首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Retinoic acid is considered to be the active metabolite of retinol, able to control differentiation and proliferation of epithelia. Retinoic acid biosynthesis has been widely described with the implication of multiple enzymatic activities. However, our understanding of the cell biological function and regulation of this process is limited. In a recent study we evidenced that milk xanthine oxidase (E.C. 1.17.3.2.) is capable to oxidize all-trans-retinol bound to CRBP (holo-CRBP) to all-trans-retinaldehyde and then to all-trans-retinoic acid. To get further knowledge regarding this process we have evaluated the biosynthetic pathway of retinoic acid in a human mammary epithelial cell line (HMEC) in which xanthine dehydrogenase (E.C. 1.17.1.4.), the native form of xanthine oxidase, is expressed. Here we report the demonstration of a novel retinol oxidation pathway that in the HMEC cytoplasm directly conduces to retinoic acid. After isolation and immunoassay of the cytosolic protein showing retinol oxidizing activity we identified it with the well-known enzyme xanthine dehydrogenase. The NAD+ dependent retinol oxidation catalyzed by xanthine dehydrogenase is strictly dependent on cellular retinol binding proteins and is inhibited by oxypurinol. In this work, a new insight into the biological role of xanthine dehydrogenase is given.  相似文献   

2.
A new method of high-performance liquid chromatography (HPLC) analysis to quantify isomers of retinol, retinal and retinoic acid simultaneously was established. The HPLC system consisted of a silica gel absorption column and a linear gradient with two kinds of solvents containing n-Hexane, 2-propanol, and glacial acetic acid in different ratios. It separated six retinoic acid isomers (13-cis, 9-cis, all-trans, all-trans-4-oxo, 9-cis-4-oxo, 13-cis-4-oxo), three retinal isomers (13-cis-, 9-cis-, and all-trans) and two retinol isomers (13-cis- and all-trans). Human serum samples were subjected to this HPLC analysis and at least, all-trans retinol, 13-cis retinol, and all-trans retinoic acid were detectable. This HPLC system is useful for evaluating retinoic acid formation from retinol via a two-step oxidation pathway. Moreover, it could be applied to monitoring the concentrations of various retinoids, including all-trans retinoic acid in human sera.  相似文献   

3.
Abstract

Retinoic acid is regarded as the retinol metabolite that controls proliferation and differentiation of epithelial cells. In the present study, we investigated the potential role of xanthine dehydrogenase (XDH) in retinoic acid biosynthesis in human thyroid glandular cells (HTGC). In particular, we observed that cellular retinoids binding proteins (CRBPs) are also implicated in the biosynthetic pathway leading to retinoic acid formation in primary cultures of HTGC, as we have already reported for human mammary epithelial cells (HMEC). After partial protein purification, the enzyme responsible for retinoic acid biosynthesis was identified and quantified as XDH by immunoassay, by its ability to oxidize xanthine to uric acid and its sensitivity to the inhibitory effect of oxypurinol. The evidence of XDH-driven formation of retinoic acid in HTGC cultures further corroborates the potential role of XDH in retinoic acid biosynthesis in the epithelia.  相似文献   

4.
5.
Mouse ADH4 (purified, recombinant) has a low catalytic efficiency for ethanol and acetaldehyde, but very high activity with longer chain alcohols and aldehydes, at pH 7.3 and temperature 37°C. The observed turnover numbers and catalytic efficiencies for the oxidation of all-trans-retinol and the reduction of all-trans-retinal and 9-cis-retinal are low relative to other substrates; 9-cis-retinal is more reactive than all-trans-retinal. The reduction of all-trans- or 9-cis-retinals coupled to the oxidation of ethanol by NAD+ is as efficient as the reduction with NADH. However, the Michaelis constant for ethanol is about 100 mM, which indicates that the activity would be lower at physiologically relevant concentrations of ethanol. Simulations of the oxidation of retinol to retinoic acid with mouse ADH4 and human aldehyde dehydrogenase (ALDH1), using rate constants estimated for all steps in the mechanism, suggest that ethanol (50 mM) would modestly decrease production of retinoic acid. However, if the Km for ethanol were smaller, as for human ADH4, the rate of retinol oxidation and formation of retinoic acid would be significantly decreased during metabolism of 50 mM ethanol. These studies begin to describe quantitatively the roles of enzymes involved in the metabolism of alcohols and carbonyl compounds.  相似文献   

6.
Liver alcohol dehydrogenase (E.C.1.1.1.1) is an NAD+/NADH dependent enzyme with a broad substrate specificity being active on an assortment of primary and secondary alcohols. It catalyzes the reversible oxidation of a wide variety of alcohols to the corresponding aldehydes and ketones as well as the oxidation of certain aldehydes to their related carboxylic acids. Although the bioinorganic and bioorganic aspects of the enzymatic mechanism, as well as the structures of various ternary complexes, have been extensively studied, the kinetic significance of certain intermediates has not been fully evaluated. Nevertheless, the availability of computer-assisted programs for kinetic simulation and molecular modeling make it possible to describe the biochemical mechanism more completely. Although the true physiological substrates of this zinc metalloenzyme are unknown, alcohol dehydrogenase effectively catalyzes not only the interconversion of all-trans-retinol and all-trans-retinal but also the oxidation of all-trans-retinal to the corresponding retinoic acid. Retinal and related vitamin A derivatives play fundamental roles in many physiological processes, most notably the vision process. Furthermore, retinoic acid is used in dermatology as well as in the prevention and treatment of different types of cancer. The enzyme-NAD+-retinol complex has an apparent pKa value of 7.2 and loses a proton rapidly. Proton inventory modeling suggests that the transition state for the hydride transfer step has a partial negative charge on the oxygen of retinoxide. Spectral evidence for an intermediate such as E-NAD+-retinoxide was obtained with enzyme that has cobalt(II) substituted for the active site zinc(II). Biophysical considerations of water in these biological processes coupled with the inverse solvent isotope effect lead to the conclusion that the zinc-bound alkoxide makes a strong hydrogen bond with the hydroxyl group of Ser48 and is thus activated for hydride transfer. Moderate pressure accelerates enzyme action indicative of a negative volume of activation. The data with retinol is discussed in terms of enzyme stability, mechanism, adaptation to extreme conditions, as well as water affinities of substrates and inhibitors. Our data concern all-trans, 9-cis, 11-cis, and 13-cis retinols as well as the corresponding retinals. In all cases the enzyme utilizes an approximately ordered mechanism for retinol–retinal interconversion and for retinal–retinoic acid transformation.  相似文献   

7.
8.
9.
Experimental evidence indicates that the major pathway of retinoic acid metabolism in hamster liver microsomes follows the sequence: retinoic acid → 4-hydroxy-retinoic acid → 4-keto-retinoic acid → more polar metabolites. Using all-trans-[10-3H]retinoic acid, it can be shown by reverse-phase high pressure liquid chromatographic analysis that the first and last steps of this sequence require NADPH, whereas the oxidation of 4-hydroxy to 4-keto-retinoic acid is NAD+ (or NADP+) dependent. Both NADPH-dependent steps, but not the NAD+-dependent dehydrogenase reaction, are strongly inhibited by carbon monoxide. The metabolism of retinoic acid but not of 4-hydroxy-retinoic acid is highly dependent on the vitamin A regimen of the animal. Retinoic acid is rapidly metabolized by liver microsomes either from vitamin A-normal hamsters or from vitamin A-deficient hamsters that have been pretreated with retinoic acid, but not by microsomes from vitamin A-deficient animals; in direct contrast, the rate of metabolism of 4-hydroxy-retinoic acid is equivalent in each of these microsomal preparations. Analysis of the kinetics of these reactions yields the following Michaelis constants with respect to the retinoid substrates: retinoic acid, 1 × 10?6m; 4-hydroxy-retinoic acid, 2 × 10?5m; and 4-keto-retinoic acid, 1 × 10?7m. The 4-hydroxy to 4-keto-retinoic acid oxidation has been shown to be experimentally irreversible, to have a KmNAD+of 2 × 10?5m, to be strongly inhibited by NADH, and to be unaffected by the presence of retinoic acid or its 4-keto-derivative in an equimolar ratio to the 4-hydroxy-substrate.  相似文献   

10.
Several studies have suggested that vitamin A (retinol, ROH) presents pro-oxidant properties in biological systems. Recent studies point out that xantine oxidase, a ROS-generating enzyme, catalyses ROH oxidation to RA in vitro. These works stimulated the authors to investigate whether xanthine oxidase could be involved on the ROH pro-oxidative effects reported in cultured Sertoli cells. In vitro, it was demonstrate that xanthine oxidase generates superoxide in the presence of ROH as assessed by superoxide mediated-NBT reduction. Superoxide production is potentiated in the presence of NADH and inhibited by allopurinol. In Sertoli cells, ROH treatment increased xanthine oxidase activity and inhibition of the enzyme with allopurinol attenuated ROH-induced ROS production, protein damage and cytotoxicity. Moreover, inhibition of ROH oxidation to RA by retinaldehyde dehydrogenase inhibitor potentiated both xanthine oxidase-dependent ROS production and cell damage in ROH-treated cells. The data show that xanthine oxidase may play a role on vitamin A pro-oxidant effects.  相似文献   

11.
Milk xanthine oxidase (xanthine: oxygen oxidore-ductase; XO; EC 1.1.3.22) was found to catalyze the conversion of retinaldehyde to retinoic acid. The ability of XO to synthesize all trans-retinoic acid efficiently was assessed by its turnover number of 31.56 min?1, determined at pH 7.0 with 1nM XO and all trans-retinaldehyde varying between 0.05 to 2μM. The determination of both retinoid and purine content in milk was also considered in order to correlate their concentrations with kinetic parameters of retinaldehyde oxidase activity. The velocity of the reaction was dependent on the isomeric form of the substrate, the all trans- and 9-cis-forms being the preferred substrates rather than 13-cis-retinaldehyde. The enzyme was able to oxidize retinaldehyde in the presence of oxygen with NAD or without NAD addition. In this latter condition the catalytic efficiency of the enzyme was higher. The synthesis of retinoic acid was inhibited 87% and 54% by 4μM and 2μM allopurinol respectively and inhibited 48% by 10 μM xanthine in enzyme assays performed at 2μM all trans-retinaldehyde. The Ki value determined for xanthine as an inhibitor of retinaldehyde oxidase activity was 4 μM.  相似文献   

12.
Specific assays, based on gas chromatography-mass spectrometry and high-performance liquid chromatography, were used to quantify the conversion of retinol and retinal into retinoic acid by the pig kidney cell line LLC-PK1. Retinoic acid synthesis was linear for 2-4 h as well as with graded amounts of either substrate to at least 50 microM. Retinoic acid concentrations increased through 6-8 h, but decreased thereafter because of substrate depletion (t1/2 of retinol = 13 h) and product metabolism (1/2 = 2.3 h). Retinoic acid metabolism was accelerated by treating cells with 100 nM retinoic acid for 10 h (t1/2 = 1.7 h) and was inhibited by the antimycotic imidazole ketoconazole. Feedback inhibition was not indicated since retinoic acid up to 100 nM did not inhibit its own synthesis. Retinol dehydrogenation was rate-limiting. The reduction and dehydrogenation of retinal were 4-8-fold and 30-60-fold faster, respectively. Greater than 95% of retinol was converted into metabolites other than retinoic acid, whereas the major metabolite of retinal was retinoic acid. The synthetic retinoid 13-cis-N-ethylretinamide inhibited retinoic acid synthesis, but 4-hydroxylphenylretinamide did not. 4'-(9-Acridinylamino)methanesulfon-m-anisidide, an inhibitor of aldehyde oxidase, and ethanol did not inhibit retinoic acid synthesis. 4-Methylpyrazole was a weak inhibitor: disulfiram was a potent inhibitor. These data indicate that retinol dehydrogenase is a sulfhydryl group-dependent enzyme, distinct from ethanol dehydrogenase. Homogenates of LLC-PK1 cells converted retinol into retinoic acid and retinyl palmitate and hydrolyzed retinyl palmitate. This report suggests that substrate availability, relative to enzyme activity/amount, is a primary determinant of the rate of retinoic acid synthesis, identifies inhibitors of retinoic acid synthesis, and places retinoic acid synthesis into perspective with several other known pathways of retinoid metabolism.  相似文献   

13.
All-trans-retinoic acid (all-trans-RA) and 13-cis-retinoic acid (13-cis-RA), due to their effects on cell differentiation, proliferation and angiogenesis, improved treatment results in some malignancies. Pharmacokinetic studies of all-trans-RA and 13-cis-RA along with monitoring of retinoic acid metabolites may help to optimize retinoic acid therapy and to develop new effective strategies for the use of retinoic acids in cancer treatment. Therefore, we developed a HPLC method for the simultaneous determination in human plasma of the physiologically important retinoic acid isomers, all-trans-, 13-cis- and 9-cis-retinoic acid, their 4-oxo metabolites, 13-cis-4-oxoretinoic acid (13-cis-4-oxo-RA) and all-trans-4-oxoretinoic acid (all-trans-4-oxo-RA), and vitamin A (all-trans-retinol). Analysis performed on a silica gel column with UV detection at 350 nm using a binary multistep gradient composed on n-hexane, 2-propanolol and glacial acetic acid. For liquid-liquid extraction a mixture of n-hexane, dichloromethane and 2-propanolol was used. The limits of detection were 0.5 ng/ml for retinoic acids and 10 ng/ml for all-trans-retinol. The method showed good reproducibility for all components (within-day C.V.: 3.02–11.70%; day-to-day C.V.: 0.01–11.34%. Furthermore, 9-cis-4-oxoretinoic acid (9-cis-4-oxo-RA) is separated from all-trans-4-oxo-RA and 13-cis-4-oxo-RA. In case of clinical use of 9-cis-retinoic acid (9-cis-RA) the pharmacokinetics and metabolism of this retinoic acid isomer can also be examined.  相似文献   

14.
The biological activity of various natural retinoids and the time "window" when vitamin A activity is required for normal cardiovascular development were examined in vitamin A-deprived Japanese quail embryos. The administration of 1 μg of retinol at the beginning of incubation resuited in normal cardiovascular development in 97% of embryos; retinoic acid was toxic at this dose level. Treatment of embryos with 0.1 μg of all-trans-retinol or 13-cis-retinoic acid at the beginning of incubation resulted in normal cardiovascular development in 47 and 12% of embryos, respectively; administration of these retinoids at other time points attenuated the percentage of embryos with normal cardiovascular development. Didehydroretinol, 0.1 μg, and 9-cis-retinoic acid, 0.1 μg, were inactive at all time points examined; 9-cis-retinoic acid did not enhance the biological activity of all-trans-retinoic acid. All-trans-retinoic acid, 0.1 μg, administered during 22-28 hr of incubation induced normal cardiovascular development in 20-34% of embryos; biological activity was optimal when it was administered at 24 hr. All retinoids tested were inactive in establishing normal cardiovascular development when administered at 36 hr of incubation or later. The studies suggest that all-trans-retinoic acid is the biologically active form of vitamin A required for normal cardiovascular development in the avian embryo. There is a critical time point within the first 22-28 hr of quail embryogenesis when all-trans-retinoic acid initiates events that lead to normal cardiovascular development.  相似文献   

15.
Retinoic acid is generated by a two-step mechanism. First, retinol is converted into retinal by a retinol dehydrogenase, and, subsequently, retinoic acid is formed by a retinal dehydrogenase. In vitro, several enzymes are suggested to act in this metabolic pathway. However, little is known regarding their capacity to contribute to retinoic acid biosynthesis in vivo. We have developed a versatile cell reporter system to analyze the role of several of these enzymes in 9-cis-retinoic acid biosynthesis in vivo. Using a Gal4-retinoid X receptor fusion protein-based luciferase reporter assay, the formation of 9-cis-retinoic acid from 9-cis-retinol was measured in cells transfected with expression plasmids encoding different combinations of retinol and retinal dehydrogenases. The results suggested that efficient formation of 9-cis-retinoic acid required co-expression of retinol and retinal dehydrogenases. Interestingly, the cytosolic alcohol dehydrogenase 4 failed to efficiently catalyze 9-cis-retinol oxidation. A structure-activity analysis showed that mutants of two retinol dehydrogenases, devoid of the carboxyl-terminal cytoplasmic tails, displayed greatly reduced enzymatic activities in vivo, but were active in vitro. The cytoplasmic tails mediate efficient endoplasmic reticulum localization of the enzymes, suggesting that the unique milieu in the endoplasmic reticulum compartment is necessary for in vivo activity of microsomal retinol dehydrogenases.  相似文献   

16.
Retinoic acid is essential for skin growth and differentiation, and its concentration in skin is controlled tightly. In humans, four different members of the short-chain dehydrogenase/reductase (SDR) superfamily of proteins were proposed to catalyze the rate-limiting step in the biosynthesis of retinoic acid (the oxidation of retinol to retinaldehyde). Epidermis contains at least three of these enzymes, but their relative importance for retinoic acid biosynthesis and regulation of gene expression during growth and differentiation of epidermis is not known. Here, we investigated the effect of the four human SDRs on retinoic acid biosynthesis, and their impact on growth and differentiation of keratinocytes using organotypic skin raft culture model of human epidermis. The results of this study demonstrate that ectopic expression of retinol dehydrogenase 10 (RDH10, SDR16C4) in skin rafts dramatically increases proliferation and inhibits differentiation of keratinocytes, consistent with the increased steady-state levels of retinoic acid and activation of retinoic acid-inducible genes in RDH10 rafts. In contrast, SDRs with dual retinol/sterol substrate specificity, namely retinol dehydrogenase 4 (RoDH4, SDR9C8), RoDH-like 3α-hydroxysteroid dehydrogenase (RL-HSD, SDR9C6), and RDH-like SDR (RDHL, SDR9C4) do not affect the expression of retinoic acid-inducible genes but alter the expression levels of several components of extracellular matrix. These results reveal essential differences in the metabolic contribution of RDH10 versus retinol/sterol dehydrogenases to retinoic acid biosynthesis and provide the first evidence that non-retinoid metabolic products of retinol/sterol dehydrogenases affect gene expression in human epidermis.  相似文献   

17.
Retinoic acid biosynthesis in vertebrates occurs in two consecutive steps: the oxidation of retinol to retinaldehyde followed by the oxidation of retinaldehyde to retinoic acid. Enzymes of the MDR (medium-chain dehydrogenase/reductase), SDR (short-chain dehydrogenase/reductase) and AKR (aldo-keto reductase) superfamilies have been reported to catalyse the conversion between retinol and retinaldehyde. Estimation of the relative contribution of enzymes of each type was difficult since kinetics were performed with different methodologies, but SDRs would supposedly play a major role because of their low K(m) values, and because they were found to be active with retinol bound to CRBPI (cellular retinol binding protein type I). In the present study we employed detergent-free assays and HPLC-based methodology to characterize side-by-side the retinoid-converting activities of human MDR [ADH (alcohol dehydrogenase) 1B2 and ADH4), SDR (RoDH (retinol dehydrogenase)-4 and RDH11] and AKR (AKR1B1 and AKR1B10) enzymes. Our results demonstrate that none of the enzymes, including the SDR members, are active with CRBPI-bound retinoids, which questions the previously suggested role of CRBPI as a retinol supplier in the retinoic acid synthesis pathway. The members of all three superfamilies exhibit similar and low K(m) values for retinoids (0.12-1.1 microM), whilst they strongly differ in their kcat values, which range from 0.35 min(-1) for AKR1B1 to 302 min(-1) for ADH4. ADHs appear to be more effective retinol dehydrogenases than SDRs because of their higher kcat values, whereas RDH11 and AKR1B10 are efficient retinaldehyde reductases. Cell culture studies support a role for RoDH-4 as a retinol dehydrogenase and for AKR1B1 as a retinaldehyde reductase in vivo.  相似文献   

18.
Retinal oxidase (retinoic acid synthase) (EC 1.2.3.11) was purified electrophoretically, as a single protein band, from rabbit liver cytosol. The characteristic properties, enzymatic reaction mechanism, substrate specificity and kinetic parameters for retinals and molecular oxygen of the retinal oxidase were investigated. The Km values for all-trans-retinal of the retinal of the retinal oxidase was the lowest than those for the other retinal derivatives. The retinal oxidase is a metalloflavoenzyme containing 2 FADs as the coenzyme, and 8 irons, 2 molybdenums,2 disulfide bonds and 8 inorganic sulfurs. Its relative molecular mass was determined to be 270 kDa by gel filtration HPLC on a TSKgel G3000swXL column. Its minimum molecular mass was estimated to be 135 kDa by SDS-PAGE. The optical spectrum of the retinal oxidase showed absorption peaks at 275, 340 and 450 nm, and shoulders at 420 and 473 nm, in the oxidized form. The molecular extinction coefficients of the oxidase at selected wavelengths were determined. Circular dichroism spectra of the retinal oxidase were measured in the ultraviolet and visible regions. These spectra showed positive absorption in the visible region. The amino-acid composition was determined. The activity of the oxidase was not affected by any cofactors, such as NADP+, NAD+, NADPH and NADH, and it did not occur under anaerobic conditions. The oxidase was not inhibited by BOF-4272, a potent inhibitor of xanthine dehydrogenase, or rat anti-xanthine dehydrogenase IgG. Experiments on retinoic acid formation under 18O2 or H218O demonstrated that the oxygen of waer was incorporated into retinoic acid by the retinal oxidase, but not molecular oxygen.  相似文献   

19.
All-trans retinoyl fluoride was prepared by treating all-trans retinoic acid with diethylaminosulfurtrifluoride. The crystalline product, which was characterized by melting point, infrared, 1H-NMR, 19F-NMR and elementary analysis, showed λmax at 382 nm in hexane (ε = 4.98·104 M?1·cm?1) and at 392 nm in methanol (ε = 4.60·104 M?1·cm?1). Its biological activity in the rat growth assay, relative to all-trans retinyl acetate, was 22% ± 10%. Upon oral administration for 5 days to vitamin A-depleted rats, retinoyl fluoride (1020 μg) was rapidly metabolized to a polar metabolite fraction and, in the intestine, to an unstable retinol-like metabolite, purpotedly 15-fluororetinol. Upon administering intraperitoneally smaller doses (47–94 μg) of [11-3H]retinoyl fluoride, which was synthesized from [11-3H] retinoic acid, radioactive retinoic acid was noted in the liver and plasma but not in the intestine. As expected, a radioactive polar fraction appeared in the intestine and liver, but radioactive retinol, retinyl ester and some common oxidation products were not detected. Of the administered radioactivity, 72% was excreted in the urine, and only 4% was found in the feces over a 7-day period. Hydrolysis of the urine gave a radioactive fraction with a polarity similar to that of retinoic acid. Retinoyl fluoride also reacts readily with glycine to yield N-retinoyl glycine. Thus, the biological activity of retinoyl fluoride can be attributed to the formation of retinoic acid, probably by way of N-retinoyl derivatives. A possible pathway for its metabolism is presented.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号