首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glycosidases perform a wide range of functions in physiology and pathology, and are potential targets for the treatment of diseases such as influenza, cancer, AIDS and diabetes. This paper reports a convenient discontinuous colourimetric assay for the measurement of glycosidase activity. The assay utilises 4-nitrophenyl- substrates and quantities of product are determined by measuring absorbance at 405 nm. This assay is performed in a 96 well microtitre plate and has been used to characterise the properties of seven different glycosidases from bacteria, yeast and higher eukaryotes and their kinetic parameters determined. Assays in the presence of known inhibitors showed that inhibition modes can be determined, and IC(50) and K(i) values calculated. This assay appears to be of widely applicable and of general utility for the measurement of glycosidase activity and the evaluation of inhibitors.  相似文献   

2.
Nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylases (sirtuins) and other enzymes that produce nicotinamide are integral to many cellular processes. Yet current activity measurements involve expensive and time-consuming assays. Here we present a spectroscopic assay that circumvents many issues of previous methods. This assay permits continuous product monitoring over time, allows determination of steady-state kinetic parameters, and is readily adaptable to high-throughput screening. The methodology uses an enzyme-coupled system in which nicotinamide is converted to nicotinic acid and ammonia by nicotinamidase. The ammonia is transferred to α-ketoglutarate via glutamate dehydrogenase, yielding glutamate and the oxidation of NAD(P)H to NAD(P)+, which is measured spectrophotometrically at 340 nm. Using this continuous assay with sirtuin-1 (Sirt1) and the ADP-ribosyl cyclase CD38, the resulting steady-state kinetic parameters are in excellent agreement with values obtained by other published methods. Importantly, this assay permitted determination of kcat and Km values with the native acetylated substrate acetyl-CoA synthetase-1; measurement of Sirt1, Sirt2, and Sirt3 activities from mammalian cell extracts; and determination of IC50 values of various Sirt1 inhibitors. This assay is applicable to any nicotinamide-forming enzyme and will be an important tool to address many outstanding questions surrounding their regulation.  相似文献   

3.
Sphingosine kinases (SphKs) catalyze the transfer of phosphate from adenosine triphosphate (ATP) to sphingosine to generate sphingosine 1-phosphate (S1P), an important bioactive lipid molecule that mediates a diverse range of cell signaling processes. The conventional assay of SphK enzymatic activity uses [γ-32P]ATP and sphingosine as substrates, with the radiolabeled S1P product recovered by organic extraction, displayed by thin layer chromatography, and quantified by liquid scintillation counting. Although this assay is sensitive and accurate, it is slow and labor-intensive; thus, it precludes the simultaneous screening of more than a few inhibitor compounds. Here we describe a 96-well assay for SphKs that is rapid and reproducible. Our method, which takes advantage of the limited solubility of S1P, detects radioactive S1P adhering to the plate by scintillation proximity counting. Our procedure obviates extraction into organic solvents, postreaction transfers, and chromatography. Furthermore, our assay enables assessment of both inhibitors and substrates, and it can detect endogenous SphK activity in cell and tissue extracts. The SphK kinetic parameter, Km, and the Ki values of inhibitors determined with our assay and the conventional assay were indistinguishable. These results document that our assay is well-suited for the screening of chemical libraries of SphK inhibitors.  相似文献   

4.
The murine monoclonal antibodies ESH2, ESH4, ESH5, and ESH8 specifically bind and inhibit the procoagulant activity of human coagulation factor VIII (FVIII). They are frequently used as a model of inhibitors which are raised against injected FVIII in about 25% of hemophiliacs as a serious side effect of substitution therapy. However, binding kinetics of the interaction of these antibodies with FVIII and their influence on FVIII activity (inhibition) have not yet been examined systematically. For this, we examined association and dissociation of protein:antibody interaction using surface plasmon resonance (SPR) and determined their ability to inhibit the FVIII activity in a one‐stage and a two‐stage assay. SPR‐analysis revealed that the equilibrium dissociation constants (KD) of ESH8 and ESH4 are low and in a similar range (ESH8: KD(ESH8) = 0.542 nM; ESH4: KD(ESH4) = 0.761 nM). A 5.7 times higher KD than for ESH4 was observed for ESH2 (4.33 nM), whereas ESH5 showed the highest KD of 28.8 nM. In accordance with the lowest KD, ESH8, and ESH4 reduced FVIII activity of normal human plasma almost completely in a one‐stage clot inhibition assay (ESH8: 91.9%; ESH4: 90.1%). However, ESH8 inhibited FVIII activity more efficiently as only 1.0 µg/ml ESH8 was sufficient to obtain maximum inhibition compared to up to 600 µg/ml of ESH4. Despite its attenuated KD, ESH2 inhibits FVIII:C still efficiently, reducing 61.3% of FVIII activity at a concentration of 9 µg/ml in the one‐stage clotting assay. However, a discrepancy of inhibitory efficiency was found depending on the method used to measure FVIII activity. These effects seem to be mainly caused by differences of activation time of FVIII during both FVIII activity assays. The systematic assessment of these results should support FVIII interaction studies, and can provide data to rationally test peptides/mimotopes to remove or neutralize inhibitors of FVIII activity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Abstract

Inhibitors of thromboxane A, (TxA2) synthase are regarded as potentially useful agents in the treatment of cardiovascular diseases and in the prevention of tumour cell metastases. We report here a novel in vitro assay for the evaluation of TxA2 synthase inhibitors. For the determination of inhibitory activity, malondialdehyde (MDA) formation by TxA2 synthase in whole blood was utilized. After reaction with thiobarbituric acid MDA was quantified spectrofluorimetrically. The blank value was obtained by incubation with a selective TxA2 synthase inhibitor. For the screening of compounds the simple MDA assay represents an alternative to the rather expensive and time consuming radioimmunoassay, HPLC and TLC methods. Only for compounds which have been shown to be good inhibitors in the MDA assay should a radioimmunoassay for selective inhibition of TxA2 synthase be performed.  相似文献   

6.
In this work, the inhibitory activity of Voriconazole was measured against some metabolic enzymes, including human carbonic anhydrase (hCA) I and II isoenzymes, acetylcholinesterase (AChE), and α‐glycosidase; the results were compared with standard compounds including acetazolamide, tacrine, and acarbose. Half maximal inhibition concentration (IC50) values were obtained from the enzyme activity (%)‐[Voriconazole] graphs, whereas Ki values were calculated from the Lineweaver‐Burk graphs. According to the results, the IC50 value of Voriconazole was 40.77 nM for α‐glycosidase, while the mean inhibition constant (Ki) value was 17.47 ± 1.51 nM for α‐glycosidase. The results make an important contribution to drug design and have pharmacological applications. In addition, the Voriconazole compound demonstrated excellent inhibitory effects against AChE and hCA isoforms I and II. Voriconazole had Ki values of 29.13 ± 3.57 nM against hCA I, 15.92 ± 1.90 nM against hCA II, and 10.50 ± 2.46 nM against AChE.  相似文献   

7.
Pathogenic Gram-negative bacteria are a major public health concern because they are causative agents of life-threatening hospital-acquired infections. Due to the increasing rates of resistance to available antibiotics, there is an urgent need to develop new drugs. Acetyl-coenzyme A carboxylase (ACCase) is a promising target for the development of novel antibiotics. We describe here the expression, purification, and enzymatic activity of recombinant ACCases from two clinically relevant Gram-negative pathogens, Acinetobacter baumannii and Klebsiella pneumoniae. Recombinant ACCase subunits (AccAD, AccB, and AccC) were expressed and purified, and the holoenzymes were reconstituted. ACCase enzyme activity was monitored by direct detection of malonyl-coenzyme A (malonyl-CoA) formation by liquid chromatography tandem mass spectrometry (LC–MS/MS). Steady-state kinetics experiments showed similar kcat and KM values for both enzymes. In addition, similar IC50 values were observed for inhibition of both enzymes by a previously reported ACCase inhibitor. To provide a higher throughput assay suitable for inhibitor screening, we developed and validated a luminescence-based ACCase assay that monitors ATP depletion. Finally, we established an enzyme activity assay for the isolated AccAD (carboxyltransferase) subunit, which is useful for determining whether novel ACCase inhibitors inhibit the biotin carboxylase or carboxyltransferase site of ACCase. The methods described here could be applied toward the identification and characterization of novel inhibitors.  相似文献   

8.
During this investigation, N,N′‐bis‐azidomethylamines, N,N′‐bis‐cyanomethylamine, new alkoxymethylamine and chiral derivatives, which are considered to be a new generation of multifunctional compounds, were synthesized, functional properties were investigated, and anticholinergic and antidiabetic properties of those compounds were studied through the laboratory tests, and it was approved that they contain physiologically active compounds rather than analogues. Novel N‐bis‐cyanomethylamine and alkoxymethylamine derivatives were effective inhibitors of the α‐glycosidase, cytosolic carbonic anhydrase I and II isoforms, butyrylcholinesterase (BChE), and acetylcholinesterase (AChE) with Ki values in the range of 0.15–13.31 nM for α‐glycosidase, 2.77–15.30 nM for human carbonic anhydrase isoenzymes I (hCA I), 3.12–21.90 nM for human carbonic anhydrase isoenzymes II (hCA II), 23.33–73.23 nM for AChE, and 3.84–48.41 nM for BChE, respectively. Indeed, the inhibition of these metabolic enzymes has been considered as a promising factor for pharmacologic intervention in a diversity of disturbances.  相似文献   

9.
Because of its crucial role in various cellular processes, the proteasome is the focus of intensive research for the development of proteasome inhibitors to treat cancer and autoimmune diseases. Here, we describe a new and easy assay to measure the different proteasome activities in vitro (chymotrypsin-like, caspase-like, and trypsin-like) based on proteasome capture on antibody-coated plates, namely the capture proteasome assay (CAPA). Applying the CAPA to lysates from cells expressing standard proteasome, immunoproteasome, or intermediate proteasomes β5i or β1i–β5i, we can monitor the activity of the four proteasome subtypes. The CAPA provided similar results as the standard whole-cell proteasome–Glo assay without the problem of contaminating proteases requiring inhibitors. However, the profile of trypsin-like activity differed between the two assays. This could be partly explained by the presence of MgSO4 in the proteasome–Glo buffer, which inhibits the trypsin-like activity of the proteasome. The CAPA does not need MgSO4 and, therefore, provides a more precise measurement of the trypsin-like activity. The CAPA provides a quick and accurate method to measure proteasome activity in vitro in a very specific manner and should be useful for the development of proteasome inhibitors.  相似文献   

10.
Multiple studies have been recorded on the synthesis and design of multi‐aim anti‐Alzheimer molecules. Using dual butyrylcholinesterase/acetylcholinesterase inhibitor molecules has attracted more interest in the therapy for Alzheimer's disease. In this study, a tannic acid compound showed excellent inhibitory effects against acetylcholine esterase (AChE), α‐glycosidase, α‐amylase, and butyrylcholinesterase (BChE). IC50 values of tannic acid obtained 11.9 nM against α‐glycosidase and 3.3 nM against α‐amylase, respectively. In contrast, Ki values were found of 50.96 ± 2.18 µM against AChE and 53.17 ± 4.47 µM against BChE. α‐Glycosidase inhibitor compounds can be utilized as a novel group of antidiabetic drugs. By competitively decreasing glycosidase activity, these inhibitor molecules help to hamper the fast breakdown of sugar molecules and thereby control the blood sugar level.  相似文献   

11.
Artiodactyls possess abundant neutral glycosidase activity in liver, kidney and intestine. This enzyme is cytosolic and displays a more neutral pH optimum, more acidic isoelectric point and broader substrate range than the corresponding acidic β-galactosidases. The neutral glycosidases were more thermolabile than the respective acidic β-galactosidases and displayed a relative molecular mass approximating 60 kDa. This isozyme appeared to be a minor species in both rat and dog liver. The porcine enzyme was studied in more detail. Porcine neutral glycosidase activity was detected in 45-day gestational fetuses in both liver and kidney but not brain. Fetal kidney activities were about half those observed in adult kidney extracts. Porcine neutral glycosidase was immunologically distinct from acidic β-galactosidase and was immunologically similar to the corresponding isozymes from deer, ovine and bovine liver. Porcine neutral glycosidase was moderately inhibited by d-galactonic acid γ-lactone and strongly inhibited by d-gluconic acid δ-lactone; however, acidic β-galactosidase was not inhibited by the δ-lactone. Inhibition by the γ-lactone was competitive for both enzymes. 4-Methylumbelliferyl-β-d-galactoside, -glucoside and -xyloside competed for the same active site. A polymorphism for fast- and slow-migrating isozymes of porcine neutral glycosidase was observed, which appeared to be under genetic control.  相似文献   

12.
13.
N-Acetyltransferase activities with p-aminobenzoic acid and 2-aminofluorene as substrates were determined in isolates of the bacterium Escherichia coli. The N-acetyltransferase activity was determined by an acetyl CoA recycling assay and high pressure liquid chromatography. The N-acetyltransferase activities from a number of E. coli isolates were found to be 0.67 ± 0.04 nmole/min/mg protein for 2-aminofluorene, and 0.46 ± 0.02 nmole/min/mg protein for p-aminobenzoic acid. The apparent K m and V max values obtained were 2.85 ± 0.65 mM and 7.51 ± 0.86 nmol/min/mg protein, respectively, for 2-aminofluorene, and 2.35 ± 0.39 mM and 9.43 ± 0.78 nmol/min/mg protein, respectively, for p-aminobenzoic acid. The optimal pH value for the enzyme activity was 7.0 for both substrates tested. The optimal temperature for enzyme activity was 37°C for both substrates. The N-acetyltransferase activity was inhibited by iodoacetamide: at 0.25 mM iodoacetamide, activity was reduced 50%, and at 1.0 mM, more than 90%. Among a series of divalent cations and salts, Cu2+ and Zn2+ were demonstrated to be the most potent inhibitors. This report is the first demonstration of acetyl CoA:arylamine N-acetyltransferase activity in E. coli. Received: 29 April 1997 / Accepted: 2 July 1997  相似文献   

14.
Human skin fibroblast collagenase also known as Matrix Metalloproteinase-1 (MMP-1) is a key enzyme in remodeling and degradation of extracellular matrix, and the inhibitors of human MMP-1 are effective drug candidates for the treatment of cancer. In this study, we report an improved method for high-level expression of soluble human MMP-1 catalytic domain (cd-MMP-1) in E.coli. The enzymatic activity is found maximum at pH 7.5 and temperature 40°C with a Km value of 13.02 µM. Effects of 17 structure-related flavonoids on MMP-1 activity are evaluated using a fluorescent assay, 6 inhibitors are identified with IC50 < 10 µM. Fisetin is the most active agent with an IC50 value of 1.35 µM and is identified as a mixed type inhibitor. Our improved soluble cd-MMP-1 expression method provides a basis for inhibitors identification and may be beneficial to discover novel anti-cancer agent targeting human MMP-1.  相似文献   

15.
As a member of the Wee-kinase family protein kinase PKMYT1 is involved in G2/M checkpoint regulation of the cell cycle. Recently, a peptide microarray approach led to the identification of a small peptide; EFS247–259 as substrate of PKMYT1, which allowed for subsequent development of an activity assay. The developed activity assay was used to characterize the PKMYT1 catalyzed phosphorylation of EFS247–259. For the first time kinetic parameters for PKMYT1, namely Km, Km, ATP and vmax were determined. The optimized assay was used to screen the published protein kinase inhibitor sets (PKIS I and II), two sets of small molecule ATP-competitive kinase inhibitors reported by GlaxoSmithKline. We identified ten inhibitors, providing different scaffolds. The inhibitors were further characterized by using binding assay, activity and functional assay. In addition, docking studies were carried out in order to rationalize the observed biological activities. The derived results provide the basis for further chemical optimization of PKMYT1 inhibitors and for further analysis of PKMYT1 as target for anti-cancer therapy.  相似文献   

16.
There is currently a need for a method capable of measuring the activity and inhibition of biologically relevant oxygenases in a format that enables the convenient, fast, and cost-efficient generation of dose-response information. Here we describe a low-volume luminescence-based assay for the measurement of such oxygen-dependent enzymes. The assay employs a photoluminescent oxygen-sensitive probe and glass capillary microcuvettes measured on the Roche LightCycler detection platform. Three discrete types of oxygen probe were evaluated for this application: (i) solid-state coatings, (ii) soluble macromolecular MitoXpress probe, both phosphorescent porphyrin-based, and (iii) a luminescent Ir(III)-based nanoparticle probe. Measurement parameters were optimised and subsequently applied to the analysis of three biologically relevant oxygenases, namely cytochrome P450 (CYP), monoamine oxygenase (MAO), and cyclooxygenase (COX). CYP enzymes are central players in drug detoxification while specific inhibitors of MAO and COX are important for therapeutic intervention and treatment of neurological and inflammatory diseases, respectively. To determine assay utility, oxygen consumption catalysed by all three enzyme types was measured and the effect of specific inhibitors determined. The panel included the MAO-A/B inhibitors clorgyline, toloxatone, deprenyl, and the COX-1/2 inhibitors niflumic acid, nimesulide, SC-560, ketoprofen, and phenylbutazone. IC50 values were then compared with literature values. The measurement methodology described allows the low-volume analysis of biologically relevant oxygenases and displays the requisite sensitivity and throughput to facilitate routine analysis. It is also applicable to other O2-dependent enzymes and enzymatic systems.  相似文献   

17.
α‐Glycosidase is a catalytic enzyme and it destroys the complex carbohydrates into simple absorbable sugar units. The natural phenolic compounds were tested for their antidiabetic properties as α‐glycosidase and α‐amylase inhibitors. The phenolic compounds investigated in this study have been used as antidiabetic common medicines. This paper aimed to consider their capability to inhibit α‐amylase and α‐glycosidase, two significant enzymes defined in serum glucose adjustment. These examination recorded impressive inhibition profiles with IC50 values in the range of 137.36–737.23 nM against α‐amylase and 29.01–157.96 nM against α‐glycosidase.  相似文献   

18.
A novel method for spectrophotometrical measurement of myeloperoxidase (MPO) activity in plasma with o-dianisidine (DA) as a substrate is proposed. We have determined the optimal conditions, including the pH and hydrogen peroxide concentration, under which MPO is the main contributor to DA oxidation in plasma. Specific MPO inhibitors, salicylhydroxamic acid or 4-aminobenzoic acid hydrazide, are added to measure the activity of other heme-containing peroxidases (mainly hemoglobin and its derivatives) and subtract their contribution from the total plasma peroxidase activity. Plasma MPO concentrations are quantified by a new enzyme-linked immunosorbent assay (ELISA) developed by us and based on the use of antibodies raised in rats and rabbits. The sensitivity of this ELISA is high: 0.2–250 ng/ml. A direct and significant (P < 0.0001) correlation was observed between the MPO activities measured spectrophotometrically and the MPO level determined by ELISA in blood samples from 38 healthy donors. The proposed approaches to MPO measurement in plasma can be used to evaluate the enzyme activity and concentration, as well as the efficacy of mechanisms by which MPO is regulated under physiological conditions and against the background of various inflammatory diseases.  相似文献   

19.
Imino- and azasugar glycosidase inhibitors display pH dependant inhibition reflecting that both the inhibitor and the enzyme active site have groups that change protonation state with pH. With the enzyme having two acidic groups and the inhibitor one basic group, enzyme–inhibitor complexes with three (EH3I), two (EH2I), one (EHI), or no protons (EI), are possible. In the present work an analysis method is presented that from pH-inhibition data allows one to distinguish between the different complexes and determine which protonation state is preferred. It is also possible to determine the pH-independent binding constants of the inhibitor. Analysis of pH data for imino- and azasugar inhibition of β-glucosidases revealed that basic glycosidase inhibitors bind as the monoprotonated (EHI) complex. Three neutral inhibitors were also studied and two of these were also bound exclusively as the EHI complex while a third bound both as a EHI and a EH2I complex.  相似文献   

20.
The antioxidant activities of extracts from leaves of the medicinal plants growing in Siberia were examined. Total antioxidant activity was determined using in vitro methods including DPPH (2,2-diphenyl-1-picrylhydrazyl radical) free radical scavenging assay, chelating capacity assay with ferrozine, evaluation of capacity to protect plasmid DNA against oxidative damage, measurement of H2O2 production, and measurement of total flavonoid and tannin content as well. Using in vivo experiments, we also evaluated capacities of the plant extracts to protect bacteria Escherichia coli against bacteriostatic and bactericidal effects of H2O2, and influence of the plant extracts on expression of antioxidant gene katG, encoding catalase. The extracts from Chamerion angustifolium, Filipendula vulgaris and Pyrola rotundifolia indicated the highest levels of antioxidant activity both in vivo and in vitro. Our data suggest that the extracts of the tested plants may provide antioxidant effects on bacteria simultaneously through different pathways, including direct radical scavenging, iron chelation and induction of genes encoding antioxidant enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号