首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Three new n-alkyl dithiocarbamate compounds, as sodium salts, C4H9NHCS2Na (I), C6H13NHCS2Na (II) and C8H17NHCS2Na (III), were synthesized and examined for inhibition of both cresolase and catecholase activities of mushroom tyrosinase (MT) from a commercial source of Agaricus bisporus in 10 mM phosphate buffer pH 6.8, at 293K using UV spectrophotometry. Caffeic acid and p-coumaric acid were used as natural substrates for the enzyme for the catecholase and cresolase reactions, respectively. Lineweaver–Burk plots showed different patterns of mixed and competitive inhibition for catecholase and cresolase reactions, respectively. These new synthetic compounds can be classified as potent inhibitors of MT due to Ki values of 0.8, 1.0 and 1.8 μM for cresolase inhibitory activity, and also 9.4, 14.5 and 28.1 μM for catecholase inhibitory activity for I, II and III, respectively. They showed a greater potency in the inhibitory effect towards the cresolase activity of MT. Both substrate and inhibitor can be bound to the enzyme with negative cooperativity between the binding sites (α>1) and this negative cooperativity increases with increasing length of the aliphatic tail in these compounds. The inhibition mechanism is presumably related to the chelating of the binuclear coppers at the active site and the different Ki values may be related to different interaction of the aliphatic chains of I, II and III with the hydrophobic pocket in the active site of the enzyme.  相似文献   

2.
The inhibitory effect of benzenethiol on the cresolase and catecholase activities of mushroom tyrosinase (MT) have been investigated at two temperatures of 20 and 30°C in 10 mM phosphate buffer solution, pHs 5.3 and 6.8. The results show that benzenethiol can inhibit both activities of mushroom tyrosinase competitively. The inhibitory effect of benzenethiol on the cresolase activity is more than the catecholase activity of MT. The inhibition constant (Ki) value at pH 5.3 is smaller than that at pH 6.8 for both enzyme activities. However, the Ki value increases in cresolase activity and decreases in catecholase activity due to the increase of temperature from 20 to 30°C at both pHs. Moreover, the effect of temperature on Ki value is more at pH 6.8 for both cresolase and catecholase activities. The type of binding process is different in the two types of MT activities. The binding process for catecholase inhibition is only entropy driven, which means that the predominant interaction in the active site of the enzyme is hydrophobic, meanwhile the electrostatic interaction can be important for cresolase inhibition due to the enthalpy driven binding process. Fluorescence and circular studies also show a minor change in the tertiary structure, without any change in the secondary structure, of the enzyme due to the electrostatic interaction in cresolase inhibition by benzenethiol at acidic pH.  相似文献   

3.
Three iso-alkyldithiocarbonates (xanthates), as sodium salts, C3H7OCS2Na (I), C4H9OCS2Na (II) and C5H11OCS2Na (III), were synthesized, by the reaction between CS2 with the corresponding iso-alcohol in the presence of NaOH, and examined for inhibition of both cresolase and catecholase activities of mushroom tyrosinase (MT) from a commercial source of Agricus bisporus. 4-[(4-methylbenzo)azo]-1,2-benzendiol (MeBACat) and 4-[(4-methylphenyl)azo]-phenol (MePAPh) were used as synthetic substrates for the enzyme for the catecholase and cresolase reactions, respectively. Lineweaver-Burk plots showed different patterns of mixed and competitive inhibition for the three xanthates and also for cresolase and catecholase activities of MT. For cresolase activity, I and II showed a mixed inhibition pattern but III showed a competitive inhibition pattern. For catecholase activity, I showed mixed inhibition but II and III showed competitive inhibition. These new synthesized compounds are potent inhibitors of MT with K(i) values of 9.8, 7.2 and 6.1 microM for cresolase inhibitory activity, and also 12.9, 21.8 and 42.2 microM for catecholase inhibitory activity for I, II and III, respectively. They showed a greater inhibitory potency towards the cresolase activity of MT. Both substrate and inhibitor can be bound to the enzyme with negative cooperativity between the binding sites (alpha > 1) and this negative cooperativity increases with increasing length of the aliphatic tail in these compounds in both cresolase and catecholase activities. The cresolase inhibition is related to the chelating of the copper ions at the active site by a negative head group (S-) of the anion xanthate, which leads to similar values of K(i) for all three xanthates. Different K(i) values for catecholase inhibition are related to different interactions of the aliphatic chains of I, II and III with hydrophobic pockets in the active site of the enzyme.  相似文献   

4.
A novel monofunctional benzyldithiocarbamate, C6H5CH2NHCSSNa (I), and a bifunctional p-xylidine-bis(dithiocarbamate), NaSSCNHCH2C6H4CH2NHCSSNa (II), as sodium salts, were synthesized by reaction between p-xylylenediamine or benzylamine with CS2 in the presence of NaOH. They were characterized by spectroscopic techniques such as 1H NMR, IR, and elemental analysis. These water-soluble compounds were examined for their inhibition of both activities of mushroom tyrosinase (MT) from a commercial source of Agricus bisporus. l-3,4- Dihydroxyphenylalanine (L-DOPA) and l-tyrosine were used as natural substrates for the catecholase and cresolase enzyme reactions, respectively. Kinetic studies showed noncompetitive inhibition of I and mixed type inhibition of II on both activities of MT. The inhibition constant (KI) of II was smaller than that of I. Raising the temperature from 27 to 37°C caused a decrease in KI values of I and an increase in values of II. The binding process for inhibition of I was only entropy driven, which means that the predominant interaction in the active site of the enzyme is hydrophobic; meanwhile, the electrostatic interaction can be important for the inhibition of II due to the enthalpy driven binding process. Fluorescence studies showed a decrease of emission intensity without a shift of emission maximum in the presence of different concentrations of compounds. An extrinsic fluorescence study did not show any considerable change of the tertiary structure of MT. Probably, the conformation of inhibitor-bound MT is stable and inflexible compared with uninhibited MT.  相似文献   

5.
Sodium salts of four n-alkyl xanthate compounds, C2H5OCS2Na (I), C3H7OCS2Na (II), C4H9OCS2Na (III), and C6H13OCS2Na (IV) were synthesized and examined for inhibition of both cresolase and catecholase activities of mushroom tyrosinase (MT) in 10 mM sodium phosphate buffer, pH 6.8, at 293 K using UV spectrophotometry. 4-[(4-Methylbenzo)azo]-1,2-benzendiol (MeBACat) and 4-[(4-methylphenyl)azo]-phenol (MePAPh) were used as synthetic substrates for the enzyme for catecholase and cresolase reactions, respectively. Lineweaver-Burk plots showed different patterns of mixed, competitive or uncompetitive inhibition for the four xanthates. For the cresolase activity, I and II showed uncompetitive inhibition but III and IV showed competitive inhibition pattern. For the catecholase activity, I and II showed mixed inhibition but III and IV showed competitive inhibition. The synthesized compounds can be classified as potent inhibitors of MT due to their Ki values of 13.8, 11, 8 and 5 microM for the cresolase activity, and 1.4, 5, 13 and 25 microM for the catecholase activity for I, II, III and IV, respectively. For the catecholase activity both substrate and inhibitor can be bound to the enzyme with negative cooperativity between the binding sites (alpha > 1) and this negative cooperativity increases with increasing length of the aliphatic tail of these compounds. The length of the hydrophobic tail of the xanthates has a stronger effect on the Ki values for catecholase inhibition than for cresolase inhibition. Increasing the length of the hydrophobic tail leads to a decrease of the Ki values for cresolase inhibition and an increase of the Ki values for catecholase inhibition.  相似文献   

6.
Catecholase and cresolase activities of mushroom tyrosinase (MT) were studied in presence of some n-alkyl carboxylic acid derivatives. Catecholase activity of MT achieved its optimal activity in presence of 1.0, 1.25, 2.0, 2.2 and 3.2?mM of pyruvic acid, acrylic acid, propanoic acid, 2-oxo-butanoic acid, and 2-oxo-octanoic acid, respectively. Contrarily, the cresolase activity of MT was inhibited by all type of the above acids. Propanoic acid caused an uncompetitive mode of inhibition (Ki=0.14?mM), however, the pyruvic, acrylic, 2-oxo-butanoic and 2-oxo-octanoic acids showed a competitive manner of inhibition with the inhibition constants (Ki) of 0.36, 0.6, 3.6 and 4.5?mM, respectively. So, it seems that, there is a physical difference in the docking of mono- and o-diphenols to the tyrosinase active site. This difference could be an essential determinant for the course of the catalytic cycle. Monophenols are proposed to bind only the oxyform of the tyrosinase. It is likely that the binding of acids occurs through their carboxylate group with one copper ion of the binuclear site. Thus, they could completely block the cresolase reaction, by preventing monophenol binding to the enzyme. From an allosteric point of view, n-alkyl acids may be involved in activation of MT catecholase reactions.  相似文献   

7.
Three new n-alkyl dithiocarbamate compounds, as sodium salts, C4H9NHCS2Na (I), C6H13NHCS2Na (II) and C8H17NHCS2Na (III), were synthesized and examined for inhibition of both cresolase and catecholase activities of mushroom tyrosinase (MT) from a commercial source of Agaricus bisporus in 10 mM phosphate buffer pH 6.8, at 293K using UV spectrophotometry. Caffeic acid and p-coumaric acid were used as natural substrates for the enzyme for the catecholase and cresolase reactions, respectively. Lineweaver-Burk plots showed different patterns of mixed and competitive inhibition for catecholase and cresolase reactions, respectively. These new synthetic compounds can be classified as potent inhibitors of MT due to Ki values of 0.8, 1.0 and 1.8 microM for cresolase inhibitory activity, and also 9.4, 14.5 and 28.1 microM for catecholase inhibitory activity for I, II and III, respectively. They showed a greater potency in the inhibitory effect towards the cresolase activity of MT. Both substrate and inhibitor can be bound to the enzyme with negative cooperativity between the binding sites (alpha > 1) and this negative cooperativity increases with increasing length of the aliphatic tail in these compounds. The inhibition mechanism is presumably related to the chelating of the binuclear coppers at the active site and the different Ki values may be related to different interaction of the aliphatic chains of I, II and III with the hydrophobic pocket in the active site of the enzyme.  相似文献   

8.
The inhibitory effect of benzenethiol on the cresolase and catecholase activities of mushroom tyrosinase (MT) have been investigated at two temperatures of 20 and 30 degrees C in 10 mM phosphate buffer solution, pHs 5.3 and 6.8. The results show that benzenethiol can inhibit both activities of mushroom tyrosinase competitively. The inhibitory effect of benzenethiol on the cresolase activity is more than the catecholase activity of MT. The inhibition constant (K(i)) value at pH 5.3 is smaller than that at pH 6.8 for both enzyme activities. However, the K(i) value increases in cresolase activity and decreases in catecholase activity due to the increase of temperature from 20 to 30 degrees C at both pHs. Moreover, the effect of temperature on K(i) value is more at pH 6.8 for both cresolase and catecholase activities. The type of binding process is different in the two types of MT activities. The binding process for catecholase inhibition is only entropy driven, which means that the predominant interaction in the active site of the enzyme is hydrophobic, meanwhile the electrostatic interaction can be important for cresolase inhibition due to the enthalpy driven binding process. Fluorescence and circular studies also show a minor change in the tertiary structure, without any change in the secondary structure, of the enzyme due to the electrostatic interaction in cresolase inhibition by benzenethiol at acidic pH.  相似文献   

9.
Abstract

In this study, four Co(III)-, Cu(II)-, Zn(II)- and Pd(II)-based potent antibacterial complexes of formula K3[Co(ox)3]·3H2O (I), [Cu(phen)2Cl]Cl·6.5H2O (II), [Zn(phen)3]Cl2 (III) and [Pd(phen)2](NO3)2 (IV) (where ox is oxalato and phen is 1,10-phenanthroline) were synthesized. They were characterized by elemental analysis, molar conductivity measurements, UV–vis, Fourier transform infrared (FT-IR) and proton nuclear magnetic resonance (1H-NMR) techniques. These metal complexes were ordered in three combination series of I+II, I+II+III and I+II+III+IV. Antibacterial screening for each metal complex and their combinations against Gram-positive and Gram-negative bacteria revealed that all compounds were more potent antibacterial agents against the Gram-negative than those of the Gram-positive bacteria. The four metal complexes showed antibacterial activity in the order I > II > III > IV, and the activity of their combinations followed the order of I+II+III+IV > I+II+III > I+II. The DNA-binding properties of complex (I) and its three combinations were studied using electronic absorption and fluorescence (ethidium bromide displacement assay) spectroscopy. The results obtained indicated that all series interact effectively with calf thymus DNA (CT-DNA). The binding constant (Kb), the number of binding sites (n) and the Stern–Volmer constant (Ksv) were obtained based on the results of fluorescence measurements. The calculated thermodynamic parameters supported that hydrogen bonding and van der Waals forces play a major role in the association of each series of metal complexes with CT-DNA and follow the above-binding affinity order for the series.

Communicated by Ramaswamy H. Sarma  相似文献   

10.
Four Co(III)-, Cu(II)-, Zn(II)-, and Pd(II)-based potent antibacterial complexes of formula K3[Co(ox)3].3H2O (I), [Cu(bpy)2Cl]Cl.5H2O (II), [Zn(bpy)3]Cl2 (III), and [Pd(bpy)2](NO3)2 (IV) (where ox is oxalate and bpy is 2,2′-bipyridine) were synthesized. They were characterized by elemental analyses, molar conductance measurements, UV–Vis, FTIR, 1H NMR, and 13C NMR spectra. These metal complexes were ordered in three combination series of I + II, I + II + III, and I + II + III + IV. Antibacterial activity was tested for each of these four metal complexes and their combinations against Gram-positive and Gram-negative bacteria. All compounds were more potent antibacterial agents against the Gram-negative than those of the Gram-positive bacteria. The four metal complexes showed antibacterial activity in the order I > II > III > IV and the activity of their combinations followed the order of I + II + III + IV > I + II + III > I + II. CT-DNA binding studies of complex I and its three combinations were carried out using UV–vis spectral titration, displacement of ethidium bromide (EB), and electrophoretic mobility assay. The results obtained from UV–vis studies indicated that all series interact effectively with CT-DNA. Fluorescence titration revealed that the complexes quench DNA-EB strongly through the static quenching procedures. The binding constant (Kb), the Stern–Volmer constant (Ksv), and the number of binding sites (n) were determined at different temperatures of 293, 300, and 310 K, respectively. The calculated thermodynamic parameters supported that hydrogen binding and Van der Waals forces play a major role in association of each series of metal complexes with CT-DNA and follow the above-binding affinity order for the series.  相似文献   

11.
The inhibitory effect of ethylenediamine on both activities of mushroom tyrosinase (MT) at 20 °C in a 10 mM phosphate buffer solution (pH 6.8), was studied. L-DOPA and L-tyrosine were used as substrates of catecholase and cresolase activities, respectively. The results showed that ethylenediamine competitively inhibits both activities of the enzyme with inhibition constants (K(i)) of 0.18±0.05 and 0.14±0.01 μM for catecholase and cresolase respectively, which are lower than the reported values for other MT inhibitors. For further insight a docking study between tyrosinase and ethylenediamine was performed. The docking simulation showed that ethylenediamine binds in the active site of the enzyme near the Cu atoms and makes 3 hydrogen bonds with two histidine residues of active site.  相似文献   

12.
The fungus Humicola lutea 120-5 cultivated in casein-containing media, in the presence or absence of inorganic phosphate (Pi), excretes three different molecular forms of acid phosphatase (with Mr values of approximately 140, 70 and 35 kDa). The enzyme forms were isolated and purified 30–100-fold by a procedure involving two steps of ion-exchange chromatography and Sephadex G-200 gel chromatography. It was found that the fungus excretes only one of the phosphatases with the highest Mr (140 kDa) during growth on medium with inorganic nitrogen source (NaNO3). This form (designed AcPh I) was assumed to be a constitutive, since it showed resistance to high Pi-concentrations (10 mM) and its biosynthesis was not affected by the type of nitrogen source (casein or NaNO3). The other two forms (AcPh II-70 and AcPh III-35 kDa) were competitively inhibited by Pi (K i = 0.5 and 0.2 mM, respectively) and were induced by casein. The K m values of AcPh I and AcPh II were estimated as 1.3 mM, while AcPh III showed a higher affinity for p-nitrophenylphosphate (pNPP) with K m of 0.5 mM. The AcPh I–III fractions demonstrated a pH optimum in the range of 4.5–4.8 and an optimal temperature of 55 °C using pNPP as a substrate. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

13.
To address the real cause of the suicide inactivation of mushroom tyrosinase (MT), under in vitro conditions, cresolase and catecholase reactions of this enzyme were investigated in the presence of three different pairs of substrates, which had been selected for their structural specifications. It was showed that the cresolase activity is more vulnerable to the inactivation. Acetylation of the free tyrosyl residues of MT did not cure susceptibility of the cresolase activity, but clearly decreased the inactivation rate of MT in the presence of 4-[(4-methylbenzo)azo]-1,2-benzenediol (MeBACat) as a catecholase substrate. Considering the results of the previous works and this research, some different possible reasons for the suicide inactivation of MT have been discussed. Accordingly, it was proposed that the interruption in the conformational changes in the tertiary and quaternary structures of MT, triggered by the substrate then mediated by the solvent molecules, might be the real reason for the suicide inactivation of the enzyme. However, minor causes like the toxic effect of the ortho-quinones on the protein body of the enzyme or the oxidation of some free tyrosyl residues on the surface of the enzyme by itself, which could boost the inactivation rate, should not be ignored.  相似文献   

14.
In this study, we have synthesised (3,4-dihydroxyphenyl)(2,3,4-trihydroxyphenyl)methanone and a series of its derivatives (5, 13–16) and tested the ability of these compounds to inhibit two metalloenzyme human carbonic anhydrase (hCA, EC 4.2.1.1) isozymes, hCA I and hCA II. The synthesised compounds showed inhibitory effect on hCA I and hCA II isozymes. The results showed that synthesised compounds (5, 13–16) demonstrated the best inhibition activity against hCA I (IC50: 3.22–54.28 μM) and hCA II (IC50: 18.52–142.01 μM). The compound 14 showed the highest inhibiton effect against hCA I (IC50: 3.22 μM; Ki: 1.19?±?1.4 μM). On the other hand, the compound 13 showed the highest inhibiton effect against hCA II (IC50: 18.52 μM; Ki: 3.25?±?1.13 μM).  相似文献   

15.
Abstract

Inhibitory action of newly synthesised 4-(2-(2-substituted-thio-4-oxoquinazolin-3(4H)-yl)ethyl)benzenesulfonamides compounds 2–13 against human carbonic anhydrase (CA, EC 4.2.1.1) (hCA) isoforms I, II, IX, and XII, was evaluated. hCA I was efficiently inhibited by compounds 2–13 with inhibition constants (KIs) ranging from 57.8–740.2?nM. Compounds 2, 3, 4, and 12 showed inhibitory action against hCA II with KIs between 6.4 and 14.2?nM. CA IX exhibited significant sensitivity to inhibition by derivatives 2–13 with KI values ranging from 7.1 to 93.6?nM. Compounds 2, 3, 4, 8, 9, and 12 also exerted potent inhibitory action against hCA XII (KIs ranging from 3.1 to 20.2?nM). Molecular docking studies for the most potent compounds 2 and 3 were conducted to exhibit the binding mode towards hCA isoforms as a promising step for SAR analyses which showed similar interaction with co-crystallized ligands. As such, a subset of these mercaptoquinazolin-4(3H)-one compounds represented interesting leads for developing new efficient and selective carbonic anhydrase inhibitors (CAIs) for the management of a variety of diseases including glaucoma, epilepsy, arthritis and cancer.  相似文献   

16.
The simultaneous addition of phenylhydrazine and p-cresol to grape catechol oxidase resulted in enhanced oxidation of p-cresol. Carbonyl reagents such as hydrazine, borohydride and semicarbazide also enhanced cresolase activity but had no effect on catecholase activity. Pretreatment of the enzyme with periodate abolished cresolase activity. The effects of periodate and ascorbate or semicarbazide on cresolase activity were mutually reversible. The simultaneous addition of phenylhydrazine and 4-methylcatechol to the enzyme did not result in inhibition of the initial rate of oxidation of the phenolic substrate. It is concluded that phenylhydrazine does not react with a carbonyl group on the enzyme. The possible involvement of conformational changes in the enzyme, determining phenylhydrazine inhibition is discussed.  相似文献   

17.
Female moths of Lyclene dharma dharma (Arctiidae, Lithosiinae) produce a novel sex pheromone composed of three methyl-branched ketones (IIII) in a ratio of 2:1:1. In order to confirm the structure of III (6,14-dimethyl-2-octadecanone), a mixture of its four stereoisomers was synthesized via chain elongation by two Wittig reactions, starting from 1,7-hexanediol. GC-MS data of the synthetic III were satisfactorily coincident with those of the natural component. In addition to the racemic mixtures of I (6-methyl-2-octadecanone) and II (14-methyl-2-octadecanone), previously synthesized, the activity of III was evaluated in the Iriomote Islands, and effective male attraction was observed for the 2:1:1 mixture of IIII. This result indicates that the females do not produce only one stereoisomer for each component or that the response of the males is not disturbed by the other stereoisomers of natural isomers produced by the females. The field test also revealed that the two-component lure of I and II captured as many males as the mixture of IIII, while lures baited with two components in other combinations and with only one component scarcely exhibited any male attraction ability.  相似文献   

18.
On gamma irradiation of potato tubers at sprout-inhibiting dose (10 krad) the cresolase activity showed a 45% increase while catecholase was reduced by 25%. This reduced the ratio of catecholase to cresolase from 11–12 in unirradiated to 5–6 in irradiated potatoes. Chlorogenic acid oxidation was enhanced by about 25% on irradiation. The increase in the oxidation of p-cresol corresponded with the production of diphenolic compounds. The process of activation of cresolase was slow, reversible and oxygen dependent. A comparative study of the isoenzyme pattern suggested that this activation was due to conformational change, rather than synthesis of new protein.  相似文献   

19.
Antifungal activity of hyoscyamine (Hcy) and scopolamine (Sco) were determined by TLC-bioautography against fungi associated with H. muticus grown in Egypt, and those isolated from other plants grown in Japan. All 40 fungal strains were tolerant to Sco and sensitive to Hcy, exhibiting a growth inhibition zone around the Hcy spot on the bioautography plate. The strains were grouped into three types based on the appearance of the inhibition zone: (i) 17 strains exhibiting a clear inhibition zone, which remained clear at 8 d after incubation (type I); (ii) 22 strains exhibiting the inhibition zone with a brown circle surrounding the zone and regrowth within the inhibition zone (type II); (iii) 1 strain exhibiting the inhibition zone with no brown circle and regrowth within the inhibition zone (type III). In the type II and III strains, Hcy disappeared, and other alkaloids were found in the inhibition zones in its place. Hcy feeding experiments using Penicillium purpurogenum (type II) and Cunninghamella elegans (type III) revealed that these fungi may convert Hcy to a new alkaloid compound.  相似文献   

20.
Chalcones (1,3-diaryl-2-propen-1-ones) are α, β-unsaturated ketones with cytotoxic and anticancer properties. Several reports have shown that compounds with cytotoxic properties may also interfere with DNA topoisomerase functions. Five derivatives of 4′-hydroxychalcones were examined for cytotoxicity against transformed human T (Jurkat) cells as well as plasmid supercoil relaxation experiments using mammalian DNA topoisomerase I. The compounds were 3-phenyl-1-(4′-hydroxyphenyl)-2-propen-1-one (I), 3-(p-methylphenyl)-1-(4′-hydroxyphenyl)-2-propen-1-one (II), 3-(p-methoxyphenyl)-1-(4′-hydroxyphenyl)-2-propen-1-one (III), 3-(p-chlorophenyl)-1-(4′-hydroxyphenyl)-2-propen-1-one (IV), and 3-(2- thienyl)-1-(4′-hydroxyphenyl)-2-propen-1-one (V). The order of the cytotoxicity of the compounds was; IV > III > II > I > V. Compound IV, had the highest Hammett and log P values (0.23 and 4.21, respectively) and exerted both highest cytotoxicity and strongest DNA topoisomerase I inhibition. Compounds I and II gave moderate interference with the DNA topoisomerase I while III & V did not interfere with the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号