首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Deregulation of the cell cycle is a hallmark of cancer that enables limitless cell division. To support this malignant phenotype, cells acquire molecular alterations that abrogate or bypass control mechanisms in signaling pathways and cellular checkpoints that normally function to prevent genomic instability and uncontrolled cell proliferation. Consequently, therapeutic targeting of the cell cycle has long been viewed as a promising anti-cancer strategy. Until recently, attempts to target the cell cycle for cancer therapy using selective inhibitors have proven unsuccessful due to intolerable toxicities and a lack of target specificity. However, improvements in our understanding of malignant cell-specific vulnerabilities has revealed a therapeutic window for preferential targeting of the cell cycle in cancer cells, and has led to the development of agents now in the clinic. In this review, we discuss the latest generation of cell cycle targeting anti-cancer agents for breast cancer, including approved CDK4/6 inhibitors, and investigational TTK and PLK4 inhibitors that are currently in clinical trials. In recognition of the emerging population of ER+ breast cancers with acquired resistance to CDK4/6 inhibitors we suggest new therapeutic avenues to treat these patients. We also offer our perspective on the direction of future research to address the problem of drug resistance, and discuss the mechanistic insights required for the successful implementation of these strategies.  相似文献   

2.
在细胞发育过程中,细胞周期起着至关重要的作用。细胞周期进程主要受细胞周期蛋白依赖性激酶(cyclin dependent kinase, CDK)、周期蛋白和内源性CDK抑制剂(cyclin-dependent kinase inhibitors,CKI)调控。其中,CDK是主要的细胞周期调节因子,可与周期蛋白结合形成周期蛋白-CDK复合物,从而使数百种底物磷酸化,调控分裂间期和有丝分裂进程。各类细胞周期蛋白的活性异常,可引起不受控制的癌细胞增殖,导致癌症的发生与发展。因此,了解CDK的活性变化情况、周期蛋白-CDK的组装以及CKI的作用,将有助于了解细胞周期进程中潜在的调控过程,为癌症与疾病的治疗和CKI治疗药物的研发提供基础。本文关注了CDK激活和灭活的关键事件,并总结了周期蛋白-CDK在特定时期及位置的调控过程,以及相关CKI治疗药物在癌症及疾病中的研究进展,最后简单阐述了细胞周期进程研究面临的问题和存在的挑战,以期为后续细胞周期进程的深入研究提供参考和思路。  相似文献   

3.
4.
In this study, we aimed to investigate the effects of lncRNA CASC11 on gastric cancer (GC) cell progression through regulating miR-340-5p and cell cycle pathway. Expressions of lncRNA CASC11 in gastric cancer tissues and cell lines were determined by qRT-PCR. Differentially expressed lncRNAs, mRNAs and miRNAs were screened through microarray analysis. The relationship among CASC11, CDK1 and miR-340-5p was predicted by TargetScan and validated through dual luciferase reporter assay. Western blot assay examined the protein level of CDK1 and several cell cycle regulatory proteins. GO functional analysis and KEGG pathway analysis were used to predict the association between functions and related pathways. Cell proliferation was determined by CCK-8 assays. Cell apoptosis and cell cycle were detected by flow cytometry assay. CASC11 was highly expressed in GC tissues and cell lines. Knockdown of CASC11 inhibited GC cell proliferation, promoted cell apoptosis and blocked cell cycle. KEGG further indicated an enriched cell cycle pathway involving CDK1. QRT-PCR showed that miR-340-5p was down-regulated in GC cells tissues, while CDK1 was up-regulated. Furthermore, CASC11 acted as a sponge of miR-340-5p which directly targeted CDK1. Meanwhile, miR-340-5p overexpression promoted GC cell apoptosis and induced cell cycle arrest, while CDK1 overexpression inhibited cell apoptosis and accelerated cell cycle. Our study revealed the mechanism of CASC11/miR-340-5p/CDK1 network in GC cell line, and suggested that CASC11 was a novel facilitator that exerted a biological effect by activating the cell cycle signaling pathway. This finding provides a potential therapeutic target for GC.  相似文献   

5.
6.
7.
Cyclin-dependent kinase 2 (CDK2) plays a key role in eukaryotic cell cycle progression which could facilitate the transition from G1 to S phase. The dysregulation of CDK2 is closely related to many cancers. CDK2 is utilized as one of the most studied kinase targets in oncology. In this article, 24 benzamide derivatives were designed, synthesized and investigated for the inhibition activity against CDK2. Our results revealed that the compound 25 is a potent CDK2 inhibitor exhibiting a broad spectrum anti-proliferative activity against several human breast cancer cells. Additionally, compound 25 could block cell cycle at G0 or G1 and induce significant apoptosis in MDA-MB-468 cells. These findings highlight a rationale for further development of CDK2 inhibitors to treat human breast cancer.  相似文献   

8.
9.
Mammalian cardiomyocytes actively proliferate during embryonic stages, following which cardiomyocytes exit their cell cycle after birth. The irreversible cell cycle exit inhibits cardiac regeneration by the proliferation of pre-existing cardiomyocytes. Exactly how the cell cycle exit occurs remains largely unknown. Previously, we showed that cyclin E- and cyclin A-CDK activities are inhibited before the CDKs levels decrease in postnatal stages. This result suggests that factors such as CDK inhibitors (CKIs) inhibit CDK activities, and contribute to the cell cycle exit. In the present study, we focused on a Cip/Kip family, which can inhibit cyclin E- and cyclin A-CDK activities. Expression of p21Cip1 and p27Kip1 but not p57Kip2 showed a peak around postnatal day 5, when cyclin E- and cyclin A-CDK activities start to decrease. p21Cip1 and p27Kip1 bound to cyclin E, cyclin A and CDK2 at postnatal stages. Cell cycle distribution patterns of postnatal cardiomyocytes in p21Cip1 and p27Kip1 knockout mice showed failure in the cell cycle exit at G1-phase, and endoreplication. These results indicate that p21Cip1 and p27Kip play important roles in the cell cycle exit of postnatal cardiomyocytes.  相似文献   

10.
11.
12.
13.
14.
HTm4 (MS4A3) is a member of a family of four‐transmembrane proteins designated MS4A. MS4A proteins fulfil diverse functions, acting as cell surface signalling molecules and intracellular adapter proteins. Early reports demonstrated that HTm4 is largely restricted to the haematopoietic lineage, and is involved in cell cycle control, via a regulatory interaction with the kinase‐associated phosphatase, cyclin A and cyclin‐dependent kinase 2 (CDK2). Here we describe the expression pattern of HTm4 in peripheral blood cells using gene expression microarray technology, and in normal foetal and adult human tissues, as well as adult human cancers, using tissue microarray technology. Using oligonucleotide microarrays to evaluate HTm4 mRNA, all peripheral blood cell types demonstrated very low levels of HTm4 expression; however, HTm4 expression was greatest in basophils compared to eosinophils, which showed lower levels of HTm4 expression. Very weak HTm4 expression is found in monocytes, granulocytes and B cells, but not in T cells, by lineage specific haematopoietic cell flow cytometry analysis. Interestingly, phytohaemagglutinin stimulation increases HTm4 protein expression in peripheral blood CD4‐T‐lymphocytes over nearly undetectable baseline levels. Western blotting and immunohistochemical studies show strong HTm4 expression in the developing haematopoietic cells of human foetal liver. Immunohistochemical studies on normal tissue microarrays confirmed HTm4 expression in a subset of leucocytes in nodal, splenic tissues and thymic tissue, and weak staining in small numbers of cell types in non‐haematopoietic tissues. Human foetal brain specimens from 19 to 31 gestational weeks showed that the strongest‐staining cells are ventricular zone cells and the earliest‐born, earliest‐differentiating ‘pioneer’ neurons in the cortical plate, Cajal‐Retzius and, to a lesser extent, subplate‐like neurons. Malignant tissue microarray analysis showed HTm4 expression in a wide variety of adenocarcinomas, including breast, prostate and ovarian. These findings warrant the further study of the role of HTm4 in the cell cycle of both haematopoietic and tumour cells.  相似文献   

15.
16.
On the basis of combination strategy, a novel series of EGFR inhibitors were designed and synthesized by combination of dithiocarbamic acid esters and 4-anilinoquinazolines. The effect of the synthesized compounds on cell proliferation was evaluated by MTT assay in three human cancer cell lines: MDA-MB-468, SK-BR-3 and HCT-116. Two compounds (11d and 11f) were found more potent against all three cell lines and five compounds (11a, 11d-11g) were found more potent against both MDA-MB-468 and SK-BR-3 than Lapatinib. SAR studies revealed that the substituents on C6 and C7 positions of quinazoline, the amine component of dithiocarbamate moiety and the linker greatly affected the activity. This work provides a promising new strategy for the preparation of potent tyrosine kinase inhibitors.  相似文献   

17.
Comment on: Carrassa L, et al. Cell Cycle 2012; 2507-17.  相似文献   

18.
Comment on: Carrassa L, et al. Cell Cycle 2012; 2507-17.  相似文献   

19.
Proliferation of mammalian cardiomyocytes stops rapidly after birth and injured hearts do not regenerate adequately. High cyclin-dependent kinase inhibitor (CKI) levels have been observed in cardiomyocytes, but their role in maintaining cardiomyocytes in a post-mitotic state is still unknown. In this report, it was investigated whether CKI knockdown by RNA interference induced cardiomyocyte proliferation. We found that triple transfection with p21(Waf1), p27(Kip1), and p57(Kip2) siRNAs induced both neonatal and adult cardiomyocyte to enter S phase and increased the nuclei/cardiomyocyte ratio; furthermore, a subpopulation of cardiomyocytes progressed beyond karyokynesis, as assessed by the detection of mid-body structures and by straight cardiomyocyte counting. Intriguingly, cardiomyocyte proliferation occurred in the absence of overt DNA damage and aberrant mitotic figures. Finally, CKI knockdown and DNA synthesis reactivation correlated with a dramatic change in adult cardiomyocyte morphology that may be a prerequisite for cell division. In conclusion, CKI expression plays an active role in maintaining cardiomyocyte withdrawal from the cell cycle.  相似文献   

20.
Pyrroline-5-carboxylate reductase 1 (PYCR1) catalyzes the biosynthetic half-reaction of the proline cycle by reducing Δ1-pyrroline-5-carboxylate (P5C) to proline through the oxidation of NAD(P)H. Many cancers alter their proline metabolism by up-regulating the proline cycle and proline biosynthesis, and knockdowns of PYCR1 lead to decreased cell proliferation. Thus, evidence is growing for PYCR1 as a potential cancer therapy target. Inhibitors of cancer targets are useful as chemical probes for studying cancer mechanisms and starting compounds for drug discovery; however, there is a notable lack of validated inhibitors for PYCR1. To fill this gap, we performed a small-scale focused screen of proline analogs using X-ray crystallography. Five inhibitors of human PYCR1 were discovered: l-tetrahydro-2-furoic acid, cyclopentanecarboxylate, l-thiazolidine-4-carboxylate, l-thiazolidine-2-carboxylate, and N-formyl l-proline (NFLP). The most potent inhibitor was NFLP, which had a competitive (with P5C) inhibition constant of 100 μm. The structure of PYCR1 complexed with NFLP shows that inhibitor binding is accompanied by conformational changes in the active site, including the translation of an α-helix by 1 Å. These changes are unique to NFLP and enable additional hydrogen bonds with the enzyme. NFLP was also shown to phenocopy the PYCR1 knockdown in MCF10A H-RASV12 breast cancer cells by inhibiting de novo proline biosynthesis and impairing spheroidal growth. In summary, we generated the first validated chemical probe of PYCR1 and demonstrated proof-of-concept for screening proline analogs to discover inhibitors of the proline cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号