首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have previously shown that there is high Na(+)/Ca(2+) exchange (NCX) activity in bovine adrenal chromaffin cells. In this study, by monitoring the [Ca(2+)](i) change in single cells and in a population of chromaffin cells, when the reverse mode of exchanger activity has been initiated, we have shown that the NCX activity is enhanced by K(+). The K(+)-enhanced activity accounted for a significant proportion of the Na(+)-dependent Ca(2+) uptake activity in the chromaffin cells. The results support the hypothesis that both NCX and Na(+)/Ca(2+)-K(+) exchanger (NCKX) are co-present in chromaffin cells. The expression of NCKX in chromaffin cells was further confirmed using PCR and northern blotting. In addition to the plasma membrane, the exchanger activity, measured by Na(+)-dependent (45)Ca(2+) uptake, was also present in membrane isolated from the chromaffin granules enriched fraction and the mitochondria enriched fraction. The results support that both NCX and NCKX are present in bovine chromaffin cells and that the regulation of [Ca(2+)](i) is probably more efficient with the participation of NCKX.  相似文献   

2.
3.
Reaction of a dog kidney (Na + K)-ATPase with pyridoxal phosphate, followed by borohydride reduction, reduced the catalytic activity when measured subsequently. The time course of inactivation did not follow a first-order process, and certain characteristics of the residual enzymatic activity were modified. Moreover, various catalytic activities were diminished differently: Na-ATPase activity was largely spared, K-phosphatase activity was diminished only by half that of the (Na + K)-ATPase, whereas (Na + K)-CTPase and Na-CTPase activities were diminished more. ATP, ADP, CTP, nitrophenyl phosphate, and Pi all protected against inactivation. Increasing salt concentrations increased inactivation, but KCl slowed and NaCl hastened inactivation when compared with choline chloride. Occupancy of certain substrate or cation sites seemed more crucial than selection of conformational states. For the residual (Na + K)-ATPase activity theK 0.5 for K+ was lower and theK 0.5 for Na+ higher, while the sensitivities to ouabain, oligomycin, and dimethylsulfoxide were diminished; for the residual K-phosphatase activity theK 0.5 for K+ was unchanged, the sensitivity to ouabain and oligomycin diminished, but the stimulation by dimethylsulfoxide increased. These properties cannot be wholly accommodated by assuming merely shifts toward either of the two major enzyme conformations.  相似文献   

4.
It is the general hypothesis that the primary mode of action of ethanol is the alteration of membrane structure and function including the conformation of receptors and ion channels essential for neurotransmission and signal transduction. However, the issue of whether ethanol affects (Na+K)-ATPase under physiological conditions remains unsettled. In this study, adult mice were treated with a daily dose of 5 g/kg of ethanol for 28 days. The RNA was isolated from brain and the (Na+K)-ATPase mRNA level was determined using Northern blot analysis. We have found an increased expression of (Na+K)-ATPase -subunit in the chronically treated alcohol group as compared with that of controls. This result was further substantiated by increased protein phosphorylation as well as increased specific activity of this enzyme in the synaptosomal plasma membrane after chronic ethanol administration. Thus we have demonstrated that ethanol may directly affect (Na+K)-ATPase in vivo, leading to the increased synthesis of this enzyme through adaptive mechanisms.  相似文献   

5.
A particulate (Na + K)-ATPase preparation from dog kidney bound [48V]-ortho-vanadate rapidly at 37°C through a divalent cation-dependent process. In the presence of 3 mM MgCl2 theK d was 96 nM; substituting MnCl2 decreased theK d to 12 nM but the maximal binding remained the same, 2.8 nmol per mg protein, consistent with 1 mol vanadate per functional enzyme complex. Adding KCl in the presence of MgCl2 increased binding, with aK 0.5 for KCl near 0.5 mM; the increased binding was associated with a drop inK d for vanadate to 11 nM but with no change in maximal binding. Adding NaCl in the presence of MgCl2 decreased binding markedly, with anI 50 for NaCl of 7 mM. However, in the presence of MnCl2 neither KCl nor NaCl affected vanadate binding appreciably. Both the nonhydrolyzable, ,-imido analog of ATP and nitrophenyl phosphate, a substrate for the K-phosphatase reaction that this enzyme also catalyzes, decreased vanadate binding at concentrations consistent with their acting at the low-affinity substrate site of the enzyme; the presence of KCl increased the concentration of each required to decrease vanadate binding. Oligomycin decreased vanadate binding in the presence of MgCl2, whereas dimethyl sulfoxide and ouabain increased it. With inside-out membrane vesicles from red blood cells vanadate inhibited both the K-phosphatase and (Na + K)-ATPase reactions; however, with the K-phosphatase reaction extravesicular K+ (corresponding to intracellular K+) both stimulated catalysis and augmented vanadate inhibition, whereas with the (Na + K)-ATPase reaction intravesicular K+ (corresponding to extracellular K+) both stimulated catalysis and augmented vanadate binding.  相似文献   

6.
经不同试验浓度的久效磷(0.25、0.5、1.0和2.0mg·L^-1)处理美国红鱼4d后,分别对鱼鳃Na^+/K^+—ATP酶活性和氯细胞密度进行了测定和计数,并观察了鱼鳃组织显微结构和超微结构的变化。结果表明,低浓度久效磷(0.25mg·L^-1)处理可以诱导鱼鳃氯细胞大量增生,Na^+/K^+—ATP酶活性增强,随着试验浓度的增加,久效磷对鳃组织的损伤越来越重,Na^+/K^+—ATP酶活性逐渐降低;久效磷对鱼鳃显微结构的损伤表现为鳃小片上皮细胞水肿、脱离。鳃小片基部粘连。鳃小片上皮细胞角质化;超微结构变化主要为内质网、线粒体、微小管和核膜的水肿及部分溶解,这种损伤表现为由细胞膜到细胞核的动态过程。  相似文献   

7.
To examine the extracellular Na+ sensitivity of a renal inwardly rectifying K+ channel, we performed electrophysiological experiments on Xenopus oocytes or a human kidney cell line, HEK293, in which we had expressed the cloned renal K+ channel, ROMK1 (Kir1.1). When extracellular Na+ was removed, the whole-cell ROMK1 currents were markedly suppressed in both the oocytes and HEK293 cells. Single-channel ROMK1 activities recorded in the cell-attached patch on the oocyte were not affected by removal of Na+ from the pipette solution. However, macro-patch ROMK1 currents recorded on the oocyte were significantly suppressed by Na+ removal from the bath solution. A blocker of Na+/H+ antiporters, amiloride, largely inhibited the Na+ removal-induced suppression of whole-cell ROMK1 currents in the oocytes. The pH-insensitive K80M mutant of ROMK1 was much less sensitive to Na+ removal. Na+ removal was found to induce a significant decrease in intracellular pH in the oocytes using H+-selective microelectrodes. Coexpression of ROMK1 with NHE3, which is a Na+/H+ antiporter isoform of the kidney apical membrane, conferred increased sensitivity of ROMK1 channels to extracellular Na+ in both the oocytes and HEK293 cells. Thus, it is concluded that the ROMK1 channel is regulated indirectly by extracellular Na+, and that the interaction between NHE transporter and ROMK1 channel appears to be involved in the mechanism of Na+ sensitivity of ROMK1 channel via regulating intracellular pH. Received: 13 April 1999/Revised: 15 July 1999  相似文献   

8.
9.
The inward‐rectifying K+ channel AKT1 constitutes an important pathway for K+ acquisition in plant roots. In glycophytes, excessive accumulation of Na+ is accompanied by K+ deficiency under salt stress. However, in the succulent xerophyte Zygophyllum xanthoxylum, which exhibits excellent adaptability to adverse environments, K+ concentration remains at a relatively constant level despite increased levels of Na+ under salinity and drought conditions. In this study, the contribution of ZxAKT1 to maintaining K+ and Na+ homeostasis in Z. xanthoxylum was investigated. Expression of ZxAKT1 rescued the K+‐uptake‐defective phenotype of yeast strain CY162, suppressed the salt‐sensitive phenotype of yeast strain G19, and complemented the low‐K+‐sensitive phenotype of Arabidopsis akt1 mutant, indicating that ZxAKT1 functions as an inward‐rectifying K+ channel. ZxAKT1 was predominantly expressed in roots, and was induced under high concentrations of either KCl or NaCl. By using RNA interference technique, we found that ZxAKT1‐silenced plants exhibited stunted growth compared to wild‐type Z. xanthoxylum. Further experiments showed that ZxAKT1‐silenced plants exhibited a significant decline in net uptake of K+ and Na+, resulting in decreased concentrations of K+ and Na+, as compared to wild‐type Z. xanthoxylum grown under 50 mm NaCl. Compared with wild‐type, the expression levels of genes encoding several transporters/channels related to K+/Na+ homeostasis, including ZxSKOR, ZxNHX, ZxSOS1 and ZxHKT1;1, were reduced in various tissues of a ZxAKT1‐silenced line. These findings suggest that ZxAKT1 not only plays a crucial role in K+ uptake but also functions in modulating Na+ uptake and transport systems in Z. xanthoxylum, thereby affecting its normal growth.  相似文献   

10.
The Na+,K+-ATPase binds Na+ at three transport sites denoted I, II, and III, of which site III is Na+-specific and suggested to be the first occupied in the cooperative binding process activating phosphorylation from ATP. Here we demonstrate that the asparagine substitution of the aspartate associated with site III found in patients with rapid-onset dystonia parkinsonism or alternating hemiplegia of childhood causes a dramatic reduction of Na+ affinity in the α1-, α2-, and α3-isoforms of Na+,K+-ATPase, whereas other substitutions of this aspartate are much less disruptive. This is likely due to interference by the amide function of the asparagine side chain with Na+-coordinating residues in site III. Remarkably, the Na+ affinity of site III aspartate to asparagine and alanine mutants is rescued by second-site mutation of a glutamate in the extracellular part of the fourth transmembrane helix, distant to site III. This gain-of-function mutation works without recovery of the lost cooperativity and selectivity of Na+ binding and does not affect the E1-E2 conformational equilibrium or the maximum phosphorylation rate. Hence, the rescue of Na+ affinity is likely intrinsic to the Na+ binding pocket, and the underlying mechanism could be a tightening of Na+ binding at Na+ site II, possibly via movement of transmembrane helix four. The second-site mutation also improves Na+,K+ pump function in intact cells. Rescue of Na+ affinity and Na+ and K+ transport by second-site mutation is unique in the history of Na+,K+-ATPase and points to new possibilities for treatment of neurological patients carrying Na+,K+-ATPase mutations.  相似文献   

11.
Treatment of Friend erythroleukemia cells with several different chemical agents causes an early decrease in the 86Rb+ influx mediated by Na+/K+ adenosine triphosphatase (ATPase). These agents, which induced Friend cells to differentiate, include dimethylsulfoxide (DMSO), ouabain, hypoxanthine, and actinomycin D. The magnitude of the early decrease in 86Rb+ influx correlates with the proportion of cells in cultures of inducible Friend cell clones which later go on to synthesize hemoglobin. Compounds which do not incude differentiation in these cells, such as xanthine, exogenous hematin, and erythropoietin, do not cause a change in 86Rb+ influx. A change in the intracellular K+ ion concentration does not occur during induction by DMSO because, although there is a decrease in K+ content per cell soon after induction, there is a parallel decrease in cell volume. These results and previous observations from this laboratory are discussed in terms of the posible involvement of the Na+/K+ ATPase in Friend cell differentiation.  相似文献   

12.
Renal (Na + K)-ATPase was studied to ascertain whether it follows the pattern of adaptation of membrane-bound enzymes that are inhibited by acute ethanol exposure and develop greater activity after chronic ethanol treatment. A colony of rats was given 20 per cent (v/v) ethanol as sole drinking solution throughout gestation, lactation and following weaning. (Na + K)-ATPase and ouabain-insensitive Ca(2+)-ATPase activities were determined; regional distribution of these enzymes was assessed in renal cortex and outer medulla. Control rats drank tap water. (Na + K)-ATPase in whole homogenate of kidney increased with age in controls and ethanol-fed rats, but the latter showed higher values at every age studied. Between 15 and 60 days of age, the control group showed 2-fold increases in cortex and 5-fold in outer medulla, whereas ethanol-fed rats reached a 3-fold increase in the enzyme activity in both renal regions. Ca(2+)-ATPase showed the same time course in developing kidney of both groups. Chronic ethanol treatment of adult rats resulted in an increase of (Na + K)-ATPase activity in cortex and outer medulla, but no change in other ATPases. Since an earlier maturational development of renal (Na + K)-ATPase was displayed by ethanol-fed rats, underlying mechanisms that may account for these results are discussed.  相似文献   

13.
The effect of thyroid hormones (T4, T3 and reverse T3) on rat renal Na+,K+-ATPase activity was investigated by a cytochemical technique. T3 caused stimulation of Na+,K+-ATPase activity in the renal medulla but not in the renal cortex. There was a peak in enzyme activity after cultured renal segments had been exposed to T3 for 11 min and this time of maximal stimulation did not vary with the concentration of T3. A rectilinear response in Na+,K+-ATPase activity was observed over T3 concentration range 10 pmol l-1 to 100 nmol l-1; at higher T3 concentrations, Na+,K+-ATPase activity was inhibited. The enzyme response was totally blocked by specific T3 antiserum. Addition of T4 and reverse T3 (100 fmol l-1 -1 mmol l-1) failed to stimulate Na+,K+-ATPase activity in any part of the kidney. Plasma (neat and diluted 1:10) stimulated the enzyme in parallel with the dose response curve and the stimulatory effect was abolished by prior addition of specific T3 antiserum.  相似文献   

14.
Abstract: The effect of endothelins (ET-1 and ET-3) on 86Rb+ uptake as a measure of K+ uptake was investigated in cultured rat brain capillary endothelium. ET-1 or ET-3 dose-dependently enhanced K+ uptake (EC50 = 0.60 ± 0.15 and 21.5 ± 4.1 nM, respectively), which was inhibited by the selective ETA receptor antagonist BQ 123 (cyclo-d -Trp-d -Asp-Pro-d -Val-Leu). Neither the selective ETB agonists IRL 1620 [N-succinyl-(Glu9,-Ala11,15)-ET-1] and sarafotoxin S6c, nor the ETB receptor antagonist IRL 1038 [(Cys11,Cys15)-ET-1] had any effect on K+ uptake. Ouabain (inhibitor of Na+,K+-ATPase) and bumetanide (inhibitor of Na+-K+-Cl? cotransport) reduced (up to 40% and up to 70%, respectively) the ET-1-stimulated K+ uptake. Complete inhibition was seen with both agents. Phorbol 12-myristate 13-acetate (PMA), activator of protein kinase C (PKC), stimulated Na+,K+-ATPase and Na+-K+-Cl? cotransport. ET-1-but not PMA-stimulated K+ uptake was inhibited by 5-(N-ethyl-N-isopropyl)amiloride (inhibitor of Na+/H+ exchange system), suggesting a linkage of Na+/H+ exchange with ET-1-stimulated Na+,K+-ATPase and Na+-K+-Cl? cotransport activity that is not mediated by PKC.  相似文献   

15.
An IgG fraction prepared from an antiserum against a holoenzyme preparation of (Na+ + K+)-ATPase precipitated a single antigen when samples of holoenzyme were subjected to crossed immunoelectrophoresis but precipitated an additional, immunochemically-related antigen when a plasma membrane-enriched fraction was subjected to crossed immunoelectrophoresis under the same conditions. The immunochemically-related antigen could be extracted from the plasma membrane fraction with CHCl3:CH3OH.  相似文献   

16.
Tryptic digestion of the (Na + K)-ATPase in the presence of choline chloride or NaCl (Na-type) and in the presence of KCl (K-type) produced distinct patterns of peptide fragments and losses of catalytic activity. TheK 0.5 for K+ to shift digestion from the Na-type, and its sensitivity to dimethyl sulfoxide and Triton X-100, were consistent with K+ acting at sites on the cytoplasmic face of the enzyme through which the K-phosphatase reaction also is activated. Reagents favoring the E1 conformational states, oligomycin, Triton, and ATP, shifted the pattern toward the Na-type, whereas those favoring E2 states, dimethyl sulfoxide, MgCl2, and MnCl2, shifted the pattern toward the K-type. Na-type digestion caused a greater loss of K-phosphatase than (Na + K)-ATPase activity, and the residual K-phosphatase activity was more sensitive to inhibition by Triton and ATP but stimulated more by dimethyl sulfoxide and inhibited less by Pi and MnCl2; all these effects are consistent with such digestion shifting equilibria toward E1 enzyme states. Accordingly, theK 0.5 for K+ to activate the (Na + K)-ATPase was increased. However, theK 0.5 for the K-phosphatase was unchanged; this observation requires revision of previous formulations, and bears on additional aspects of enzyme activity as well.  相似文献   

17.
Subcellular membrane fractions were prepared from the salt glands of osmotically-stressed ducklings. Two fractions were characterized biochemically with respect to (Na+ + K+)-ATPase, alkaline phosphodiesterase I, succinate dehydrogenase, esterase, and galactosyltransferase activities and immunochemically with respect to (Na+ + K+)-ATPase. The ratios of the estimates of the (Na+ + K+)-ATPase contents obtained biochemically and immunochemically from the two fractions differed by more than 2 X. The results are consistent with the presence of at least two molecular species of (Na+ + K+)-ATPase, unevenly distributed between the two fractions.  相似文献   

18.
三峡区域药用植物拐芹的根中富含倍半萜类抗溃疡活性成分没药烷吉酮,为可开发和利用的中草药资源。本文对该化合物进行了提取分离、结构修饰和初步的构效关系研究,从拐芹根茎中提取并分离了没药烷吉酮,通过选择性还原、缩合和加成反应制备了四个没药烷吉酮氨基甲酰腙衍生物。用核磁共振波谱、质谱、红外和元素分析等方法确证了其结构,并测试了其体外对H~+/K~+-ATP酶的抑制活性和细胞毒活性。没药烷吉酮还原衍生物2及4-氯苯基取代的氨基甲酰腙衍生物4d较阳性对照药物奥美拉唑具有更好的体外抗溃疡活性(IC50<24μmol/L)。本文探明了没药烷吉酮衍生物的结构对体外H~+/K~+-ATP酶抑制活性的影响,为消化性溃疡的治疗提供了新型倍半萜类候选药物。  相似文献   

19.
Na+/K+-ATPase (EC 3.6.1.3) is an important membrane-bound enzyme. In this paper, kinetic studies on Na+/K+-ATPase were carried out under mimetic physiological conditions. By using microcalorimeter, a thermokinetic method was employed for the first time. Compared with other methods, it provided accurate measurements of not only thermodynamic data (deltarHm) but also the kinetic data (Km and Vmax). At 310.15K and pH 7.4, the molar reaction enthalpy (deltarHm) was measured as -40.514 +/- 0.9kJmol(-1). The Michaelis constant (Km) was determined to be 0.479 +/- 0.020 mM and consistent with literature data. The reliability of the thermokinetic method was further confirmed by colorimetric studies. Furthermore, a simple and reliable kinetic procedure was presented for ascertaining the true substrate for Na+/K+-ATPase and determining the effect of free ATP. Results showed that the MgATP complex was the real substrate with a Km value of about 0.5mM and free ATP was a competitive inhibitor with a Ki value of 0.253 mM.  相似文献   

20.
王立光 《生物工程学报》2019,35(8):1424-1432
拟南芥内膜Na,K~+/H~+反向转运体(Endosomal NHX)的亚细胞定位、离子转运特性及生物学功能阐释取得了重要进展。拟南芥内膜Na~+,K~+/H~+反向转运体包含AtNHX5和AtNHX6两个成员,它们的氨基酸序列相似性为78.7%。研究表明,AtNHX5和AtNHX6具有功能冗余,它们都定位在高尔基体(Golgi)、反面高尔基体管网状结构(TGN)、内质网(ER)和液胞前体(PVC),参与调控耐盐胁迫、pH平衡和K~+平衡等。有报道显示内膜NHXs跨膜结构域存在能够调控自身离子活性的酸性保守氨基酸残基,对其自身功能具有决定性作用。最新研究结果表明,拟南芥内膜NHXs影响囊泡运输和蛋白存贮,并参与生长素介导的植物生长和发育。文中主要对拟南芥内膜NHXs的亚细胞定位、离子转运、功能及应用进展进行了概述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号