首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 128 毫秒
1.
A series of curcumin inspired sulfonamide derivatives was prepared from various chalcones and 4-sulfamoyl benzaldehyde via Claisen–Schmidt condensation. All new compounds were assayed as inhibitors of four human isoforms of the metalloenzyme carbonic anhydrase (hCA, EC 4.2.1.1) isoforms hCA I, II, IX and XII. Interesting inhibitory activities were observed against all these isoforms. hCA I, an isoform involved in several eye diseases was inhibited moderately with KIs in the range of 191.8–904.2?nM, hCA II, an antiglaucoma drug target was highly inhibited by the new sulfonamides, with KIs in the range of 0.75–8.8?nM. hCA IX, a tumor-associated isoform involved in cancer progression and metastatic spread was potently inhibited by the new sulfonamides, with KIs in the range of 2.3–87.3?nM, whereas hCA XII, and antiglaucoma and anticancer drug target, was inhibited with KIs in the range of 6.1–71.8?nM. It is noteworthy that one of the new compounds, 5d, was found to be almost 9 times more selective against hCA II (KI =?0.89?nM) over hCA IX and hCA XII, whereas 5e was 3 and 70 times more selective against hCA II (KI =?0.75?nM) over hCA IX and hCA XII, respectively.  相似文献   

2.
Abstract

Inhibitory action of newly synthesised 4-(2-(2-substituted-thio-4-oxoquinazolin-3(4H)-yl)ethyl)benzenesulfonamides compounds 2–13 against human carbonic anhydrase (CA, EC 4.2.1.1) (hCA) isoforms I, II, IX, and XII, was evaluated. hCA I was efficiently inhibited by compounds 2–13 with inhibition constants (KIs) ranging from 57.8–740.2?nM. Compounds 2, 3, 4, and 12 showed inhibitory action against hCA II with KIs between 6.4 and 14.2?nM. CA IX exhibited significant sensitivity to inhibition by derivatives 2–13 with KI values ranging from 7.1 to 93.6?nM. Compounds 2, 3, 4, 8, 9, and 12 also exerted potent inhibitory action against hCA XII (KIs ranging from 3.1 to 20.2?nM). Molecular docking studies for the most potent compounds 2 and 3 were conducted to exhibit the binding mode towards hCA isoforms as a promising step for SAR analyses which showed similar interaction with co-crystallized ligands. As such, a subset of these mercaptoquinazolin-4(3H)-one compounds represented interesting leads for developing new efficient and selective carbonic anhydrase inhibitors (CAIs) for the management of a variety of diseases including glaucoma, epilepsy, arthritis and cancer.  相似文献   

3.
Abstract

7-Amino-3,4-dihydro-1H-quinolin-2-one, a compound structurally similar to coumarins, recently discovered class of inhibitors of the α-carbonic anhydrases (CAs, EC 4.2.1.1) was investigated for its interaction with all human (h) CA isoforms, hCA I-XIV. The compound was not an inhibitor of the cytosolic, widespread isoform hCA II (KI?>?10?µM), was a weak inhibitor of hCA I, III, IV, VA, VI and XIII (KIs in the range of 0.90–9.5?µM) but effectively inhibited the cytosolic isoform hCA VII (KI of 480?nM) as well as the transmembrane isoforms hCA IX, XII and XIV (KIs in the range of 16.1–510?nM). Against many CA isoforms this lactam was a better inhibitor compared to the structurally similar 4-methyl-7-aminocoumarin, but unlike this compound, the lactam ring was not hydrolyzed and the inhibition was due to the intact bicyclic amino-quinolinone scaffold. Bicyclic lactams strucurally related to coumarins are thus a new class of CA inhibitors possessing however a distinct inhibition mechanism compared to the coumarins which undergo a hydrolysis of their lactone ring for generating the enzyme inhibitory species.  相似文献   

4.
4-(3-(4-Substituted-phenyl)-5-phenyl-4,5-dihydro-1H-pyrazol-1-yl) benzenesulfonamides (9–16) were successfully synthesized and their chemical structures were confirmed by 1H NMR, 13C NMR, and HRMS spectra. Carbonic anhydrase I and II inhibitory effects of the compounds were investigated. Ki values of the compounds were in the range of 316.7?±?9.6–533.1?±?187.8?nM towards hCA I and 412.5?±?115.4–624.6?±?168.2?nM towards hCA II isoenzymes. While Ki values of the reference compound Acetazolamide were 278.8?±?44.3?nM and 293.4?±?46.4?nM towards hCA I and hCA II izoenzymes, respectively. Compound 14 with bromine and compound 13 with fluorine substituents can be considered as the leader compounds of the series because of the lowest Ki values in series to make further detailed carbonic anhydrase inhibiton studies.  相似文献   

5.
Carbonic anhydrases (CA, EC 4.2.1.1) are Zinc metalloenzymes and are present throughout most living organisms. Among the catalytically active isoforms are the cytosolic CA I and II, and tumor-associated CA IX and CA XII. The carbonic anhydrase (CA) inhibitory activities of newly synthesized pyrazoline-linked benzenesulfonamides 1833 against human CA (hCA) isoforms I, II, IX, and XII were measured and compared with that of acetazolamide (AAZ), a standard inhibitor. Potent inhibitory activity against hCA I was exerted by compounds 1825, with inhibition constant (KI) values of 87.8–244.1 nM, which were greater than that of AAZ (KI, 250.0 nM). Compounds 19, 21, 22, 29, 30, and 32 were proven to have inhibitory activities against hCA IX with KI values (5.5–37.0 nM) that were more effective than or nearly equal to that of AAZ (KI, 25.0 nM). Compounds 2022, and 30 exerted potent inhibitory activities (KIs, 7.1–10.1 nM) against hCA XII, in comparison with AAZ (KI, 5.7 nM).  相似文献   

6.
The conversion reactions of pyrimidine‐thiones with nucleophilic reagent were studied during this scientific research. For this purpose, new compounds were synthesized by the interaction between 1,2‐epoxy propane, 1,2‐epoxy butane, and 4‐chlor‐1‐butanol and pyrimidine‐thiones. These pyrimidine‐thiones derivatives ( A–K ) showed good inhibitory action against acetylcholinesterase (AChE), and human carbonic anhydrase (hCA) isoforms I and II. AChE inhibition was in the range of 93.1 ± 33.7–467.5 ± 126.9 nM. The hCA I and II were effectively inhibited by these compounds, with Ki values in the range of 4.3 ± 1.1–9.1 ± 2.7 nM for hCA I and 4.2 ± 1.1–14.1 ± 4.4 nM for hCA II. On the other hand, acetazolamide clinically used as CA inhibitor showed Ki value of 13.9 ± 5.1 nM against hCA I and 18.1 ± 8.5 nM against hCA II. The antioxidant activity of the pyrimidine‐thiones derivatives ( A–K ) was investigated by using different in vitro antioxidant assays, including Cu2+ and Fe3+ reducing, 1,1‐diphenyl‐2‐picrylhydrazyl (DPPH?) radical scavenging, and Fe2+ chelating activities.  相似文献   

7.
A series of N-cyanomethyl aromatic sulfonamides and bis-sulfonamides was prepared by reaction of arylsulfonyl halides with aminoacetonitrile. The obtained derivatives incorporated various aryl moieties, such as 4-halogeno/alkyl/aryl/nitro-substituted-phenyl, pentafluorophenyl or 2-naphthyl. Moderate inhibitory activity was detected for some compounds against the cytosolic human isoform II of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1), hCA II, with inhibition constants of 90, 180 and 560 nM for the 4-nitrophenyl-, 4-iodophenyl- and pentafluorophenyl-N-cyanomethylsulfonamides, respectively. Other derivatives acted as weak inhibitors of isoforms hCA I (KIs of 720 nM–45 μM), hCA II (KIs of 1000–9800 nM) and hCA IX (KIs of 900–10200 nM). Thus, the N-cyanomethylsulfonamide zinc binding group is less effective than the sulfonamide, sulfamate or sulfamide ones for the design of effective CA inhibitors.  相似文献   

8.
A series of 1,3‐bis‐chalcone derivatives ( 3a‐i, 6a‐i and 8 ) were synthesized and evaluated antimicrobial, antibiofilm and carbonic anhydrase inhibition activities. In this evaluation, 6f was found to be the most active compound showing the same effect as the positive control against Bacillus subtilis and Streptococcus pyogenes in terms of antimicrobial activity. Biofilm structures formed by microorganisms were damaged by compounds at the minimum inhibitory concentration value between 0.5% and 97%.1,3‐bis‐chalcones ( 3a‐i, 6a‐i and 8 ) showed good inhibitory action against human (h) carbonic anhydrase (CA) isoforms I and II. hCA I and II were effectively inhibited by these compounds, with K i values in the range of 94.33 ± 13.26 to 787.38 ± 82.64 nM for hCA I, and of 100.37 ± 11.41 to 801.76 ± 91.11 nM for hCA II, respectively. In contrast, acetazolamide clinically used as CA inhibitor showed K i value of 1054.38 ± 207.33 nM against hCA I, and 983.78 ± 251.08 nM against hCA II, respectively.  相似文献   

9.
A series of novel sulphonamide derivatives was obtained from sulphanilamide which was N4-alkylated with ethyl bromoacetate followed by reaction with hydrazine hydrate. The hydrazide obtained was further reacted with various aromatic aldehydes. The novel sulphonamides were characterised by infrared, mass spectrometry, 1H- and 13C-NMR and purity was determined by high-performance liquid chromatography (HPLC). Human (h) carbonic anhydrase (CA, EC 4.2.1.1) isoforms hCA I and II and Mycobacterium tuberculosis β-CA encoded by the gene Rv3273 (mtCA 3) inhibition activity was investigated with the synthesised compounds which showed promising inhibition. The KIs were in the range of 54.6?nM–1.8?µM against hCA I, in the range of 32.1?nM–5.5?µM against hCA II and of 127?nM–2.12?µM against mtCA 3.  相似文献   

10.
A practical and transition metal-free one-pot domino synthesis of diversified (1,3,4-oxadiazol-2-yl)anilines has been developed employing isatins and hydrazides as the starting materials, in the presence of molecular iodine. The prominent feature of this domino process involves consecutive condensation, hydrolytic ring cleavage, and an intramolecular decarboxylation, in a one-pot process that leads to the oxidative formation of a C–O bond. Fluorescence properties of some of the representative molecules obtained in this way were studied. The synthesised 2-(1,3,4-oxadiazolo-2-yl)aniline-benzene sulphonamides (8ao) were screened for their carbonic anhydrase (CA, EC 4.2.1.1) inhibitory activity. Most of the compounds exhibited low micromolar to nanomolar activity against human (h) isoforms hCA I, hCA II, hCA IV, and XII, with some compounds displaying selective CA inhibitory activity towards hCA II with KIs of 6.4–17.6?nM.  相似文献   

11.
A new series of s-triazine derivatives incorporating sulfanilamide, homosulfanilamide, 4-aminoethyl-benzenesulfonamide and piperazine or aminoalcohol structural motifs is reported. Molecular docking was exploited to select compounds from virtual combinatorial library for synthesis and subsequent biological evaluation. The compounds were prepared by using step by step nucleophilic substitution of chlorine atoms from cyanuric chloride (2,4,6-trichloro-1,3,5-triazine). The compounds were tested as inhibitors of physiologically relevant carbonic anhydrase (CA, EC 4.2.1.1) isoforms. Specifically, against the cytosolic hCA I, II and tumor-associated hCA IX. These compounds show appreciable inhibition. hCA I was inhibited with KIs in the range of 8.5–2679.1 nM, hCA II with KIs in the range of 4.8–380.5 nM and hCA IX with KIs in the range of 0.4–307.7 nM. As other similar derivatives, some of the compounds showed good or excellent selectivity ratios for inhibiting hCA IX over hCA II, of 3.5–18.5. 4-[({4-Chloro-6-[(4-hydroxyphenyl)amino]-1,3,5-triazin-2-yl}amino)methyl] benzene sulfonamide demonstrated subnanomolar affinity for hCA IX (0.4 nM) and selectivity (18.50) over the cytosolic isoforms. This series of compounds may be of interest for the development of new, unconventional anticancer drugs targeting hypoxia-induced CA isoforms such as CA IX.  相似文献   

12.
In an attempt to identify potential active anticancer agents with low cytotoxic properties and CA inhibitors, a new series of hybrid compounds incorporating imidazole ring and hydrazone moiety as part of their structure were synthesized by aza-Michael addition reaction followed by intramolecular cyclization. The structure of synthesized compounds was elucidated using various spectral techniques. Synthesized compounds were evaluated for their in vitro anticancer (prostate cell lines; PC3) and CA inhibitory (hCA I and hCA II) activity. Among them, some compound displayed remarkable anticancer activity and CA inhibitory activity with Ki values in range of 17.53±7.19–150.50±68.87 nM against cytosolic hCA I isoform associated with epilepsy, and 28.82±14.26–153.27±55.80 nM against dominant cytosolic hCA II isoforms associated with glaucoma. Furthermore, the theoretical parameters of the bioactive molecules were calculated to establish their drug-likeness qualities. The proteins used for the calculations are prostate cancer protein (PDB ID: 3RUK and 6XXP). ADME/T analysis was carried out to examine the drug properties of the studied molecules.  相似文献   

13.
Abstract

The inhibition of two human cytosolic carbonic anhydrase (hCA, EC 4.2.1.1) isozymes I and II, with some 3,4-dihydroxypyrrolidine-2,5-dione and 3,5-dihydroxybenzoic acid derivatives, were investigated by using the esterase assay, with 4-nitrophenyl acetate (4-NPA) as substrate. Compounds 1013 showed KI values in the range of 112.7–441.5?μM for hCA I and of 3.5–10.76?μM against hCA II, respectively. These hydroxyl group containing compounds generally were competitive inhibitors. Some hydroxyl group containing compounds investigated here showed effective hCA II inhibitory effects, in the same range as the clinically used sulfonamide acetazolamide, and might be used as leads for generating enzyme inhibitors possibly targeting other CA isoforms which have not been yet assayed for their interactions with such agents.  相似文献   

14.
A series of aromatic/heterocyclic sulfonamides incorporating phenyl(alkyl), halogenosubstituted-phenyl- or 1,3,4-thiadiazole-sulfonamide moieties and thienylacetamido; phenacetamido- and pyridinylacetamido tails were prepared and assayed as inhibitors of cytosolic human carbonic anhydrase (hCA, EC 4.2.1.1) isoforms hCA I, II and VII. The new compounds showed moderate inhibition of the two ubiquitous isoforms I and II (KIs of 50–390 nM) and excellent inhibitory activity against the brain associated hCA VII (KIs in the range of 4.7–8.5 nM). Isoform VII highly selective inhibitors are being detected for the first time, with selectivity ratios for inhibiting CA VII over CA II of 11–75, and for inhibiting CA VII over CA I of 10–49, which may be useful for understanding the role of CA VII in epileptogenesis and other physiologic processes.  相似文献   

15.
Abstract

In this study, newly synthesised compounds 6, 8, 10 and other compounds (1–5, 7 and 9) and their inhibitory properties against the human isoforms hCA I and hCA II were reported for the first time. Compounds 1–10 showed effective inhibition profiles with K I values in the range of 5.13–16.9?nM for hCA I and of 11.77–67.39?nM against hCA II, respectively. Molecular docking studies were also performed with Glide XP to get insight into the inhibitory activity and to evaluate the binding modes of the synthesised compounds to hCA I and II. More rigorous binding energy calculations using MM-GBSA protocol which agreed well with observed activities were then performed to improve the docking scores. Results of in silico calculations showed that all compounds obey drug likeness properties. The new compounds reported here might be promising lead compounds for the development of new potent inhibitors as alternatives to classical hCA inhibitors.  相似文献   

16.
The synthesis of (Z)-4-oxo-4-(arylamino)but-2-enoic acid (4) derivatives containing structural characteristics that can be used for the synthesis of several active molecules, is presented. Some of the butenoic acid derivatives (4a, 4c, 4e, 4i, 4j, 4k) are synthesized following literature procedures and at the end of the reaction. In addition, structures of all synthesized derivatives (4a4m) were determined by 1H-NMR, 13C-NMR and IR spectroscopy. Carbonic anhydrase is a metalloenzyme involved in many crucial physiologic processes as it catalyzes a simple but fundamental reaction, the reversible hydration of carbon dioxide to bicarbonate and protons. Significant results were obtained by evaluating the enzyme inhibitory activities of these derivatives against human carbonic anhydrase hCA I and II isoenzymes (hCA I and II). Butenoic acid derivatives (4a4m) strongly inhibited hCA I and II with Kis in the low nanomolar range of 1.85?±?0.58 to 5.04?±?1.46?nM against hCA I and in the range of 2.01?±?0.52 to 2.94?±?1.31?nM against hCA II.  相似文献   

17.
In this study, we have synthesised (3,4-dihydroxyphenyl)(2,3,4-trihydroxyphenyl)methanone and a series of its derivatives (5, 13–16) and tested the ability of these compounds to inhibit two metalloenzyme human carbonic anhydrase (hCA, EC 4.2.1.1) isozymes, hCA I and hCA II. The synthesised compounds showed inhibitory effect on hCA I and hCA II isozymes. The results showed that synthesised compounds (5, 13–16) demonstrated the best inhibition activity against hCA I (IC50: 3.22–54.28 μM) and hCA II (IC50: 18.52–142.01 μM). The compound 14 showed the highest inhibiton effect against hCA I (IC50: 3.22 μM; Ki: 1.19?±?1.4 μM). On the other hand, the compound 13 showed the highest inhibiton effect against hCA II (IC50: 18.52 μM; Ki: 3.25?±?1.13 μM).  相似文献   

18.
The synthesis, characterization and biological evaluation of series of cyclic imides incorporating the 4-sulfamoylbenzamide scaffold (1629) is disclosed. The compounds were designed by application of the “tail approach” to the aromatic sulfonamide scaffold and prepared by reacting the proper acid anhydride with 4-(hydrazinecarbonyl)benzenesulfonamide (15). Phtalimides and cyclic imides are biologically privileged scaffolds, endowed with versatile biological activity, such as an anti-proliferative action. The compounds were investigated for the inhibition of four human (h) isoforms of zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1), and more specifically against the cytosolic hCA I and II and the transmembrane hCA IV and IX. Most screened sulfonamides exhibited great potency in inhibiting CA isoforms II, widely involved in glaucoma and other pathologies (KIs in the range of 0.7–62.3 nM), and IX, that is a validated anti-tumor target (KIs in the range of 3.0–50.9 nM), whereas interesting hydrophilicity-dependent inhibitory profiles were measured against isoform CA IV (KIs in the range of 3.9–428.6 nM). In silico studies were carried out to assess the binding mode of selected derivatives to hCA II, IV and IX.  相似文献   

19.
N-Protected amino acids (Gly, Ala and Phe) were reacted with amino substituted coumarin and quinolinone derivatives, leading to the corresponding N-protected amino acid–coumarin/quinolinone conjugates. The carbonic anhydrase (CA, EC 4.2.1.1) inhibitory activity of the new compounds was assessed against various human (h) isoforms, such as hCA I, hCA II, hCA IV and hCA XII. The quinolinone conjugates were inactive as enzyme inhibitors, whereas the coumarins were ineffective hCA I/II inhibitors (KIs?>?50?μM) but were submicromolar hCA IV and XII inhibitors, with inhibition constants ranging between 92?nM and 1.19?μM for hCA IV, and between 0.11 and 0.79?μM for hCA XII. These coumarin derivatives, as many others reported earlier, thus show an interesting selective inhibitory profile for the membrane-bound over the cytosolic CA isoforms.  相似文献   

20.
A series of 4-(thiazol-2-ylamino)-benzenesulfonamides was synthesized and screened for their carbonic anhydrase (CA, EC 4.2.1.1) inhibitory and cytotoxic activity on human breast cancer cell line MCF-7. Human (h) CA isoforms I, II and IX were included in the study. The new sulfonamides showed excellent inhibition of all three isoforms, with KIs in the range of 0.84–702 nM against hCA I, of 0.41–288 nM against hCA II and of 5.6–29.2 against the tumor-associated hCA IX, a validated anti-tumor target, with a sulfonamide (SLC-0111) in Phase I clinical trials for the treatment of hypoxic, metastatic solid tumors overexpressing CA IX. The new compounds showed micromolar inhibition of growth efficacy against breast cancer MCF-7 cell lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号