried out on a series of 63 phosphonic acid-containing thiazole derivatives as fructose-1,6-bisphosphatase (FBPase) inhibitors using CoMFA/CoMSIA and molecular docking methods. The CoMFA and CoMSIA models using 51 molecules in the training set gave r cv2 values of 0.675 and 0.619, r 2 values of 0.985 and 0.979, respectively. The systemic external validation indicated that our CoMFA and CoMSIA models possessed high predictive powers with r 02 values of 0.995 and 0.994, r m(test)2 values of 0.887 and 0.860, respectively. The 3D contour maps of the CoMFA and CoMSIA provided smooth and interpretable explanation of the structure-activity relationship for the inhibitors. Molecular docking studies revealed that a phosphonic group was essential for binding to the AMP binding site, and some key features were also identified. The analyses of the 3D contour plots and molecular docking results permitted interesting conclusions about the effects of different substituent groups at different positions of the common scaffold, which might guide the design of novel FBPase inhibitors with higher activity and bioavailability. A set of 60 new analogues were designed by utilizing the results revealed in the present study, and were predicted with significantly improved potencies in the developed models. The findings can be quite useful to aid the designing of new fructose-1,6-biphophatase inhibitors with improved biological response.  相似文献   

3.
Three-dimensional quantitative structure-activity relationship (3D-QSAR) and molecular docking studies were carried out to explore the binding of 73 inhibitors to dipeptidyl peptidase IV (DPP-IV), and to construct highly predictive 3D-QSAR models using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). The negative logarithm of IC50 (pIC50) was used as the biological activity in the 3D-QSAR study. The CoMFA model was developed by steric and electrostatic field methods, and leave-one-out cross-validated partial least squares analysis yielded a cross-validated value (rcv2 {\hbox{r}}_{{\rm{cv}}}^{\rm{2}} ) of 0.759. Three CoMSIA models developed by different combinations of steric, electrostatic, hydrophobic and hydrogen-bond fields yielded significant rcv2 {\hbox{r}}_{{\rm{cv}}}^{\rm{2}} values of 0.750, 0.708 and 0.694, respectively. The CoMFA and CoMSIA models were validated by a structurally diversified test set of 18 compounds. All of the test compounds were predicted accurately using these models. The mean and standard deviation of prediction errors were within 0.33 and 0.26 for all models. Analysis of CoMFA and CoMSIA contour maps helped identify the structural requirements of inhibitors, with implications for the design of the next generation of DPP-IV inhibitors for the treatment of type 2 diabetes.  相似文献   

4.
Lan  Ping  Chen  Wan-Na  Sun  Ping-Hua  Chen  Wei-Min 《Journal of molecular modeling》2011,17(5):1191-1205
The Aurora kinases have been regarded as attractive targets for the development of new anticancer agents. Recently a series of azaindole derivatives with Aurora B inhibitory activities were reported. To explore the relationship between the structures of substituted azaindole derivatives and their inhibition of Aurora B, 3D-QSAR and molecular docking studies were performed on a dataset of 41 compounds. 3D-QSAR, including CoMFA and CoMSIA, were applied to identify the key structures impacting their inhibitory potencies. The CoMSIA model showed better results than CoMFA, with r 2 cv value of 0.575 and r 2 value of 0.987. 3D contour maps generated from CoMFA and CoMSIA along with the docking binding structures provided enough information about the structural requirements for better activity. Based on the structure-activity relationship revealed by the present study, we have designed a set of novel Aurora B inhibitors that showed excellent potencies in the developed models. Thus, our results allowed us to design new derivatives with desired activities.  相似文献   

5.
Multiple receptors conformation docking (MRCD) and clustering of dock poses allows seamless incorporation of receptor binding conformation of the molecules on wide range of ligands with varied structural scaffold. The accuracy of the approach was tested on a set of 120 cyclic urea molecules having HIV-1 protease inhibitory activity using 12 high resolution X-ray crystal structures and one NMR resolved conformation of HIV-1 protease extracted from protein data bank. A cross validation was performed on 25 non-cyclic urea HIV-1 protease inhibitor having varied structures. The comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) models were generated using 60 molecules in the training set by applying leave one out cross validation method, rloo2 values of 0.598 and 0.674 for CoMFA and CoMSIA respectively and non-cross validated regression coefficient r2 values of 0.983 and 0.985 were obtained for CoMFA and CoMSIA respectively. The predictive ability of these models was determined using a test set of 60 cyclic urea molecules that gave predictive correlation (rpred2) of 0.684 and 0.64 respectively for CoMFA and CoMSIA indicating good internal predictive ability. Based on this information 25 non-cyclic urea molecules were taken as a test set to check the external predictive ability of these models. This gave remarkable out come with rpred2 of 0.61 and 0.53 for CoMFA and CoMSIA respectively. The results invariably show that this method is useful for performing 3D QSAR analysis on molecules having different structural motifs.  相似文献   

6.
Novel classes of cannabinoid 2 receptor (CB2) agonists based on 1,2,3,4-tetrahydropyrrolo[3,4-b]indole and benzimidazole scaffolds have shown high binding affinity toward CB2 receptor and good selectivity over cannabinoid 1 receptor (CB1). A computational study of comparative molecular fields analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) was performed, initially on each series of agonists, and subsequently on all compounds together, in order to identify the key structural features impacting their binding affinity. The final CoMSIA model resulted to be the more predictive, showing cross-validated r2 (rcv 2) = 0.680, non cross-validated r2 (rncv 2) = 0.97 and test set r2( rpred2 ) = 0.93 {{\hbox{r}}^2}\left( {{\hbox{r}}_{\rm{pred}}^2} \right) = 0.{93} . The study provides useful suggestions for the design of new analogues with improved affinity.  相似文献   

7.
3D-QSAR (CoMFA and CoMSIA) studies were performed on human equlibrative nucleoside transporter (hENT1) inhibitors displaying Ki values ranging from 10,000 to 0.7 nM. Both CoMFA and CoMSIA analysis gave reliable models with q2 values >0.50 and r2 values >0.92. The models have been validated for their stability and robustness using group validation and bootstrapping techniques and for their predictive abilities using an external test set of nine compounds. The high predictive r2 values of the test set (0.72 for CoMFA model and 0.74 for CoMSIA model) reveals that the models can prove to be a useful tool for activity prediction of newly designed nucleoside transporter inhibitors. The CoMFA and CoMSIA contour maps identify features important for exhibiting good binding affinities at the transporter, and can thus serve as a useful guide for the design of potential equilibrative nucleoside transporter inhibitors.  相似文献   

8.
Novel anti-HIV-1 agents derived from betulinic acid have been greatly concerned. 3D-QSAR and molecular docking studies were applied to rationalize the structural requirements responsible for the anti-HIV activity of these compounds. The CoMFA and CoMSIA models resulted from 28 molecules gave r cv2 values of 0.599 and 0.630, r 2 values of 0.994 and 0.958, respectively. To estimate the predictive ability of the 3D-QSAR model, an external validation was employed. Based on the contour maps generated from both CoMFA and CoMSIA, we have identified some key features in the betulinic acid derivatives that are responsible for the anti-HIV activity. Molecular docking was used to explore the binding mode between these derivatives and HIV gp120. We have therefore designed a series of novel betulinic acid derivatives by utilizing the SAR results revealed in the present study, which were predicted with excellent potencies in the developed models. The results provide a valuable method to design new betulinic acid derivatives as anti-HIV-1 agents.  相似文献   

9.
Studies have showed that there are many biological targets related to the cancer treatment, for example, TGF type I receptor (TGF-βRI or ALK5). The ALK5 inhibition is a strategy to treat some types of cancer, such as breast, lung, and pancreas. Here, we performed CoMFA and CoMSIA studies for 70 ligands with ALK5 inhibition. The internal validation for both models (q2LOO = 0.887 and 0.822, respectively) showed their robustness, while the external validations showed their predictive power (CoMFA: r2test = 0.998; CoMSIA: r2test = 0.975). After all validations, CoMFA and CoMSIA maps indicated physicochemical evidences on the main factors involved in the interaction between bioactive ligands and ALK5. Therefore, these results suggest molecular modifications to design new ALK5 inhibitors.  相似文献   

10.
The antigen‐antibody interaction determines the sensitivity and specificity of competitive immunoassay for hapten detection. In this paper, the specificity of a monoclonal antibody against alternariol‐like compounds was evaluated through indirect competitive ELISA. The results showed that the antibody had cross‐reactivity with 33 compounds with the binding affinity (expressed by IC50) ranging from 9.4 ng/mL to 12.0 μg/mL. All the 33 compounds contained a common moiety and similar substituents. To understand how this common moiety and substituents affected the recognition ability of the antibody, a three‐dimensional quantitative structure‐activity relationship (3D‐QSAR) between the antibody and the 33 alternariol‐like compounds was constructed using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) methods. The q2 values of the CoMFA and CoMSIA models were 0.785 and 0.782, respectively, and the r2 values were 0.911 and 0.988, respectively, indicating that the models had good predictive ability. The results of 3D‐QSAR showed that the most important factor affecting antibody recognition was the hydrogen bond mainly formed by the hydroxyl group of alternariol, followed by the hydrophobic force mainly formed by the methyl group. This study provides a reference for the design of new hapten and the mechanisms for antibody recognition.  相似文献   

11.
Cancer is a significant world health problem for which efficient therapies are in urgent demand. c-Src has emerged as an attractive target for drug discovery efforts toward antitumor therapies. Toward this target several series of c-Src inhibitors that showed activity in the assay have been reported. In this article, 3D-QSAR models have been built with 156 anilinoquinazoline and quinolinecarbonitrile derivative inhibitors by using CoMFA and CoMSIA methods. These studies indicated that the QSAR models were statistically significant with high predictabilities (CoMFA model, q 2 = 0.590, r 2 = 0.855; CoMSIA model, q 2 = 0.538, r 2 = 0.748). The details of c-Src kinase/inhibitor binding interactions in the crystal structure of complex provided new information for the design of new inhibitors. As a result, docking simulations were also conducted on the series of potent inhibitors. The flexible docking method, which was performed by the DOCK program, positioned all of the inhibitors into the active site to determine the probable binding conformation. The CoMFA and CoMSIA models based on the flexible docking conformations also yielded statistically significant and highly predictive QSAR models (CoMFA model, q 2 = 0.507, r 2 = 0.695; CoMSIA model, q 2 = 0.463, r 2 = 0.734). Our models would offer help to better comprehend the structure-activity relationships that exist for this class of compounds and also facilitate the design of novel inhibitors with good chemical diversity.  相似文献   

12.
Vascular endothselial growth factor (VEGF) and its receptor tyrosine kinase VEGFR-2 or kinase insert domain receptor (KDR) have been identified as new promising targets for the design of novel anticancer agents. It is reported that 4-(1H-indazol-4-yl)phenylamino and aminopyrazolopyridine urea derivatives exhibit potent inhibitory activities toward KDR. To investigate how their chemical structures relate to the inhibitory activities and to identify the key structural elements that are required in the rational design of potential drug candidates of this class, molecular docking simulations and three-dimensional quantitative structure-activity relationship (3D-QSAR) methods were performed on 78 4-(1H-indazol-4-yl)phenylamino and aminopyrazolopyridine urea derivatives as KDR inhibitors. Surflex-dock was used to determine the probable binding conformations of all the compounds at the active site of KDR. As a result, multiple hydrophobic and hydrogen-bonding interactions were found to be two predominant factors that may be used to modulate the inhibitory activities. Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) 3D-QSAR models were developed based on the docking conformations. The CoMFA model produced statistically significant results with the cross-validated correlation coefficient q2 of 0.504 and the non-cross-validated correlation coefficient r2 of 0.913. The best CoMSIA model was obtained from the combination of steric, electrostatic and hydrophobic fields. Its q2 and r2 being 0.595 and 0.947, respectively, indicated that it had higher predictive ability than the CoMFA model. The predictive abilities of the two models were further validated by 14 test compounds, giving the predicted correction coefficients rpred2 of 0.727 for CoMFA and 0.624 for CoMSIA, respectively. In addition, the CoMFA and CoMSIA models were used to guide the design of a series of new inhibitors of this class with predicted excellent activities. Thus, these models may be used as an efficient tool to predict the inhibitory activities and to guide the future rational design of 4-(1H-indazol-4-yl)phenylamino and aminopyrazolopyridine urea derivatives-based novel KDR inhibitors with potent activities.  相似文献   

13.
Orvinols are potent analgesics that target opioid receptors. However, their analgesic mechanism remains unclear and no significant preference for subtype opioid receptor has been achieved. In order to find new orvinols that target the κ-receptor, comparative 3D–QSAR studies were performed on 26 orvinol analogs using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). The best predictions for the κ-receptor were obtained with the CoMFA standard model (q 2=0.686, r 2=0.947) and CoMSIA model combined steric, electrostatic, hydrophobic, and hydrogen bond donor/acceptor fields (q 2=0.678, r 2=0.914). The models built were further validated by a test set made up of seven compounds, leading to predictive r 2 values of 0.672 for CoMFA and 0.593 for CoMSIA. The study could be helpful for designing and prepare new category κ-agonists from orvinols.   相似文献   

14.
Comparative quantitative structure–activity relationship (QSAR) analyses of peptide deformylase (PDF) inhibitors were performed with a series of previously published (British Biotech Pharmaceuticals, Oxford, UK) reverse hydroxamate derivatives having antibacterial activity against Escherichia coli PDF, using 2D and 3D QSAR methods, comparative molecular field analysis (CoMFA), comparative molecular similarity indices analysis (CoMSIA), and hologram QSAR (HQSAR). Statistically reliable models with good predictive power were generated from all three methods (CoMFA r 2 = 0.957, q 2 = 0.569; CoMSIA r 2 = 0.924, q 2 = 0.520; HQSAR r 2 = 0.860, q 2 = 0.578). The predictive capability of these models was validated by a set of compounds that were not included in the training set. The models based on CoMFA and CoMSIA gave satisfactory predictive r 2 values of 0.687 and 0.505, respectively. The model derived from the HQSAR method showed a low predictability of 0.178 for the test set. In this study, 3D prediction models showed better predictive power than 2D models for the test set. This might be because 3D information is more important in the case of datasets containing compounds with similar skeletons. Superimposition of CoMFA contour maps in the active site of the PDF crystal structure showed a meaningful correlation between receptor–ligand binding and biological activity. The final QSAR models, along with information gathered from 3D contour and 2D contribution maps, could be useful for the design of novel active inhibitors of PDF. Figure Superimposition of comparative molecular field analysis (CoMFA) contour plot in the active site of peptide deformylase (PDF)  相似文献   

15.
Three-dimensional quantitative structure-activity relationship (3D-QSAR) analyses using CoMFA and CoMSIA methods were conducted on a series of fluoropyrrolidine amides as dipeptidyl peptidase IV (DP-IV) inhibitors. The selected ligands were docked into the binding site of the 3D model of DP-IV using the GOLD software, and the possible interaction models between DP-IV and the inhibitors were obtained. Based on the binding conformations of these fluoropyrrolidine amides and their alignment inside the binding pocket of DP-IV, predictive 3D-QSAR models were established by CoMFA and CoMSIA analyses, which had conventional r 2 and cross-validated coefficient values () up to 0.982 and 0.555 for CoMFA and 0.953 and 0.613 for CoMSIA, respectively. The predictive ability of these models was validated by six compounds that were in the testing set. Structure-based investigations and the final 3D-QSAR results provide the guide for designing new potent inhibitors.  相似文献   

16.
Pathogenic Gram-negative bacteria are responsible for nearly half of the serious human infections. Hologram quantitative structure–activity relationships (HQSAR), comparative molecular field analysis (CoMFA), and comparative molecular similarity index analysis (CoMSIA) were implemented on a group of 32 of potent Gram-negative LpxC inhibitors. The most effective HQSAR model was obtained using atoms, bonds, donor, and acceptor as fragment distinction. The cross-validated correlation coefficient (q2), non-cross-validated correlation coefficient (r2), and predictive correlation coefficient (r2Pred) for test set of HQSAR model were 0.937, 0.993, and 0.892, respectively. The generated models were found to be statistically significant as the CoMFA model had (r2?=?0.967, q2?=?0.804, r2Pred?=?0.827); the CoMSIA model had (r2?=?0.963, q2?=?0.752, r2Pred?=?0.857). Molecular docking was employed to validate the results of the HQSAR, CoMFA, and CoMSIA models. Based on the obtained information, six new LpxC inhibitors have been designed.  相似文献   

17.
3D-QSAR studies on the derivatives of 1-(3,3-diphenylpropyl)-piperidinyl amide and urea as CCR5 receptor antagonists were performed by comparative molecular field analysis (CoMFA) and comparative molecular similarity indices (CoMSIA) methods to rationalize the structural requirements responsible for the inhibitory activity of these compounds. The global minimum energy conformer of the template molecule, the most active and pharmacokinetically stable molecule of the series, was obtained by systematic search and used to build structures of the molecules in the dataset. The best predictions for the CCR5-receptor were obtained with the CoMFA standard model (q 2 = 0.787, r 2 = 0.962) and CoMSIA model combined steric, electrostatic and hydrophobic fields (q 2 = 0.809, r 2 = 0.951). The predictive ability of CoMFA and CoMSIA were determined using a test set of 12 compounds giving predictive correlation coefficients of 0.855 and 0.83, respectively, indicating good predictive power. Further, the robustness of the model was verified by bootstrapping analysis. The contour maps produced by the CoMFA and CoMSIA models were used to identify the structural features relevant to the biological activity in this series. Based on the CoMFA and CoMSIA analysis, we have identified some key features in the series that are responsible for CCR5 antagonistic activity which may be used to design more potent 1-(3,3-diphenylpropyl)-piperidinyl derivatives and predict their activity prior to synthesis. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
Human Coagulation Factor IXa (FIXa), specifically inhibited at the initiation stage of the blood coagulation cascade, is an excellent target for developing selective and safe anticoagulants. To explore this inhibitory mechanism, 86 FIXa inhibitors were selected to generate pharmacophore models and subsequently SAR models. Both best pharmacophore model and ROC curve were built through the Receptor–Ligand Pharmacophore Generation module. CoMFA model based on molecular docking and PLS factor analysis methods were developed. Model propagations values are q2?=?0.709, r2?=?0.949, and r2pred?=?0.905. The satisfactory q2 value of 0.609, r2 value of 0.962, and r2pred value of 0.819 for CoMSIA indicated that the CoMFA and CoMSIA models are both available to predict the inhibitory activity on FIXa. On the basis of pharmacophore modeling, molecular docking, and 3D-QSAR modeling screening, six molecules are screened as potential FIXa inhibitors.  相似文献   

19.
Phenols and its analogues are known to induce caspase-mediated apoptosis activity and cytotoxicity on various cancer cell lines. In the current work, two types of molecular field analysis techniques were used to perform the three dimension quantitative structure activity relationship (3D-QSAR) modeling between structural characters and anticancer activity of two sets of phenolic compounds, which are comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). Then two 3D-QSAR models for two sets of phenolic analogues were obtained with good results. The first QSAR model, which was derived from CoMFA for phenols with caspase-mediated apoptosis activity against L1210 cells, had good predictability (q 2 = 0.874, r 2 = 0.930), and the other one was derived from CoMSIA for electron-attracting phenols with cytotoxicity in L1210 cell (q 2 = 0.836, r 2 = 0.950). In addition, the CoMFA and CoMSIA contour maps provide valuable guidance for designing highly active phenolic compounds.  相似文献   

20.
The peroxisome proliferator-activated receptors (PPARs) have increasingly become attractive targets for developing novel anti-type 2 diabetic drugs. We employed comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) to study three-dimensional quantitative structure–activity relationship (3D QSAR) based on existing agonists of PPAR (including five thiazolidinediones and 74 tyrosine-based compounds). Predictive 3D QSAR models with conventional r2 and cross-validated coefficient (q2) values up to 0.974 and 0.642 for CoMFA and 0.979 and 0.686 for COMSIA were established using the SYBYL package. These models were validated by a test set containing 18 compounds. The CoMFA and CoMSIA field distributions are in general agreement with the structural characteristics of the binding pockets of PPAR, which demonstrates that the 3D QSAR models built here are very useful in predicting activities of novel compounds for activating PPAR.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号